Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics

  • Received: 01 May 2014 Accepted: 29 June 2018 Published: 01 April 2015
  • MSC : Primary: 92C50, 92B05; Secondary: 37N25.

  • The past century's description of oncolytic virotherapy as a cancer treatment involving specially-engineered viruses that exploit immune deficiencies to selectively lyse cancer cells is no longer adequate. Some of the most promising therapeutic candidates are now being engineered to produce immunostimulatory factors, such as cytokines and co-stimulatory molecules, which, in addition to viral oncolysis, initiate a cytotoxic immune attack against the tumor.
       This study addresses the combined effects of viral oncolysis and T-cell-mediated oncolysis. We employ a mathematical model of virotherapy that induces release of cytokine IL-12 and co-stimulatory molecule 4-1BB ligand. We found that the model closely matches previously published data, and while viral oncolysis is fundamental in reducing tumor burden, increased stimulation of cytotoxic T cells leads to a short-term reduction in tumor size, but a faster relapse.
       In addition, we found that combinations of specialist viruses that express either IL-12 or 4-1BBL might initially act more potently against tumors than a generalist virus that simultaneously expresses both, but the advantage is likely not large enough to replace treatment using the generalist virus. Finally, according to our model and its current assumptions, virotherapy appears to be optimizable through targeted design and treatment combinations to substantially improve therapeutic outcomes.

    Citation: Peter S. Kim, Joseph J. Crivelli, Il-Kyu Choi, Chae-Ok Yun, Joanna R. Wares. Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 841-858. doi: 10.3934/mbe.2015.12.841

    Related Papers:

    [1] Joanna R. Wares, Joseph J. Crivelli, Chae-Ok Yun, Il-Kyu Choi, Jana L. Gevertz, Peter S. Kim . Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections. Mathematical Biosciences and Engineering, 2015, 12(6): 1237-1256. doi: 10.3934/mbe.2015.12.1237
    [2] Zizi Wang, Zhiming Guo, Hal Smith . A mathematical model of oncolytic virotherapy with time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 1836-1860. doi: 10.3934/mbe.2019089
    [3] Jianjun Paul Tian . The replicability of oncolytic virus: Defining conditions in tumor virotherapy. Mathematical Biosciences and Engineering, 2011, 8(3): 841-860. doi: 10.3934/mbe.2011.8.841
    [4] Donggu Lee, Aurelio A. de los Reyes V, Yangjin Kim . Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network. Mathematical Biosciences and Engineering, 2024, 21(3): 3876-3909. doi: 10.3934/mbe.2024173
    [5] Yangjin Kim, Seongwon Lee, You-Sun Kim, Sean Lawler, Yong Song Gho, Yoon-Keun Kim, Hyung Ju Hwang . Regulation of Th1/Th2 cells in asthma development: A mathematical model. Mathematical Biosciences and Engineering, 2013, 10(4): 1095-1133. doi: 10.3934/mbe.2013.10.1095
    [6] Khaphetsi Joseph Mahasa, Rachid Ouifki, Amina Eladdadi, Lisette de Pillis . A combination therapy of oncolytic viruses and chimeric antigen receptor T cells: a mathematical model proof-of-concept. Mathematical Biosciences and Engineering, 2022, 19(5): 4429-4457. doi: 10.3934/mbe.2022205
    [7] Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White . Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences and Engineering, 2018, 15(6): 1435-1463. doi: 10.3934/mbe.2018066
    [8] Elzbieta Ratajczyk, Urszula Ledzewicz, Maciej Leszczynski, Avner Friedman . The role of TNF-α inhibitor in glioma virotherapy: A mathematical model. Mathematical Biosciences and Engineering, 2017, 14(1): 305-319. doi: 10.3934/mbe.2017020
    [9] Sisi Qi, Youyu Sheng, Ruiming Hu, Feng Xu, Ying Miao, Jun Zhao, Qinping Yang . Genome-wide expression profiling of long non-coding RNAs and competing endogenous RNA networks in alopecia areata. Mathematical Biosciences and Engineering, 2021, 18(1): 696-711. doi: 10.3934/mbe.2021037
    [10] Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu . Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix. Mathematical Biosciences and Engineering, 2022, 19(6): 6157-6185. doi: 10.3934/mbe.2022288
  • The past century's description of oncolytic virotherapy as a cancer treatment involving specially-engineered viruses that exploit immune deficiencies to selectively lyse cancer cells is no longer adequate. Some of the most promising therapeutic candidates are now being engineered to produce immunostimulatory factors, such as cytokines and co-stimulatory molecules, which, in addition to viral oncolysis, initiate a cytotoxic immune attack against the tumor.
       This study addresses the combined effects of viral oncolysis and T-cell-mediated oncolysis. We employ a mathematical model of virotherapy that induces release of cytokine IL-12 and co-stimulatory molecule 4-1BB ligand. We found that the model closely matches previously published data, and while viral oncolysis is fundamental in reducing tumor burden, increased stimulation of cytotoxic T cells leads to a short-term reduction in tumor size, but a faster relapse.
       In addition, we found that combinations of specialist viruses that express either IL-12 or 4-1BBL might initially act more potently against tumors than a generalist virus that simultaneously expresses both, but the advantage is likely not large enough to replace treatment using the generalist virus. Finally, according to our model and its current assumptions, virotherapy appears to be optimizable through targeted design and treatment combinations to substantially improve therapeutic outcomes.


    [1] J. Theor. Biol., 225 (2003), 257-274.
    [2] PLoS Comput. Biol., 7 (2011), e1001085.
    [3] J. Theor. Biol., 252 (2008), 109-122.
    [4] Mol. Cancer, 12 (2013), p103.
    [5] Bull. Math. Biol., 72 (2010), 469-489.
    [6] Oncoimmunology, 1 (2012), 9-17.
    [7] Immunity, 21 (2004), 341-347.
    [8] Cancer Res., 61 (2001), 5453-5460.
    [9] J. Virol., 75 (2001), 10663-10669.
    [10] Clin. Cancer Res., 13 (2007), 4677-4685.
    [11] Cancer Gene Ther., 16 (2009), 873-882.
    [12] Bull. Math. Biol., 73 (2011), 2-32.
    [13] Expert Rev. Vaccines, 12 (2013), 1155-1172.
    [14] Cancer Res., 66 (2006), 2314-2319.
    [15] J. Virol., 74 (2000), 2895-2899.
    [16] Cell, 144 (2011), 646-674.
    [17] Mol. Ther., 18 (2010), 264-274.
    [18] J. Virol., 80 (2006), 3549-3558.
    [19] Future Oncol., 6 (2010), 941-949.
    [20] J. Theor. Biol., 263 (2010), 530-543.
    [21] PLoS ONE, 5 (2010), e15482.
    [22] Nat. Commun., 4 (2013), p1974.
    [23] Mol. Ther., 18 (2010), 888-895.
    [24] Eur. Rev. Med. Pharmacol. Sci., 17 (2013), 2145-2158.
    [25] Gene Ther., 15 (2008), 247-256.
    [26] J. Theor. Biol., 239 (2006), 334-350.
    [27] Mol. Ther., 19 (2011), 1008-1016.
    [28] Clin. Cancer Res., 15 (2009), 2352-2360.
    [29] Gene Ther., 19 (2012), 543-549.
    [30] Nat. Biotechnol., 30 (2012), 658-670.
    [31] Clin. Cancer Res., 18 (2012), 6679-6689.
    [32] Nat. Immunol., 2 (2001), 423-429.
    [33] Nat. Immunol., 1 (2000), 47-53.
    [34] Mol. Cancer Ther., 5 (2006), 362-366.
    [35] Cancer Res., 61 (2001), 3501-3507.
    [36] Math. Biosci. Eng., 10 (2013), 939-957.
    [37] PLoS ONE, 4 (2009), e4271.
    [38] N. Engl. J. Med., 369 (2013), 122-133.
    [39] Hum. Gene Ther., 8 (1997), 37-44.
    [40] Bull. Math. Biol., 66 (2004), 605-625.
    [41] Neoplasia, 15 (2013), 591-599.
  • This article has been cited by:

    1. Johannes P. W. Heidbuechel, Daniel Abate-Daga, Christine E. Engeland, Heiko Enderling, 2020, Chapter 21, 978-1-4939-9793-0, 307, 10.1007/978-1-4939-9794-7_21
    2. Adrianne L. Jenner, Federico Frascoli, Chae-Ok Yun, Peter S. Kim, Optimising Hydrogel Release Profiles for Viro-Immunotherapy Using Oncolytic Adenovirus Expressing IL-12 and GM-CSF with Immature Dendritic Cells, 2020, 10, 2076-3417, 2872, 10.3390/app10082872
    3. Syndi Barish, Michael F. Ochs, Eduardo D. Sontag, Jana L. Gevertz, Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy, 2017, 114, 0027-8424, E6277, 10.1073/pnas.1703355114
    4. Khaphetsi Joseph Mahasa, Amina Eladdadi, Lisette de Pillis, Rachid Ouifki, Dominik Wodarz, Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. A mathematical modelling approach, 2017, 12, 1932-6203, e0184347, 10.1371/journal.pone.0184347
    5. R. Eftimiea, G. Eftimie, Tumour-Associated Macrophages and Oncolytic Virotherapies: A Mathematical Investigation into a Complex Dynamics, 2018, 5, 23737867, 10.30707/LiB5.2Eftimiea
    6. Talal Alzahrani, Raluca Eftimie, Dumitru Trucu, Multiscale modelling of cancer response to oncolytic viral therapy, 2019, 310, 00255564, 76, 10.1016/j.mbs.2018.12.018
    7. Sarah Inglesfield, Aleksandra Jasiulewicz, Matthew Hopwood, James Tyrrell, George Youlden, Maria Mazon-Moya, Owain R. Millington, Serge Mostowy, Sara Jabbari, Kerstin Voelz, Alexander Idnurm, Robust Phagocyte Recruitment Controls the Opportunistic Fungal PathogenMucor circinelloidesin Innate GranulomasIn Vivo, 2018, 9, 2150-7511, 10.1128/mBio.02010-17
    8. Joseph Malinzi, Kevin Bosire Basita, Sara Padidar, Henry Ademola Adeola, Prospect for application of mathematical models in combination cancer treatments, 2021, 23, 23529148, 100534, 10.1016/j.imu.2021.100534
    9. Adrianne Jennera, Chae-Ok Yun, Arum Yoon, Adelle Coster, Peter Kim, Modelling Combined Virotherapy and Immunotherapy: Strengthening the Antitumour Immune Response Mediated by IL-12 and GM-CSF Expression, 2018, 5, 23737867, 10.30707/LiB5.2Jennera
    10. Qing Wang, Zhijun Wang, Yan Wu, David J. Klinke, An in silico exploration of combining Interleukin-12 with Oxaliplatin to treat liver-metastatic colorectal cancer, 2020, 20, 1471-2407, 10.1186/s12885-019-6500-9
    11. Dominik Wodarz, Computational modeling approaches to the dynamics of oncolytic viruses, 2016, 8, 19395094, 242, 10.1002/wsbm.1332
    12. Elena P. Goncharova, Julia S. Ruzhenkova, Ivan S. Petrov, Sergey N. Shchelkunov, Marina A. Zenkova, Oncolytic virus efficiency inhibited growth of tumour cells with multiple drug resistant phenotype in vivo and in vitro, 2016, 14, 1479-5876, 10.1186/s12967-016-1002-x
    13. Jana L. Gevertz, Peter S. Kim, Joanna R. Wares, Mentoring Undergraduate Interdisciplinary Mathematics Research Students: Junior Faculty Experiences, 2017, 27, 1051-1970, 352, 10.1080/10511970.2016.1191571
    14. Tyler Cassidy, Antony R Humphries, A mathematical model of viral oncology as an immuno-oncology instigator, 2019, 1477-8599, 10.1093/imammb/dqz008
    15. Khaphetsi Joseph Mahasa, Lisette de Pillis, Rachid Ouifki, Amina Eladdadi, Philip Maini, A-Rum Yoon, Chae-Ok Yun, Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in enhanced oncolytic virotherapy, 2020, 10, 2045-2322, 10.1038/s41598-019-57240-x
    16. R. Eftimie, C.K. Macnamara, Jonathan Dushoff, J.L. Bramson, D.J.D. Earn, A. Morozov, M. Ptashnyk, V. Volpert, Bifurcations and Chaotic Dynamics in a Tumour-Immune-Virus System, 2016, 11, 1760-6101, 65, 10.1051/mmnp/201611505
    17. Zachary Abernathy, Kristen Abernathy, Jessica Stevens, A mathematical model for tumor growth and treatment using virotherapy, 2020, 5, 2473-6988, 4136, 10.3934/math.2020265
    18. Adrianne L. Jenner, Peter S. Kim, Federico Frascoli, Oncolytic virotherapy for tumours following a Gompertz growth law, 2019, 480, 00225193, 129, 10.1016/j.jtbi.2019.08.002
    19. Khaphetsi Joseph Mahasa, Rachid Ouifki, Amina Eladdadi, Lisette de Pillis, Mathematical model of tumor–immune surveillance, 2016, 404, 00225193, 312, 10.1016/j.jtbi.2016.06.012
    20. Regina Padmanabhan, Nader Meskin, Ala-Eddin Al Moustafa, 2021, Chapter 8, 978-981-15-8639-2, 157, 10.1007/978-981-15-8640-8_8
    21. Jana L. Gevertz, Joanna R. Wares, Developing a Minimally Structured Mathematical Model of Cancer Treatment with Oncolytic Viruses and Dendritic Cell Injections, 2018, 2018, 1748-670X, 1, 10.1155/2018/8760371
    22. R. Eftimie, G. Eftimie, Investigating Macrophages Plasticity Following Tumour–Immune Interactions During Oncolytic Therapies, 2019, 67, 0001-5342, 321, 10.1007/s10441-019-09357-9
    23. Noma Susan Senekal, Khaphetsi Joseph Mahasa, Amina Eladdadi, Lisette de Pillis, Rachid Ouifki, Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model, 2021, 83, 0092-8240, 10.1007/s11538-021-00903-6
    24. Brock D. Sherlock, Adelle C.F. Coster, Oncolytic virus treatment of human breast cancer cells: Modelling therapy efficacy, 2023, 560, 00225193, 111394, 10.1016/j.jtbi.2022.111394
    25. Christine E. Engeland, Johannes P.W. Heidbuechel, Robyn P. Araujo, Adrianne L. Jenner, Improving immunovirotherapies: the intersection of mathematical modelling and experiments, 2022, 6, 26671190, 100011, 10.1016/j.immuno.2022.100011
    26. Michael C. Luo, Elpiniki Nikolopoulou, Jana L. Gevertz, From Fitting the Average to Fitting the Individual: A Cautionary Tale for Mathematical Modelers, 2022, 12, 2234-943X, 10.3389/fonc.2022.793908
    27. Joseph Malinzi, A mathematical model for oncolytic virus spread using the telegraph equation, 2021, 102, 10075704, 105944, 10.1016/j.cnsns.2021.105944
    28. Adrianne L. Jenner, Rosemary A. Aogo, Sofia Alfonso, Vivienne Crowe, Xiaoyan Deng, Amanda P. Smith, Penelope A. Morel, Courtney L. Davis, Amber M. Smith, Morgan Craig, Andrew J. Yates, COVID-19 virtual patient cohort suggests immune mechanisms driving disease outcomes, 2021, 17, 1553-7374, e1009753, 10.1371/journal.ppat.1009753
    29. Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang, Dynamic analysis of an age structure model for oncolytic virus therapy, 2022, 20, 1551-0018, 3301, 10.3934/mbe.2023155
    30. Tao-Qian Tang, Zahir Shah, Rashid Jan, Ebraheem Alzahrani, Modeling the dynamics of tumor–immune cells interactions via fractional calculus, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-02591-0
    31. Rashid Jan, Salah Boulaaras, Muhammad Jawad, Karthikeyan Rajagopal, Effect of virotherapy treatment on the dynamics of tumor growth through fractional calculus, 2023, 0142-3312, 014233122311644, 10.1177/01423312231164451
    32. Donggu Lee, Aurelio A. de los Reyes V, Yangjin Kim, Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network, 2024, 21, 1551-0018, 3876, 10.3934/mbe.2024173
    33. Dongwook Kim, Abraham Puig, Faranak Rabiei, Erial J. Hawkins, Talia F. Hernandez, Chang K. Sung, Optimization of SOX2 Expression for Enhanced Glioblastoma Stem Cell Virotherapy, 2024, 16, 2073-8994, 1186, 10.3390/sym16091186
    34. Dayong Qi, Xueyan Tao, Jiashan Zheng, Boundedness of the solution to a higher-dimensional triply haptotactic cross-diffusion system modeling oncolytic virotherapy, 2025, 25, 1424-3199, 10.1007/s00028-024-01040-y
    35. Akihiro Yamada, Mary P. Choules, Frances A. Brightman, Shigeru Takeshita, Shinsuke Nakao, Nobuaki Amino, Takeshi Nakayama, Masato Takeuchi, Kanji Komatsu, Fernando Ortega, Hitesh Mistry, David Orrell, Christophe Chassagnole, Peter L. Bonate, A Multiple‐Model‐Informed Drug‐Development Approach for Optimal Regimen Selection of an Oncolytic Virus in Combination With Pembrolizumab, 2025, 2163-8306, 10.1002/psp4.13297
    36. Yan Zhao, Qi Deng, Zhipeng Qiu, Ting Guo, Shigui Ruan, Modeling the Interaction of Cytotoxic T-Lymphocytes and Oncolytic Viruses in a Tumor Microenvironment, 2025, 85, 0036-1399, 983, 10.1137/23M1613608
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4316) PDF downloads(796) Cited by(36)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog