Citation: Nicola Vassena. Good and bad children in metabolic networks[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7621-7644. doi: 10.3934/mbe.2020388
[1] | Robert E. Beardmore, Rafael Peña-Miller . Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits. Mathematical Biosciences and Engineering, 2010, 7(4): 923-933. doi: 10.3934/mbe.2010.7.923 |
[2] | Robert E. Beardmore, Rafael Peña-Miller . Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences and Engineering, 2010, 7(3): 527-552. doi: 10.3934/mbe.2010.7.527 |
[3] | Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354 |
[4] | Jing Jia, Yanfeng Zhao, Zhong Zhao, Bing Liu, Xinyu Song, Yuanxian Hui . Dynamics of a within-host drug resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(2): 2219-2231. doi: 10.3934/mbe.2023103 |
[5] | Michele L. Joyner, Cammey C. Manning, Brandi N. Canter . Modeling the effects of introducing a new antibiotic in a hospital setting: A case study. Mathematical Biosciences and Engineering, 2012, 9(3): 601-625. doi: 10.3934/mbe.2012.9.601 |
[6] | Avner Friedman, Najat Ziyadi, Khalid Boushaba . A model of drug resistance with infection by health care workers. Mathematical Biosciences and Engineering, 2010, 7(4): 779-792. doi: 10.3934/mbe.2010.7.779 |
[7] | Xiaoxiao Yan, Zhong Zhao, Yuanxian Hui, Jingen Yang . Dynamic analysis of a bacterial resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(12): 20422-20436. doi: 10.3934/mbe.2023903 |
[8] | Natalia L. Komarova . Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2011, 8(2): 289-306. doi: 10.3934/mbe.2011.8.289 |
[9] | Qimin Huang, Mary Ann Horn, Shigui Ruan . Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination. Mathematical Biosciences and Engineering, 2019, 16(5): 3641-3673. doi: 10.3934/mbe.2019181 |
[10] | Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton . Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247 |
[1] | F. Horn, R. Jackson, General mass action kinetics, Arch. Ration. Mech. Anal., 47 (1972), 81-116. |
[2] | M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42 (1987), 2229-2268. |
[3] |
M. Feinberg, The existence and uniqueness of steady states for a class of chemical reaction networks, Arch. Ration. Mech. Anal., 132 (1995), 311-370. doi: 10.1007/BF00375614
![]() |
[4] |
D. Gale, H. Nikaido, The Jacobian matrix and global univalence of mappings, Math. Ann., 159 (1965), 81-93. doi: 10.1007/BF01360282
![]() |
[5] |
G. Craciun, M. Feinberg, Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph, SIAM J. Appl. Math., 66 (2006), 1321-1338. doi: 10.1137/050634177
![]() |
[6] | M. Banaji, P. Donnell, S. Baigent, P matrix properties, injectivity, and stability in chemical reaction systems, SIAM J. Appl. Math., 67 (2007), 1523-1547. |
[7] |
M. Banaji, G. Craciun, Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems, Adv. Appl. Math., 44 (2010), 168-184. doi: 10.1016/j.aam.2009.07.003
![]() |
[8] |
G. Shinar, M. Feinberg, Concordant chemical reaction networks, Math. Biosci., 240 (2012), 92-113. doi: 10.1016/j.mbs.2012.05.004
![]() |
[9] |
G. Shinar, M. Feinberg, Concordant chemical reaction networks and the species-reaction graph, Math. Biosci., 241 (2013), 1-23. doi: 10.1016/j.mbs.2012.08.002
![]() |
[10] | R. Thomas, On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations, Numerical methods in the study of critical phenomena, Springer Series in Synergetics, vol 9. (1981) 180-193. |
[11] |
C. Soulé, Graphic requirements for multistationarity, ComPlexUs, 1 (2003), 123-133. doi: 10.1159/000076100
![]() |
[12] |
M. Kaufman, C. Soulé, R. Thomas, A new necessary condition on interaction graphs for multi-stationarity, J. Theor. Biol., 248 (2007), 675-685. doi: 10.1016/j.jtbi.2007.06.016
![]() |
[13] |
C. Wiuf, E. Feliu, Power-law kinetics and determinant criteria for the preclusion of multistation-arity in networks of interacting species, SIAM J. Appl. Dyn. Syst., 12 (2013), 1685-1721. doi: 10.1137/120873388
![]() |
[14] | E. Feliu, N. Kaihnsa, T. de Wolff, O. Yürük, The kinetic space of multistationarity in dual phosphorylation, J. Dyn. Differ. Equ., (2020). |
[15] | M. Mincheva, M. R. Roussel, Graph-theoretic methods for the analysis of chemical and biochemical networks. I. Multistability and oscillations in ordinary differential equation models, J. Math. Biol., 55 (2007), 61-86. |
[16] | A. Ivanova, B. Tarnopolskii, One approach to the determination of a number of qualitative features in the behavior of kinetic systems, and realization of this approach in a computer (critical conditions, autooscillations), Kinet. Catal., 20 (1979), 1271-1277. |
[17] | A. Volpert, A. Ivanova, Mathematical models in chemical kinetics, Math. Model. (Russian), 57 (1987), 102. |
[18] | A. Ivanova, Conditions for uniqueness of the stationary states of kinetic systems, connected with the structure of their reaction-mechanism. 1., Kinet. Catal., 20 (1979), 833-837. |
[19] |
B. Brehm, B. Fiedler, Sensitivity of chemical reaction networks: a structural approach. 3. Regular multimolecular systems, Math. Methods Appl. Sci., 41 (2018), 1344-1376. doi: 10.1002/mma.4668
![]() |
[20] | M. Feinberg, Foundations of Chemical Reaction Network Theory, Springer, 2019. |
[21] | B. Fiedler, Global Hopf bifurcation in networks with fast feedback cycles, Discrete Contin. Dyn. Syst. Ser S, 0. |
[22] | N. Vassena, Sensitivity of Metabolic Networks, PhD thesis, Freie Universität Berlin, 2020. |
[23] | B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. Watson, Molecular biology of the cell. W.W. Norton & Co, 1983. |
[24] | H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, M. P. Scott, A. Bretscher, et al., Molecular cell biology, Macmillan, 2008. |
[25] |
N. Ishii, K. Nakahigashi, T. Baba, M. Robert, T. Soga, A. Kanai, et al., Multiple high-throughput analyses monitor the response of e. coli to perturbations, Science, 316 (2007), 593-597. doi: 10.1126/science.1132067
![]() |
[26] |
K. Nakahigashi, Y. Toya, N. Ishii, T. Soga, M. Hasegawa, H. Watanabe, et al., Systematic phenome analysis of escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism, Mol. Syst. Biol., 5 (2009), 306. doi: 10.1038/msb.2009.65
![]() |
[27] | F. G. Vital-Lopez, C. D. Maranas, A. Armaou, Bifurcation analysis of the metabolism of E. coli at optimal enzyme levels, in 2006 American Control Conference, IEEE, 2006, 6-pp. |
[28] |
C. Chassagnole, N. Noisommit-Rizzi, J. W. Schmid, K. Mauch, M. Reuss, Dynamic modeling of the central carbon metabolism of Escherichia coli, Biotechnol. Bioeng., 79 (2002), 53-73. doi: 10.1002/bit.10288
![]() |
[29] |
T. Okada, J. C. Tsai, D. A. Mochizuki, Structural bifurcation analysis in chemical reaction networks, Phys. Rev. E, 98 (2018), 012417. doi: 10.1103/PhysRevE.98.012417
![]() |
1. | Nasim Muhammad, Hermann J Eberl, Two routes of transmission for Nosema infections in a honeybee population model with polyethism and time-periodic parameters can lead to drastically different qualitative model behavior, 2020, 84, 10075704, 105207, 10.1016/j.cnsns.2020.105207 | |
2. | Vardayani Ratti, Peter G. Kevan, Hermann J. Eberl, A Mathematical Model of the Honeybee–Varroa destructor–Acute Bee Paralysis Virus System with Seasonal Effects, 2015, 77, 0092-8240, 1493, 10.1007/s11538-015-0093-5 | |
3. | Nasim Muhammad, Hermann J. Eberl, 2018, Chapter 35, 978-3-319-99718-6, 385, 10.1007/978-3-319-99719-3_35 | |
4. | K. Messan, G. DeGrandi-Hoffman, C. Castillo-Chavez, Y. Kang, M. Banerjee, A. Perasso, E. Venturino, Migration Effects on Population Dynamics of the Honeybee-mite Interactions, 2017, 12, 1760-6101, 84, 10.1051/mmnp/201712206 | |
5. | Alex Petric, Ernesto Guzman-Novoa, Hermann J. Eberl, A mathematical model for the interplay of Nosema infection and forager losses in honey bee colonies, 2017, 11, 1751-3758, 348, 10.1080/17513758.2016.1237682 | |
6. | Komi Messan, Marisabel Rodriguez Messan, Jun Chen, Gloria DeGrandi-Hoffman, Yun Kang, Population dynamics of Varroa mite and honeybee: Effects of parasitism with age structure and seasonality, 2021, 440, 03043800, 109359, 10.1016/j.ecolmodel.2020.109359 | |
7. | Lotte Sewalt, Kristen Harley, Peter van Heijster, Sanjeeva Balasuriya, Influences of Allee effects in the spreading of malignant tumours, 2016, 394, 00225193, 77, 10.1016/j.jtbi.2015.12.024 | |
8. | Brian Dennis, William P. Kemp, James A.R. Marshall, How Hives Collapse: Allee Effects, Ecological Resilience, and the Honey Bee, 2016, 11, 1932-6203, e0150055, 10.1371/journal.pone.0150055 | |
9. | Ross D. Booton, Yoh Iwasa, James A.R. Marshall, Dylan Z. Childs, Stress-mediated Allee effects can cause the sudden collapse of honey bee colonies, 2017, 420, 00225193, 213, 10.1016/j.jtbi.2017.03.009 | |
10. | Mataeli B. Lerata, Jean M-S. Lubuma, Abdullahi A. Yusuf, Continuous and discrete dynamical systems for the declines of honeybee colonies, 2018, 41, 01704214, 8724, 10.1002/mma.5093 | |
11. | P. Magal, G. F. Webb, Yixiang Wu, An Environmental Model of Honey Bee Colony Collapse Due to Pesticide Contamination, 2019, 81, 0092-8240, 4908, 10.1007/s11538-019-00662-5 | |
12. | Kenneth John Aitken, “If it looks like a duck…” – why humans need to focus on different approaches than insects if we are to become efficiently and effectively ultrasocial, 2016, 39, 0140-525X, 10.1017/S0140525X15000977 | |
13. | A mechanistic model to assess risks to honeybee colonies from exposure to pesticides under different scenarios of combined stressors and factors, 2016, 13, 23978325, 10.2903/sp.efsa.2016.EN-1069 | |
14. | Vardayani Ratti, Peter G. Kevan, Hermann J. Eberl, A Mathematical Model of Forager Loss in Honeybee Colonies Infested with Varroa destructor and the Acute Bee Paralysis Virus, 2017, 79, 0092-8240, 1218, 10.1007/s11538-017-0281-6 | |
15. | Yun Kang, Krystal Blanco, Talia Davis, Ying Wang, Gloria DeGrandi-Hoffman, Disease dynamics of honeybees with Varroa destructor as parasite and virus vector, 2016, 275, 00255564, 71, 10.1016/j.mbs.2016.02.012 | |
16. | J. Reilly Comper, Hermann J. Eberl, Mathematical modelling of population and food storage dynamics in a honey bee colony infected with Nosema ceranae, 2020, 6, 24058440, e04599, 10.1016/j.heliyon.2020.e04599 | |
17. | P. Magal, G. F. Webb, Yixiang Wu, A spatial model of honey bee colony collapse due to pesticide contamination of foraging bees, 2020, 80, 0303-6812, 2363, 10.1007/s00285-020-01498-7 | |
18. | Alessio Ippolito, Andreas Focks, Maj Rundlöf, Andres Arce, Marco Marchesi, Franco Maria Neri, Agnès Rortais, Csaba Szentes, Domenica Auteri, Analysis of background variability of honey bee colony size, 2021, 18, 23978325, 10.2903/sp.efsa.2021.EN-6518 | |
19. | Jun Chen, Gloria DeGrandi-Hoffman, Vardayani Ratti, Yun Kang, Review on mathematical modeling of honeybee population dynamics, 2021, 18, 1551-0018, 9606, 10.3934/mbe.2021471 | |
20. | Partha Sarathi Mandal, Sunil Maity, Impact of demographic variability on the disease dynamics for honeybee model, 2022, 32, 1054-1500, 083120, 10.1063/5.0096638 | |
21. | Hermann J. Eberl, Nasim Muhammad, Mathematical modelling of between hive transmission of Nosemosis by drifting, 2022, 114, 10075704, 106636, 10.1016/j.cnsns.2022.106636 | |
22. | David C. Elzinga, W. Christopher Strickland, Generalized Stressors on Hive and Forager Bee Colonies, 2023, 85, 0092-8240, 10.1007/s11538-023-01219-3 | |
23. | Atanas Z. Atanasov, Miglena N. Koleva, Lubin G. Vulkov, Inverse Problem Numerical Analysis of Forager Bee Losses in Spatial Environment without Contamination, 2023, 15, 2073-8994, 2099, 10.3390/sym15122099 | |
24. | Miglena N. Koleva, Lubin G. Vulkov, Reconstruction coefficient analysis of honeybee collapse due to pesticide contamination, 2023, 2675, 1742-6588, 012024, 10.1088/1742-6596/2675/1/012024 | |
25. | Atanas Z. Atanasov, Slavi G. Georgiev, Lubin G. Vulkov, Analysis of the Influence of Brood Deaths on Honeybee Population, 2024, 14, 2076-3417, 11412, 10.3390/app142311412 | |
26. | Miglena N. Koleva, Lubin G. Vulkov, 2025, Chapter 12, 978-3-031-96310-0, 131, 10.1007/978-3-031-96311-7_12 |