Research article

Good and bad children in metabolic networks

  • Received: 20 July 2020 Accepted: 14 October 2020 Published: 03 November 2020
  • Equilibrium bifurcations arise from sign changes of Jacobian determinants, as parameters are varied. Therefore we address the Jacobian determinant for metabolic networks with general reaction kinetics. Our approach is based on the concept of Child Selections: each (mother) metabolite is mapped, injectively, to one of those (child) reactions that it drives as an input. Our analysis distinguishes reaction network Jacobians with constant sign from the bifurcation case, where that sign depends on specific reaction rates. In particular, we distinguish "good" Child Selections, which do not affect the sign, from more interesting and mischievous "bad" children, which gang up towards sign changes, instability, and bifurcation.

    Citation: Nicola Vassena. Good and bad children in metabolic networks[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7621-7644. doi: 10.3934/mbe.2020388

    Related Papers:

    [1] Robert E. Beardmore, Rafael Peña-Miller . Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits. Mathematical Biosciences and Engineering, 2010, 7(4): 923-933. doi: 10.3934/mbe.2010.7.923
    [2] Robert E. Beardmore, Rafael Peña-Miller . Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences and Engineering, 2010, 7(3): 527-552. doi: 10.3934/mbe.2010.7.527
    [3] Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354
    [4] Jing Jia, Yanfeng Zhao, Zhong Zhao, Bing Liu, Xinyu Song, Yuanxian Hui . Dynamics of a within-host drug resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(2): 2219-2231. doi: 10.3934/mbe.2023103
    [5] Michele L. Joyner, Cammey C. Manning, Brandi N. Canter . Modeling the effects of introducing a new antibiotic in a hospital setting: A case study. Mathematical Biosciences and Engineering, 2012, 9(3): 601-625. doi: 10.3934/mbe.2012.9.601
    [6] Avner Friedman, Najat Ziyadi, Khalid Boushaba . A model of drug resistance with infection by health care workers. Mathematical Biosciences and Engineering, 2010, 7(4): 779-792. doi: 10.3934/mbe.2010.7.779
    [7] Xiaoxiao Yan, Zhong Zhao, Yuanxian Hui, Jingen Yang . Dynamic analysis of a bacterial resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(12): 20422-20436. doi: 10.3934/mbe.2023903
    [8] Natalia L. Komarova . Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2011, 8(2): 289-306. doi: 10.3934/mbe.2011.8.289
    [9] Qimin Huang, Mary Ann Horn, Shigui Ruan . Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination. Mathematical Biosciences and Engineering, 2019, 16(5): 3641-3673. doi: 10.3934/mbe.2019181
    [10] Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton . Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247
  • Equilibrium bifurcations arise from sign changes of Jacobian determinants, as parameters are varied. Therefore we address the Jacobian determinant for metabolic networks with general reaction kinetics. Our approach is based on the concept of Child Selections: each (mother) metabolite is mapped, injectively, to one of those (child) reactions that it drives as an input. Our analysis distinguishes reaction network Jacobians with constant sign from the bifurcation case, where that sign depends on specific reaction rates. In particular, we distinguish "good" Child Selections, which do not affect the sign, from more interesting and mischievous "bad" children, which gang up towards sign changes, instability, and bifurcation.




    [1] F. Horn, R. Jackson, General mass action kinetics, Arch. Ration. Mech. Anal., 47 (1972), 81-116.
    [2] M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42 (1987), 2229-2268.
    [3] M. Feinberg, The existence and uniqueness of steady states for a class of chemical reaction networks, Arch. Ration. Mech. Anal., 132 (1995), 311-370. doi: 10.1007/BF00375614
    [4] D. Gale, H. Nikaido, The Jacobian matrix and global univalence of mappings, Math. Ann., 159 (1965), 81-93. doi: 10.1007/BF01360282
    [5] G. Craciun, M. Feinberg, Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph, SIAM J. Appl. Math., 66 (2006), 1321-1338. doi: 10.1137/050634177
    [6] M. Banaji, P. Donnell, S. Baigent, P matrix properties, injectivity, and stability in chemical reaction systems, SIAM J. Appl. Math., 67 (2007), 1523-1547.
    [7] M. Banaji, G. Craciun, Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems, Adv. Appl. Math., 44 (2010), 168-184. doi: 10.1016/j.aam.2009.07.003
    [8] G. Shinar, M. Feinberg, Concordant chemical reaction networks, Math. Biosci., 240 (2012), 92-113. doi: 10.1016/j.mbs.2012.05.004
    [9] G. Shinar, M. Feinberg, Concordant chemical reaction networks and the species-reaction graph, Math. Biosci., 241 (2013), 1-23. doi: 10.1016/j.mbs.2012.08.002
    [10] R. Thomas, On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations, Numerical methods in the study of critical phenomena, Springer Series in Synergetics, vol 9. (1981) 180-193.
    [11] C. Soulé, Graphic requirements for multistationarity, ComPlexUs, 1 (2003), 123-133. doi: 10.1159/000076100
    [12] M. Kaufman, C. Soulé, R. Thomas, A new necessary condition on interaction graphs for multi-stationarity, J. Theor. Biol., 248 (2007), 675-685. doi: 10.1016/j.jtbi.2007.06.016
    [13] C. Wiuf, E. Feliu, Power-law kinetics and determinant criteria for the preclusion of multistation-arity in networks of interacting species, SIAM J. Appl. Dyn. Syst., 12 (2013), 1685-1721. doi: 10.1137/120873388
    [14] E. Feliu, N. Kaihnsa, T. de Wolff, O. Yürük, The kinetic space of multistationarity in dual phosphorylation, J. Dyn. Differ. Equ., (2020).
    [15] M. Mincheva, M. R. Roussel, Graph-theoretic methods for the analysis of chemical and biochemical networks. I. Multistability and oscillations in ordinary differential equation models, J. Math. Biol., 55 (2007), 61-86.
    [16] A. Ivanova, B. Tarnopolskii, One approach to the determination of a number of qualitative features in the behavior of kinetic systems, and realization of this approach in a computer (critical conditions, autooscillations), Kinet. Catal., 20 (1979), 1271-1277.
    [17] A. Volpert, A. Ivanova, Mathematical models in chemical kinetics, Math. Model. (Russian), 57 (1987), 102.
    [18] A. Ivanova, Conditions for uniqueness of the stationary states of kinetic systems, connected with the structure of their reaction-mechanism. 1., Kinet. Catal., 20 (1979), 833-837.
    [19] B. Brehm, B. Fiedler, Sensitivity of chemical reaction networks: a structural approach. 3. Regular multimolecular systems, Math. Methods Appl. Sci., 41 (2018), 1344-1376. doi: 10.1002/mma.4668
    [20] M. Feinberg, Foundations of Chemical Reaction Network Theory, Springer, 2019.
    [21] B. Fiedler, Global Hopf bifurcation in networks with fast feedback cycles, Discrete Contin. Dyn. Syst. Ser S, 0.
    [22] N. Vassena, Sensitivity of Metabolic Networks, PhD thesis, Freie Universität Berlin, 2020.
    [23] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. Watson, Molecular biology of the cell. W.W. Norton & Co, 1983.
    [24] H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, M. P. Scott, A. Bretscher, et al., Molecular cell biology, Macmillan, 2008.
    [25] N. Ishii, K. Nakahigashi, T. Baba, M. Robert, T. Soga, A. Kanai, et al., Multiple high-throughput analyses monitor the response of e. coli to perturbations, Science, 316 (2007), 593-597. doi: 10.1126/science.1132067
    [26] K. Nakahigashi, Y. Toya, N. Ishii, T. Soga, M. Hasegawa, H. Watanabe, et al., Systematic phenome analysis of escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism, Mol. Syst. Biol., 5 (2009), 306. doi: 10.1038/msb.2009.65
    [27] F. G. Vital-Lopez, C. D. Maranas, A. Armaou, Bifurcation analysis of the metabolism of E. coli at optimal enzyme levels, in 2006 American Control Conference, IEEE, 2006, 6-pp.
    [28] C. Chassagnole, N. Noisommit-Rizzi, J. W. Schmid, K. Mauch, M. Reuss, Dynamic modeling of the central carbon metabolism of Escherichia coli, Biotechnol. Bioeng., 79 (2002), 53-73. doi: 10.1002/bit.10288
    [29] T. Okada, J. C. Tsai, D. A. Mochizuki, Structural bifurcation analysis in chemical reaction networks, Phys. Rev. E, 98 (2018), 012417. doi: 10.1103/PhysRevE.98.012417
  • This article has been cited by:

    1. Nasim Muhammad, Hermann J Eberl, Two routes of transmission for Nosema infections in a honeybee population model with polyethism and time-periodic parameters can lead to drastically different qualitative model behavior, 2020, 84, 10075704, 105207, 10.1016/j.cnsns.2020.105207
    2. Vardayani Ratti, Peter G. Kevan, Hermann J. Eberl, A Mathematical Model of the Honeybee–Varroa destructor–Acute Bee Paralysis Virus System with Seasonal Effects, 2015, 77, 0092-8240, 1493, 10.1007/s11538-015-0093-5
    3. Nasim Muhammad, Hermann J. Eberl, 2018, Chapter 35, 978-3-319-99718-6, 385, 10.1007/978-3-319-99719-3_35
    4. K. Messan, G. DeGrandi-Hoffman, C. Castillo-Chavez, Y. Kang, M. Banerjee, A. Perasso, E. Venturino, Migration Effects on Population Dynamics of the Honeybee-mite Interactions, 2017, 12, 1760-6101, 84, 10.1051/mmnp/201712206
    5. Alex Petric, Ernesto Guzman-Novoa, Hermann J. Eberl, A mathematical model for the interplay of Nosema infection and forager losses in honey bee colonies, 2017, 11, 1751-3758, 348, 10.1080/17513758.2016.1237682
    6. Komi Messan, Marisabel Rodriguez Messan, Jun Chen, Gloria DeGrandi-Hoffman, Yun Kang, Population dynamics of Varroa mite and honeybee: Effects of parasitism with age structure and seasonality, 2021, 440, 03043800, 109359, 10.1016/j.ecolmodel.2020.109359
    7. Lotte Sewalt, Kristen Harley, Peter van Heijster, Sanjeeva Balasuriya, Influences of Allee effects in the spreading of malignant tumours, 2016, 394, 00225193, 77, 10.1016/j.jtbi.2015.12.024
    8. Brian Dennis, William P. Kemp, James A.R. Marshall, How Hives Collapse: Allee Effects, Ecological Resilience, and the Honey Bee, 2016, 11, 1932-6203, e0150055, 10.1371/journal.pone.0150055
    9. Ross D. Booton, Yoh Iwasa, James A.R. Marshall, Dylan Z. Childs, Stress-mediated Allee effects can cause the sudden collapse of honey bee colonies, 2017, 420, 00225193, 213, 10.1016/j.jtbi.2017.03.009
    10. Mataeli B. Lerata, Jean M-S. Lubuma, Abdullahi A. Yusuf, Continuous and discrete dynamical systems for the declines of honeybee colonies, 2018, 41, 01704214, 8724, 10.1002/mma.5093
    11. P. Magal, G. F. Webb, Yixiang Wu, An Environmental Model of Honey Bee Colony Collapse Due to Pesticide Contamination, 2019, 81, 0092-8240, 4908, 10.1007/s11538-019-00662-5
    12. Kenneth John Aitken, “If it looks like a duck…” – why humans need to focus on different approaches than insects if we are to become efficiently and effectively ultrasocial, 2016, 39, 0140-525X, 10.1017/S0140525X15000977
    13. A mechanistic model to assess risks to honeybee colonies from exposure to pesticides under different scenarios of combined stressors and factors, 2016, 13, 23978325, 10.2903/sp.efsa.2016.EN-1069
    14. Vardayani Ratti, Peter G. Kevan, Hermann J. Eberl, A Mathematical Model of Forager Loss in Honeybee Colonies Infested with Varroa destructor and the Acute Bee Paralysis Virus, 2017, 79, 0092-8240, 1218, 10.1007/s11538-017-0281-6
    15. Yun Kang, Krystal Blanco, Talia Davis, Ying Wang, Gloria DeGrandi-Hoffman, Disease dynamics of honeybees with Varroa destructor as parasite and virus vector, 2016, 275, 00255564, 71, 10.1016/j.mbs.2016.02.012
    16. J. Reilly Comper, Hermann J. Eberl, Mathematical modelling of population and food storage dynamics in a honey bee colony infected with Nosema ceranae, 2020, 6, 24058440, e04599, 10.1016/j.heliyon.2020.e04599
    17. P. Magal, G. F. Webb, Yixiang Wu, A spatial model of honey bee colony collapse due to pesticide contamination of foraging bees, 2020, 80, 0303-6812, 2363, 10.1007/s00285-020-01498-7
    18. Alessio Ippolito, Andreas Focks, Maj Rundlöf, Andres Arce, Marco Marchesi, Franco Maria Neri, Agnès Rortais, Csaba Szentes, Domenica Auteri, Analysis of background variability of honey bee colony size, 2021, 18, 23978325, 10.2903/sp.efsa.2021.EN-6518
    19. Jun Chen, Gloria DeGrandi-Hoffman, Vardayani Ratti, Yun Kang, Review on mathematical modeling of honeybee population dynamics, 2021, 18, 1551-0018, 9606, 10.3934/mbe.2021471
    20. Partha Sarathi Mandal, Sunil Maity, Impact of demographic variability on the disease dynamics for honeybee model, 2022, 32, 1054-1500, 083120, 10.1063/5.0096638
    21. Hermann J. Eberl, Nasim Muhammad, Mathematical modelling of between hive transmission of Nosemosis by drifting, 2022, 114, 10075704, 106636, 10.1016/j.cnsns.2022.106636
    22. David C. Elzinga, W. Christopher Strickland, Generalized Stressors on Hive and Forager Bee Colonies, 2023, 85, 0092-8240, 10.1007/s11538-023-01219-3
    23. Atanas Z. Atanasov, Miglena N. Koleva, Lubin G. Vulkov, Inverse Problem Numerical Analysis of Forager Bee Losses in Spatial Environment without Contamination, 2023, 15, 2073-8994, 2099, 10.3390/sym15122099
    24. Miglena N. Koleva, Lubin G. Vulkov, Reconstruction coefficient analysis of honeybee collapse due to pesticide contamination, 2023, 2675, 1742-6588, 012024, 10.1088/1742-6596/2675/1/012024
    25. Atanas Z. Atanasov, Slavi G. Georgiev, Lubin G. Vulkov, Analysis of the Influence of Brood Deaths on Honeybee Population, 2024, 14, 2076-3417, 11412, 10.3390/app142311412
    26. Miglena N. Koleva, Lubin G. Vulkov, 2025, Chapter 12, 978-3-031-96310-0, 131, 10.1007/978-3-031-96311-7_12
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4604) PDF downloads(76) Cited by(4)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog