Citation: Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases[J]. Mathematical Biosciences and Engineering, 2015, 12(3): 565-584. doi: 10.3934/mbe.2015.12.565
[1] | Rundong Zhao, Qiming Liu, Huazong Zhang . Dynamical behaviors of a vector-borne diseases model with two time delays on bipartite networks. Mathematical Biosciences and Engineering, 2021, 18(4): 3073-3091. doi: 10.3934/mbe.2021154 |
[2] | Xia Wang, Yuming Chen . An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences and Engineering, 2018, 15(5): 1099-1116. doi: 10.3934/mbe.2018049 |
[3] | Rong Ming, Xiao Yu . Global dynamics of an impulsive vector-borne disease model with time delays. Mathematical Biosciences and Engineering, 2023, 20(12): 20939-20958. doi: 10.3934/mbe.2023926 |
[4] | Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva . Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060 |
[5] | Rocio Caja Rivera, Shakir Bilal, Edwin Michael . The relation between host competence and vector-feeding preference in a multi-host model: Chagas and Cutaneous Leishmaniasis. Mathematical Biosciences and Engineering, 2020, 17(5): 5561-5583. doi: 10.3934/mbe.2020299 |
[6] | Yijun Lou, Li Liu, Daozhou Gao . Modeling co-infection of Ixodes tick-borne pathogens. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1301-1316. doi: 10.3934/mbe.2017067 |
[7] | Biao Tang, Weike Zhou, Yanni Xiao, Jianhong Wu . Implication of sexual transmission of Zika on dengue and Zika outbreaks. Mathematical Biosciences and Engineering, 2019, 16(5): 5092-5113. doi: 10.3934/mbe.2019256 |
[8] | Hongyong Zhao, Yangyang Shi, Xuebing Zhang . Dynamic analysis of a malaria reaction-diffusion model with periodic delays and vector bias. Mathematical Biosciences and Engineering, 2022, 19(3): 2538-2574. doi: 10.3934/mbe.2022117 |
[9] | Fahad Al Basir, Yasuhiro Takeuchi, Santanu Ray . Dynamics of a delayed plant disease model with Beddington-DeAngelis disease transmission. Mathematical Biosciences and Engineering, 2021, 18(1): 583-599. doi: 10.3934/mbe.2021032 |
[10] | Kazuo Yamazaki, Xueying Wang . Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences and Engineering, 2017, 14(2): 559-579. doi: 10.3934/mbe.2017033 |
[1] | Journal of Biological Dynamics, 6 (2012), 590-611. |
[2] | Mathematical Biolosciences, 243 (2013), 99-108. |
[3] | Lecture Notes in Control and Information Sciences, 294 (2003), 135-142. |
[4] | American Journal of Public Health, 39 (1949), p1592. |
[5] | PloS ONE, 5 (2010), e13796. |
[6] | Mathematical Biosciences, 222 (2009), 109-116. |
[7] | Bulletin of Entomological Research, 89 (1999), 35-39. |
[8] | Bulletin of Mathematical Biology, 70 (2008), 1272-1296. |
[9] | Wiley, Chichester, 2000. |
[10] | Journal of Mathematical Biology, 28 (1990), 365-382. |
[11] | Contributions to Epidemiology and Biostatistics, 3 (1981), 77-82. |
[12] | Annual Review of Entomology, 44 (1999), 51-75. |
[13] | American Journal of Tropical Medicine and Hygiene, 22 (1973), 270-277. |
[14] | Journal of Theoretical Biology, 255 (2008), 16-25. |
[15] | Journal of the American Mosquito Control Association, 1 (1985), 530-532. |
[16] | in Network Science (eds. E. Estrada, M. Fox, D. Higham and G. Oppo), Springer, (2010), 51-84. |
[17] | Princeton University Press, 2008. |
[18] | Bulletin of Mathematical Biology, 75 (2013), 1157-1180. |
[19] | Journal of the Royal Society Interface, 4 (2007), 851-863. |
[20] | American Journal of Tropical Medicine and Hygiene, 26 (1977), 547-552. |
[21] | Centers for Disease Control and Prevention, 1993. |
[22] | Preventive Veterinary Medicine, 92 (2009), 341-350. |
[23] | PhD thesis, Institut für Mathematik der Unversität Potsdam, Germany, 2010. |
[24] | in Handbook of Zoonoses (ed. G. Beran), $2^{nd}$ edition, Section B: Viral, CRC Press, Inc., Boca Raton, Fl, (1994), 125-138. |
[25] | U.S. Department of Health and Human Services, Atlanta, GA, 1993. |
[26] | Saunders, 2001. |
[27] | Proceedings of the Royal Society B: Biological Sciences, 270 (2003), 1359-1364. |
[28] | Nature, 87 (1911), 466-467. |
[29] | Journal of mathematical biology, 67 (2013), 1067-1082. |
[30] | Journal of Medical Entomology, 24 (1987), 11-18. |
[31] | Journal of the American Mosquito Control Association, 4 (1988), 94-96. |
[32] | Journal of Medical Entomology, 25 (1988), 262-266. |
[33] | Mathematical biosciences, 180 (2002), 29-48. |
[34] | Proceedings of the Royal Society B: Biological Sciences, 276 (2009), 469-476. |
[35] | Mathematical Biosciences, 243 (2013), 67-80. |
1. | Rachel Waema Mbogo, Livingstone S. Luboobi, John W. Odhiambo, A Stochastic Model for Malaria Transmission Dynamics, 2018, 2018, 1110-757X, 1, 10.1155/2018/2439520 | |
2. | Hélène Cecilia, Alex Drouin, Raphaëlle Métras, Thomas Balenghien, Benoit Durand, Véronique Chevalier, Pauline Ezanno, Michael J. Turell, Mechanistic models of Rift Valley fever virus transmission: A systematic review, 2022, 16, 1935-2735, e0010339, 10.1371/journal.pntd.0010339 |