Loading [Contrib]/a11y/accessibility-menu.js

Structured populations with diffusion and Feller conditions

  • Received: 01 February 2015 Accepted: 29 June 2018 Published: 25 November 2015
  • MSC : Primary: 35Q92, 92D25; Secondary: 47N60, 35B35.

  • We prove a weak maximum principle for structured population models with dynamic boundary conditions. We establish existence and positivity of solutions of these models and investigate the asymptotic behaviour of solutions. In particular, we analyse so called size profile.

    Citation: Agnieszka Bartłomiejczyk, Henryk Leszczyński. Structured populations with diffusion and Feller conditions[J]. Mathematical Biosciences and Engineering, 2016, 13(2): 261-279. doi: 10.3934/mbe.2015002

    Related Papers:

    [1] Karl Peter Hadeler . Structured populations with diffusion in state space. Mathematical Biosciences and Engineering, 2010, 7(1): 37-49. doi: 10.3934/mbe.2010.7.37
    [2] József Z. Farkas, Peter Hinow . Physiologically structured populations with diffusion and dynamic boundary conditions. Mathematical Biosciences and Engineering, 2011, 8(2): 503-513. doi: 10.3934/mbe.2011.8.503
    [3] Virginia Giorno, Amelia G. Nobile . Exact solutions and asymptotic behaviors for the reflected Wiener, Ornstein-Uhlenbeck and Feller diffusion processes. Mathematical Biosciences and Engineering, 2023, 20(8): 13602-13637. doi: 10.3934/mbe.2023607
    [4] Peter W. Bates, Jianing Chen, Mingji Zhang . Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations. Mathematical Biosciences and Engineering, 2020, 17(4): 3736-3766. doi: 10.3934/mbe.2020210
    [5] Ranjit Kumar Upadhyay, Swati Mishra . Population dynamic consequences of fearful prey in a spatiotemporal predator-prey system. Mathematical Biosciences and Engineering, 2019, 16(1): 338-372. doi: 10.3934/mbe.2019017
    [6] Blaise Faugeras, Olivier Maury . An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences and Engineering, 2005, 2(4): 719-741. doi: 10.3934/mbe.2005.2.719
    [7] Xiaoling Li, Guangping Hu, Xianpei Li, Zhaosheng Feng . Positive steady states of a ratio-dependent predator-prey system with cross-diffusion. Mathematical Biosciences and Engineering, 2019, 16(6): 6753-6768. doi: 10.3934/mbe.2019337
    [8] Yiwei Wang, Mingji Zhang . Finite ion size effects on I-V relations via Poisson-Nernst-Planck systems with two cations: A case study. Mathematical Biosciences and Engineering, 2024, 21(2): 1899-1916. doi: 10.3934/mbe.2024084
    [9] Rafael Bravo de la Parra, Ezio Venturino . A discrete two time scales model of a size-structured population of parasitized trees. Mathematical Biosciences and Engineering, 2024, 21(9): 7040-7066. doi: 10.3934/mbe.2024309
    [10] Nalin Fonseka, Jerome Goddard Ⅱ, Alketa Henderson, Dustin Nichols, Ratnasingham Shivaji . Modeling effects of matrix heterogeneity on population persistence at the patch-level. Mathematical Biosciences and Engineering, 2022, 19(12): 13675-13709. doi: 10.3934/mbe.2022638
  • We prove a weak maximum principle for structured population models with dynamic boundary conditions. We establish existence and positivity of solutions of these models and investigate the asymptotic behaviour of solutions. In particular, we analyse so called size profile.


    [1] Appl. Math., 45 (2000), 69-80.
    [2] Birkhauser, 2014.
    [3] Appl. Numer. Math., 94 (2015), 140-148.
    [4] Nonlinear. Anal., 57 (2004), 63-84.
    [5] Disc. Cont. Dyn. Sys. Series B, 17 (2012), 2313-2327.
    [6] J. Evol. Equat., 12 (2012), 495-512.
    [7] SIAM, Philadelphia, 1998.
    [8] Springer, New York, 2000.
    [9] J. Math. Anal. App., 328 (2007), 119-136.
    [10] Math. Biosci. Eng., 8 (2011), 503-513.
    [11] Trans. Amer. Math. Soc., 77 (1954), 1-31.
    [12] Prentice-Hall, Englewood Cliffs, N.J. 1964.
    [13] Math. Biosc., 54 (1981), 49-59.
    [14] Math. Biosci. Eng., 7 (2010), 37-49.
    [15] J. Math. Anal. Appl., 297 (2004), 234-256.
    [16] Non. Anal., 73 (2010), 3162-3170.
    [17] Nauka, Moscow, 1967; (Translation of Mathematical Monographs, Vol. 23 Am. Math. Soc., Providence, R.I., 1968).
    [18] Lecture Notes in Mathematics, Vol.1936, Springer-Verlag, Berlin, Heidelberg, 2008.
    [19] Lect. Notes in Biomath. Vol. 68, Springer, Berlin, 1986.
    [20] Frontiers in Mathematics series, Birkhäuser, Boston, 2007.
    [21] SIAM J. Appl. Math., 48 (1988), 549-591.
    [22] SIAM J. Math. Anal., 19 (1988), 1108-1118.
    [23] Springer-Verlag, Berlin, Heidelberg, 1998.
    [24] Theory Probab. Appl., 4 (1959), 164-177.
  • This article has been cited by:

    1. Agnieszka Bartłomiejczyk, Henryk Leszczński, Agnieszka Marciniak, Rothe’s method for physiologically structured models with diffusion, 2018, 68, 0139-9918, 211, 10.1515/ms-2017-0094
    2. Agnieszka Bartłomiejczyk, Monika Wrzosek, 2020, Chapter 8, 978-3-030-46078-5, 137, 10.1007/978-3-030-46079-2_8
    3. Agnieszka Bartłomiejczyk, Henryk Leszczyński, Milena Matusik, Straightened characteristics of McKendrick-von Foerster equation, 2022, 340, 00220396, 592, 10.1016/j.jde.2022.09.018
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2748) PDF downloads(705) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog