Research article Special Issues

Asymptotic analysis of endemic equilibrium to a brucellosis model

  • Received: 30 March 2019 Accepted: 13 June 2019 Published: 22 June 2019
  • Brucellosis is one of the worlds major infectious and contagious bacterial disease. In order to study different types of brucellosis transmission models among sheep, we propose a deterministic model to investigate the transmission dynamics of brucellosis with the flock of sheep divided into basic ewes and other sheep. The global dynamical behavior of this model is given: including the basic repro-duction number, the existence and uniqueness of positive equilibrium, the global asymptotic stability of the equilibrium. We prove the uniqueness of positive endemic equilibrium through using proof by contradiction, and the global stability of endemic equilibrium by using Lyapunov function. Especially, we give the specific coefficients of global Lyapunov function, and show the calculation method of these specific coefficients. By running numerical simulations for the cases with the basic reproduction number to demonstrate the global stability of the equilibria and the unique endemic equilibrium, re-spectively. By some sensitivity analysis of the basic reproduction number on parameters, we find that vaccination rate of sheep and seropositive detection rate of recessive infected sheep are very important factor for brucellosis.

    Citation: Mingtao Li, Xin Pei, Juan Zhang, Li Li. Asymptotic analysis of endemic equilibrium to a brucellosis model[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5836-5850. doi: 10.3934/mbe.2019291

    Related Papers:

    [1] Xiujuan Li, Jianmin Lin, Yan Li, Min Zhu, Minchuan Lin, Chenxi Li . Inhalation allergen sensitization patterns in children with allergic rhinitis and asthma. AIMS Allergy and Immunology, 2024, 8(4): 254-264. doi: 10.3934/Allergy.2024015
    [2] Joseph J. Dolence, Hirohito Kita . Allergic sensitization to peanuts is enhanced in mice fed a high-fat diet. AIMS Allergy and Immunology, 2020, 4(4): 88-99. doi: 10.3934/Allergy.2020008
    [3] McKenna S. Vininski, Sunanda Rajput, Nicholas J. Hobbs, Joseph J. Dolence . Understanding sex differences in the allergic immune response to food. AIMS Allergy and Immunology, 2022, 6(3): 90-105. doi: 10.3934/Allergy.2022009
    [4] Moufag Mohammed Saeed Tayeb . Role of IgG food test in patients with allergic diseases. AIMS Allergy and Immunology, 2023, 7(2): 154-163. doi: 10.3934/Allergy.2023010
    [5] Shkar Rzgar K. Rostam, Khattab Ahmed Mustafa Shekhany, Harem Othman Smail . Prevalence of common food allergies in Erbil Province, Kurdistan Region of Iraq. AIMS Allergy and Immunology, 2020, 4(4): 117-127. doi: 10.3934/Allergy.2020010
    [6] Tamara Tuuminen, Jouni Lohi . Immunological and toxicological effects of bad indoor air to cause Dampness and Mold Hypersensitivity Syndrome. AIMS Allergy and Immunology, 2018, 2(4): 190-204. doi: 10.3934/Allergy.2018.4.190
    [7] Hiroto Matsuse, Tohru Yamagishi, Norio Kodaka, Chihiro Nakano, Chizu Fukushima, Yasushi Obase, Hiroshi Mukae . Therapeutic modality of plasmacytoid dendritic cells in a murine model of Aspergillus fumigatus sensitized and infected asthma. AIMS Allergy and Immunology, 2017, 1(4): 232-241. doi: 10.3934/Allergy.2017.4.232
    [8] Chao Yang, Qingxiang Zeng, Xiangrong Tang, Jinyuan Li, Wenlong Liu . Aeroallergen sensitization patterns in children with allergic rhinitis from Guangzhou and Liuzhou in southern China. AIMS Allergy and Immunology, 2024, 8(4): 204-212. doi: 10.3934/Allergy.2024011
    [9] Gianna Moscato, Gianni Pala . Occupational allergy to food-derived allergens. AIMS Allergy and Immunology, 2017, 1(1): 21-30. doi: 10.3934/Allergy.2017.1.21
    [10] Howard J Mason, Susan Fraser, Andrew Thorpe, Paul Roberts, Gareth Evans . Reducing dust and allergen exposure in bakeries. AIMS Allergy and Immunology, 2017, 1(4): 194-206. doi: 10.3934/Allergy.2017.4.194
  • Brucellosis is one of the worlds major infectious and contagious bacterial disease. In order to study different types of brucellosis transmission models among sheep, we propose a deterministic model to investigate the transmission dynamics of brucellosis with the flock of sheep divided into basic ewes and other sheep. The global dynamical behavior of this model is given: including the basic repro-duction number, the existence and uniqueness of positive equilibrium, the global asymptotic stability of the equilibrium. We prove the uniqueness of positive endemic equilibrium through using proof by contradiction, and the global stability of endemic equilibrium by using Lyapunov function. Especially, we give the specific coefficients of global Lyapunov function, and show the calculation method of these specific coefficients. By running numerical simulations for the cases with the basic reproduction number to demonstrate the global stability of the equilibria and the unique endemic equilibrium, re-spectively. By some sensitivity analysis of the basic reproduction number on parameters, we find that vaccination rate of sheep and seropositive detection rate of recessive infected sheep are very important factor for brucellosis.




    [1] M. J. Corbel, Brucellosis: an overview, Emerg. Infect. Dis., 3(1997), 213–221.
    [2] G. Pappas, N. Akritidis, M. Bosilkovski, et al., Brucellosis, N. Engl. J. Med., 352(2005), 2325–2536.
    [3] M. T. Li, G. Q. Sun, J. Zhang, et al., Transmission dynamics and control for a Brucellosis Model in Hinggan League of Inner Mongolia, China, Math. Biosci. Eng., 11(2014), 1115–1137.
    [4] M. L. Boschiroli, V. Foulongne and D. O'Callaghan, Brucellosis: a worldwide zoonosis, Curr. Opin. Microbiol., 4(2001), 58–64.
    [5] G. Pappas, P. Papadimitriou, N. Akritidis, et al., The new global map of human brucellosis, Lancet Infect. Dis., 6(2006), 91–99.
    [6] M. P. Franco, M. Mulder, R. H. Gilman, et al., Human brucellosis, Lancet Infect. Dis., 7(2007), 775–786.
    [7] M. N. Seleem, S. M. Boyle and N. Sriranganathan, Brucellosis: A re-emerging zoonosis, Vet. Microbiol., 140 (2010), 392–398.
    [8] H. Heesterbeek, R. M. Anderson, V. Andreasen, et al., Modeling infectious disease dynamics in the complex landscape of global health, Science, 6227 (2015), aaa4339.
    [9] M. T. Li, G. Q. Sun, J. Zhang, et al., Transmission dynamics of a multi-group brucellosis model with mixed cross infection in public farm, Appl. Math. Comput., 237(2014), 582–594.
    [10] G. G. Jorge and N. Raul, Analysis of a model of bovine brucellosis using singular perturbations, J. Math. Biol., 33(1994), 211–223.
    [11] J. Zinsstag, F. Roth, D. Orkhon, et al., A model of animalChuman brucellosis transmission in Mongolia, Prev. Vet. Med., 69(2005), 77–95.
    [12] B. Alnseba, B. Chahrazed and M. Pierre, A model for ovine brucellosis incorporating direct and indirect transmission, J. Biol. Dyn., 4(2010), 2–11.
    [13] Q. Hou, X. D. Sun, J. Zhang, et al., Modeling the transmission dynamics of brucellosis in Inner Mongolia Autonomous Region, China, Math. Biosci., 242(2013), 51–58.
    [14] Q. Hou, X. D. Sun, Y. M. Wang, et al., Global properties of a general dynamic model for animal diseases: A case study of brucellosis and tuberculosis transmission, J. Math. Anal. Appl., 414 (2014), 424–433.
    [15] W. Beauvais, I. Musallam and J. Guitian, Vaccination control programs for multiple livestock host species: An age-stratified, seasonal transmission model for brucellosis control in endemic settings, Paras. Vector, 9(2016), 55.
    [16] P. Lou, L. Wang, X. Zhang, et al., Modelling Seasonal Brucellosis Epidemics in Bayingolin Mongol Autonomous Prefecture of Xinjiang, China, 2010-2014, BioMed Res. Int., 2016(2016), 5103718.
    [17] D. O. Montiel, M. Bruce, K. Frankena, et al., Financial analysis of brucellosis control for small-scale goat farming in the Bajio region, Mexico, Prev. Vet. Med., 118(2015), 247–259.
    [18] L. Yang, Z. W. Bi, Z. Q. Kou, et al., Time-series analysis on human brucellosis during 2004-2013 in Shandong province, China, Zoonoses Public Health, 62(2015), 228–235.
    [19] M. T. Li, G. Q. Sun, W. Y. Zhang, et al., Model-based evaluation of strategies to control brucellosis in China, Int. J. Env. Res. Pub. He., 14(2017), 295.
    [20] M. T. Li, Z. Jin, G. Q. Sun, et al., Modeling direct and indirect disease transmission using multi-group model, J. Math. Anal. Appl., 446(2017), 1292–1309.
    [21] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28(1990), 365–382.
    [22] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equi-libria for compartmental models of disease transmission, Math. Biosci., 180(2002), 29–48.
    [23] O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7(2010), 873–885.
    [24] M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Diff. Equat., 248(2010), 1–20.
    [25] J. P. Lasalle, The stability of dynamical dystems, in: Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.
    [26] M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canad. Appl. Math. Quart., 14(2006), 259–284.
    [27] H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global lyapunov functions, Proc. Amer. Math. Soc., 136(2008), 2793–2802.
    [28] S. Marino, I. B. Hogue, C. J. Ray, et al., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theoret. Biol., 254(2008), 178–196.
  • This article has been cited by:

    1. Mohamed Camar-Eddine, Laurent Pater, Homogenization of high-contrast and non symmetric conductivities for non periodic columnar structures, 2013, 8, 1556-181X, 913, 10.3934/nhm.2013.8.913
    2. 2009, 978-1-4398-0175-8, 289, 10.1201/9781439801765-b
    3. Marc Briane, Laurent Pater, Homogenization of high-contrast two-phase conductivities perturbed by a magnetic field. Comparison between dimension two and dimension three, 2012, 393, 0022247X, 563, 10.1016/j.jmaa.2011.12.059
    4. Liya Gaynutdinova, Martin Ladecký, Ivana Pultarová, Jan Zeman, Guaranteed lower bounds to effective stiffness, 2023, 23, 1617-7061, 10.1002/pamm.202300098
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6168) PDF downloads(818) Cited by(15)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog