Loading [MathJax]/jax/output/SVG/jax.js

Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen

  • The inflammatory responseaims to restore homeostasis by means of removing a biological stress, such as an invading bacterial pathogen.In cases of acute systemic inflammation, the possibility of collateral tissuedamage arises, which leads to a necessary down-regulation of the response.A reduced ordinary differential equations (ODE) model of acute inflammation was presented and investigated in [10]. That system contains multiple positive and negative feedback loops and is a highly coupled and nonlinear ODE. The implementation of nonlinear model predictive control (NMPC) as a methodology for determining proper therapeutic intervention for in silico patients displaying complex inflammatory states was initially explored in [5]. Since direct measurements of the bacterial population and the magnitude of tissue damage/dysfunction are not readily available or biologically feasible, the need for robust state estimation was evident. In this present work, we present resultson the nonlinear reachability of the underlying model, and then focus our attention on improving the predictability of the underlying model by coupling the NMPC with a particle filter. The results, though comparable to the initial exploratory study, show that robust state estimation of this highly nonlinear model can provide an alternative to prior updating strategies used when only partial access to the unmeasurable states of the system are available.

    Citation: Gregory Zitelli, Seddik M. Djouadi, Judy D. Day. Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen[J]. Mathematical Biosciences and Engineering, 2015, 12(5): 1127-1139. doi: 10.3934/mbe.2015.12.1127

    Related Papers:

    [1] Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925
    [2] Xiulin Hu, Lei Wang . Positive solutions to integral boundary value problems for singular delay fractional differential equations. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304
    [3] Manal Elzain Mohamed Abdalla, Hasanen A. Hammad . Solving functional integrodifferential equations with Liouville-Caputo fractional derivatives by fixed point techniques. AIMS Mathematics, 2025, 10(3): 6168-6194. doi: 10.3934/math.2025281
    [4] Chuanli Wang, Biyun Chen . An $ hp $-version spectral collocation method for fractional Volterra integro-differential equations with weakly singular kernels. AIMS Mathematics, 2023, 8(8): 19816-19841. doi: 10.3934/math.20231010
    [5] Idris Ahmed, Sotiris K. Ntouyas, Jessada Tariboon . Separated boundary value problems via quantum Hilfer and Caputo operators. AIMS Mathematics, 2024, 9(7): 19473-19494. doi: 10.3934/math.2024949
    [6] Reny George, Sina Etemad, Ivanka Stamova, Raaid Alubady . Existence of solutions for $ [\mathtt{p},\mathtt{q}] $-difference initial value problems: application to the $ [\mathtt{p},\mathtt{q}] $-based model of vibrating eardrums. AIMS Mathematics, 2025, 10(2): 2321-2346. doi: 10.3934/math.2025108
    [7] Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive $ (k, \psi) $-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042
    [8] Ravi P. Agarwal, Bashir Ahmad, Hana Al-Hutami, Ahmed Alsaedi . Existence results for nonlinear multi-term impulsive fractional $ q $-integro-difference equations with nonlocal boundary conditions. AIMS Mathematics, 2023, 8(8): 19313-19333. doi: 10.3934/math.2023985
    [9] Sadia Arshad, Iram Saleem, Ali Akgül, Jianfei Huang, Yifa Tang, Sayed M Eldin . A novel numerical method for solving the Caputo-Fabrizio fractional differential equation. AIMS Mathematics, 2023, 8(4): 9535-9556. doi: 10.3934/math.2023481
    [10] Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059
  • The inflammatory responseaims to restore homeostasis by means of removing a biological stress, such as an invading bacterial pathogen.In cases of acute systemic inflammation, the possibility of collateral tissuedamage arises, which leads to a necessary down-regulation of the response.A reduced ordinary differential equations (ODE) model of acute inflammation was presented and investigated in [10]. That system contains multiple positive and negative feedback loops and is a highly coupled and nonlinear ODE. The implementation of nonlinear model predictive control (NMPC) as a methodology for determining proper therapeutic intervention for in silico patients displaying complex inflammatory states was initially explored in [5]. Since direct measurements of the bacterial population and the magnitude of tissue damage/dysfunction are not readily available or biologically feasible, the need for robust state estimation was evident. In this present work, we present resultson the nonlinear reachability of the underlying model, and then focus our attention on improving the predictability of the underlying model by coupling the NMPC with a particle filter. The results, though comparable to the initial exploratory study, show that robust state estimation of this highly nonlinear model can provide an alternative to prior updating strategies used when only partial access to the unmeasurable states of the system are available.


    Jackson [25] introduced quantum calculus. Then, it was later developed by Al-Salam who started fitting the concept of $ q $–fractional calculus [7]. Agarwal continued studying certain $ q $–fractional integrals and derivatives [3]. Furthermore, some researchers have also studied $ q $–difference equations (for more details, see [1,2,5,6,8,9,15,23,24,26,27,33,39,40]). On the one hand, fractional differential equations have gained a considerable importance due to their applications in various fields of sciences, such as physics, mechanics, chemistry, and engineering (see [17,18,19,20,21]). In [22], El-Sayed discussed a class of nonlinear functional differential equations of arbitrary orders, and Lakshmikantham [30] initiated the basic theory for fractional functional differential equations.

    In 1996, Delbosco et al. investigated $ \mathbb{D}^{\beta} u(t) = \hslash(t, u) $ with initial condition: $ u(a) = \eta $, where $ a > 0 $, $ \eta\in \mathbb{R} $ and $ \beta \in J : = (0, 1) $ [16]. In 2005, Bai et al. presented the boundary problem:

    $ \mathbb{D}_0^{\beta} u(t) = h(t, u(t)), $

    under conditions: $ u(0) = u(1) = 0 $, where $ t \in J $, $ 0 < \beta \leq 2 $, and $ \mathbb{D}_0^{\beta} $ is the Riemann-Liouville standard derivative [11]. In 2008, Qiu et al. studied the equation with conditions: $ u(0) = u'(1) = u''(1) = 0 $, where $ t\in J $, $ 2 < \beta < 3 $, $ \mathbb{D}_{0^+}^{\beta} $ is the Caputo derivative and $ h: \bar{J} \times [0, \infty) \to [0, \infty) $, here $ \bar{J}: = [0, 1] $, is such that $ \lim_{t \to 0^+} h (t, .) = \infty $ [34]. In 2010, Agarwal et al. considered the singular fractional Dirichlet problem:

    $ \mathbb{D}^{\beta} u(t)+ h \left( t, u(t), \mathbb{D}^{\gamma} u(t) \right) = 0, $

    with the boundary value condition: $ u(0) = u(1) = 0 $, where $ \beta \in (1, 2] $, $ \gamma > 0 $, $ \beta - \gamma \geq 1 $, $ h \in {\rm{Car}}(\bar{J} \times (0, \infty) \times \mathbb{R}) $, $ h $ is positive and singular at $ t = 0 $, and $ \mathbb{D} $ is the usual Riemann-Liouville derivative [4]. In 2012, Cabada et al. investigated the existence of positive solution for the following nonlinear fractional differential equation:

    $ \left\{ Dβu(t)=h(t,u(t))u(0)=u(1)=0,u(1)=10u(ξ)dξ, \right. $

    where $ 0 < t < 1 $, $ 2 < \beta < 3 $ and $ h : \bar{J} \times [0, \infty) \to [0, \infty) $ is a continuous function [13]. In 2014, Li reviewed the problem:

    $ {}^C \mathbb{D}^\beta u(t)+ h\left( t, u(t), \mathbb{D}^{\gamma} u(t) \right) = 0, $

    for each $ t \in J $, under conditions: $ u(0) = u'(0) = 0 $ and $ u'(1) = {}^C \mathbb{D}^{\beta} u(1) $, where $ \beta \in (2, 3) $, $ \gamma \in J $, $ h : (0, 1] \times \mathbb{R}^2 \to \mathbb{R} $ is continuous function that may be singular at $ t = 0 $, $ {}^C \mathbb{D}^\beta $ is the standard Caputo derivative [31]. In 2016, the fractional integro-differential equation

    $ \mathbb{D}^{\gamma} u(t) = h \left( t, u(t), u'(t), \mathbb{D}^{\alpha} u(t), \mathbb{I}^\beta u(t) \right) , $

    under conditions $ u'(0) = u(\eta) $, $ u(1) = \int_0^{\nu} u(\xi) \, \mathrm{d}\xi $ and $ u^{(i)}(0) = 0 $ for $ i = 2, \dots, [\gamma] - 1 $ was investigated, where $ t \in J $, $ \gamma \in [2, 3) $, $ u \in \bar{\mathcal{B}} = C^{1}(\bar{J}) $, $ \alpha, \eta, \nu \in J $, $ \beta > 1 $ and $ h: \bar{J} \times \mathbb{R}^4 \to \mathbb{R} $ is a function such that $ h (t, ., ., ., .) $ is singular at some point $ t \in \bar{J} $ [44]. In 2017, Shabibi et al. studied the singular fractional integro-differential equation:

    $ {}^C \mathbb{D}^{\beta} u(t)+ h\left( t, u(t), u'(t), {}^c \mathbb{D}^{\gamma} u(t), \mu(u(t)) \right) = 0, $

    where $ \mu(u(t)) = \int_0^t f(\xi) u(\xi) \, \mathrm{d}\xi, $ under boundary conditions: $ u(0) = u'(0) $ and $ u(1) = {}^C \mathbb{D}^{\gamma} u(t) $, where $ t \in J $, $ u \in \bar{\mathcal{B}} $, $ \beta > 2 $, $ 0 < \gamma, a < 1 $, $ f \in \bar{\mathcal{L}} = L_1(\bar{J}) $, $ \| f \|_1 = m $, $ h(t, u_1, u_2, u_3, u_4) $ is singular at some points $ t \in \bar{J} $ and $ {}^C \mathbb{D}^\beta $ is the Caputo fractional derivative [45]. In 2020, Samei considered the singular system of $ q $–differential equations:

    $ \left\{ Dα1qu(t)=g1(t,u(t),v(t)),Dα2qv(t)=g2(t,u(t),v(t)),\right. $

    with conditions: $ u(0) = v(0) = 0 $, $ u^{(i)} (0) = v^{(i)} (0) = 0 $, for $ i = 2, \dots, n-1 $ and

    $ u(1) = \left[ \mathbb{I}_q^{\gamma_1 } \big( w_1 (t) u(t) \big) \right]_{t = 1}, \qquad v(1) = \left[ \mathbb{I}_q^{ \gamma_2 } \big( w_2(t) v(t)\big) \right]_{t = 1}, $

    where $ \mathbb{D}_q^{\alpha_j } $ is the $ q $–derivative of fractional order $ \alpha_j $, $ \alpha_j \in (n, n+1] $ with $ n \geq 3 $, $ \mathbb{I}_q^{ \gamma_j} $ is the $ q $–integral of fractional order $ \gamma_j $, $ \gamma_j \geq 1 $, $ g_j \in C (E) $, $ g_j $ are singular at $ t = 0 $ and satisfy the local Carathéodory condition on $ E = (0, 1] \times (0, \infty) \times (0, \infty) $, and $ w_j \in \bar{ \mathcal{L}} $ are non-negative such that

    $ \left[ I_q^{\gamma_j } ( w_j (t) ) \right]_{t = 1} \in \left[ 0, \frac{1}{2} \right), $

    for $ j = 1, 2 $ [37]. Also, Liang et al. [32] investigated a nonlinear problem of regular and singular fractional $ q $–differential equation:

    $ {}^c \mathbb{D}_q^\alpha u(t) = h \left(t, u(t), u'(t), {}^c \mathbb{D}_q^\beta u(t) \right), $

    with conditions: $ u(0) = c_1 u(1) $, $ u'(0) = c_2 {}^c \mathbb{D}_q^{\beta} u (1) $ and $ u^{(k)}(0) = 0 $ for all $ 2\leq k \leq n-1 $, here $ n-1 < \alpha < n $ with $ n \geq 3 $, $ \beta, q, c_1\in J $, $ 0 < c_2 < \Gamma_q (2- \beta) $, function $ h $ is a $ L^\kappa $-Carathéodory and $ h(t, u_1, u_2, u_3) $ may be singular. Similarly, some related results have been obtained in [28,36,38]. Dassios et al. used a generalized system of differential equations of fractional order:

    $ T_\lambda \frac{{\mathrm d} \lambda (t)}{{\mathrm d} t} = - H_d \lambda (t) + K_E \left(\omega^{\rm{ref}} - \omega_{Col} (t) \right), $

    to incorporate memory into an electricity market model by constructing the fractional-order dynamical model, studying its solutions, and providing the closed formulas of solutions, where $ \frac{{\mathrm d} \lambda (t)}{{\mathrm d} t} $, $ \lambda (t) $ are the marginal electricity price and electricity price, respectively, $ \omega^{\rm{ref}} $ represents the reference frequency, $ \omega_{Col} (t) $ represents the frequency of the Col, that is, $ \omega^{\rm{ref}}-\omega_{Col} (t) $ is the deviation frequency of the CoI with respect to the reference frequency, $ T_\lambda $ is the time constant, $ H_d $ is the deviation with respect to a perfect tracking integrator, and for a low-pass filter, it is $ H_d = 1 $, and $ K_E $ can be used as feedback gain [14].

    Using the ideas from these works, we investigate the existence of solutions for the following nonlinear pointwise defined fractional $ q $–integro-differential equation:

    $ Dαqu(t)=w(t,u(t),Dβqu(t),t0f(ξ)u(ξ)dξ,φ(u(t))), $ (1.1)

    for $ q \in J $, under boundary conditions: $ \int_0^{b } u(r) \, \mathrm{d}r = 0 $, $ u'(1) = u(a) $ and $ u^{(j)} (0) = 0 $ for $ j\geq 2 $, here $ \alpha \geq 2 $, $ a, b, \beta \in J $, $ \varphi : \bar{\mathcal{B}} \to \bar{\mathcal{B}} $ is a map such that

    $ \| \varphi( u_1) - \varphi(u_2) \| \leq c_1 \|u_1 - u_2\| + c_2 \|u'_1 - u'_2 \|, $

    for some non-negative real numbers $ c_1 $ and $ c_2 $ belonging to $ [0, \infty) $ and all $ u_1, u_2 \in \bar{\mathcal{B}} $, where $ \mathbb{D}^\alpha_q $ and $ \mathbb{D}^\beta_q $ are the Caputo fractional $ q $–derivatives of order $ \alpha $ and $ \beta $, respectively, which are defined in (2.11), and $ w \in \bar{ \mathcal{L}} $ is singular at some points $ t \in \bar{J} $.

    In fact, the non-constant real-valued function $ u $ on the interval $ I = [a, b] $ is said to be singular on $ I $, if it is continuous, and there exists a set $ S \subseteq I $ of measure $ 0 $ such that for all $ t $ outside of $ S $, $ u' (t) $ exists, and it is zero, that is, the derivative of $ u $ vanish almost everywhere. We say that, $ \mathbb{D}_q^{\alpha} u(t) + g(t) = 0 $ is a pointwise defined equation on $ \bar{J} $ if there exists set $ S \subset \bar{J} $ such that the measure of $ S^c $ is zero, and the equation holds on $ S $ [44].

    In Section 2, we recall some essential definitions of Caputo fractional $ q $–derivative. Section 3 contains our main results of this work, while an example is presented to support the validity of our obtained results. An application with some needed algorithms for the problems are given in Section 4. In Section 5, conclusion is presented.

    Throughout the paper, we apply the notations of time scales calculus [12]. The Caputo fractional $ q $–derivative is considered here on

    $ \mathbb{T}_{\mathrm{s}_0} = \{0 \} \cup \left\{ \mathrm{s} \, : \, \mathrm{s} = \mathrm{s}_0 q^\aleph \right\}, $

    for all $ \aleph \in \mathbb{N} $, $ \mathrm{s}_0 \in \mathbb{R} $ and $ q \in J $. If there is no confusion concerning $ \mathrm{s}_0 $, we denote $ \mathbb{T}_{\mathrm{s}_0} $ by $ \mathbb{T} $. Let $ p \in \mathbb{R} $. Let us define $ [p]_{q} = (1 - q^{p}) (1 - q)^{-1} $ [25]. The $ q $–factorial function $ (\mathrm{v} - \mathrm{w})_{q}^{(\aleph)} $ with $ \aleph \in \mathbb{N}_0 $ is defined by

    $ (vw)()q=1k=0(vwqk),(v,wR), $ (2.1)

    and $ (\mathrm{v} - \mathrm{w})_{q}^{(0)} = 1 $, where $ \mathbb{N}_0 : = \{ 0, 1, 2, 3, \dots \} $ [2]. Also, for $ \sigma \in \mathbb{R} $, we have:

    $ (vw)(σ)q=vσk=0vwqkvwqσ+k,(v,wR). $ (2.2)

    In [10], the authors proved that $ (v - w)_q^{(\sigma+\nu)} = (v - w)_{q}^{(\sigma)} (v - q^\sigma w)_{q}^{(\nu)} $ and

    $ ( a v - aw)_{q}^{(\sigma)} = a^\sigma (v - w)_{q}^{ (\sigma)}, $

    for each $ \mathrm{v}, \mathrm{w} \in \mathbb{R} $. If $ w = 0 $, then it is clear that $ v^{(\sigma)} = v^\sigma $. The $ q $–Gamma function is given by

    $ \Gamma_q (v) = (1-q)^{1-v} (1-q)_q^{(v-1)}, $

    where $ v \in \mathbb{R} \backslash \{\cdots, -2, -1, 0\} $ [25]. In fact, by using (2.2), we have

    $ Γq(v)=(1q)1vk=01qk+11qv+k1,(vR). $ (2.3)

    Note that, $ \Gamma_q (v+1) = [v]_q \Gamma_q (v) $ [10]HY__HY, Lemma 1]. For a function $ u : \mathbb{T} \to \mathbb{R} $, the $ q $–derivative of $ u $, is

    $ Dq[u](t)=(ddt)qu(t)=u(t)u(qt)(1q)t, $ (2.4)

    for all $ t \in \mathbb{T} \setminus \{0\} $, and $ \mathbb{D}_q [u](0) = \lim_{t \to 0} \mathbb{D}_q [u](t) $ [2]. Also, the higher order $ q $–derivative of the function $ u $ is defined by $ \mathbb{D}_q^n [u](t) = \mathbb{D}_q \left[ \mathbb{D}_q^{ n-1} [u]\right](t) $, for all $ n \geq 1 $, where $ \mathbb{D}_q^0 [u](t) = u(t) $ [2]. In fact,

    $ Dnq[u](t)=1tn(1q)nnk=0(1qn)(k)q(1q)(k)qqku(tqk), $ (2.5)

    for $ t \in \mathbb{T}\setminus \{0\} $ [9].

    Remark 2.1. By using Eq $(2.1)$, we can change Eq $(2.5)$ into the following:

    $ Dnq[u](t)=1tn(1q)nnk=0k1i=0(1qin)k1i=0(1qi+1)qku(tqk). $ (2.6)

    The $ q $–integral of the function $ u $ is defined by

    $ Iq[u](t)=t0u(ξ)dqξ=t(1q)k=0qku(tqk), $ (2.7)

    for $ 0 \leq t \leq b $, provided that the series is absolutely convergent [2]. If $ a $ is in $ [0, b] $, then

    $ bau(ξ)dqξ=Iq[u](b)Iq[u](a)=(1q)k=0qk[bu(bqk)au(aqk)], $ (2.8)

    whenever the series converges. The operator $ \mathbb{I}_q^n $ is given by $ \mathbb{I}_q^0 [u](t) = u(t) $ and

    $ \mathbb{I}_q^n [u](t) = \mathbb{I}_q \left[ \mathbb{I}_q^{n-1} [u] \right] (t), $

    for $ n \geq 1 $ and $ u \in C([ 0, b]) $ [2]. It has been proven that

    $ \mathbb{D}_q \left[ \mathbb{I}_q [u]\right] (t) = u(t), \qquad \mathbb{I}_q \left[ \mathbb{D}_q [u] \right](t) = u(t) - u(0), $

    whenever the function $ u $ is continuous at $ t = 0 $ [2]. The fractional Riemann-Liouville type $ q $–integral of the function $ u $ is defined by

    $ Iσq[u](t)=1Γq(σ)t0(tξ)(σ1)qu(ξ)dqξ,I0q[u](t)=u(t), $ (2.9)

    for $ t \in \bar{J} $ and $ \sigma > 0 $ [9,23].

    Remark 2.2. By using Eqs $(2.2)$, $(2.3)$ and $(2.7)$, we obtain:

    $ 1Γq(σ)t0(tξ)(σ1)qu(ξ)dqξ=1Γq(σ)t0tσ1i=0tξqitξqσ+i1u(ξ)dqξ=tσ(1q)σi=01qσ+i11qi+1k=0qki=01qk+i1qσ+k+i1u(tqk). $

    Therefore, we have:

    $ Iσq[u](t)=tσ(1q)σlimnnk=0qkni=0(1qσ+i1)(1qk+i)(1qi+1)(1qσ+k+i1)u(tqk), $ (2.10)

    The Caputo fractional $ q $–derivative of the function $ u $ is defined by

    $ CDσq[u](t)=I[σ]σq[D[σ]q[u]](t)=1Γq([σ]σ)t0(tξ)([σ]σ1)qD[σ]q[u](ξ)dqξ $ (2.11)

    for $ t \in \bar{J} $ and $ \sigma > 0 $ [23,35]. It has been proven that

    $ \mathbb{I}_q^{ \nu} \left[ \mathbb{I}_q^{\sigma} [u] \right] (t) = \mathbb{I}_q^{\sigma + \nu} [u] (t),\qquad {}^C \mathbb{D}_q^{ \sigma} \left[ \mathbb{I}_q^{ \sigma} [u] \right] (t) = u(t), $

    where $ \sigma, \nu \geq 0 $ [23]. Also,

    $ \mathbb{I}_q^{ \sigma} \left[ \mathbb{D}_q^{n} [u]\right] (t) = \mathbb{D}_q^{n} \left[ \mathbb{I}_q^{\sigma} [u]\right] (t) - \sum\limits_{k = 0}^{n-1} \frac{t^{ \sigma + k - n}}{ \Gamma_q (\sigma + k - n+1)} \mathbb{D}_q^{k}[u](0), $

    where $ \sigma > 0 $ and $ n \geq 1 $ [23].

    Remark 2.3. From Eq $(2.3)$, Remark 2.1, and Eq $(2.10)$ in Remark 2.2, we obtain:

    $ 1Γq([σ]σ)t0(tξ)([σ]σ1)qD[σ]q[u](ξ)dqξ=1Γq([σ]σ)t0t[σ]σ1[i=0tsqitsq[σ]σ1+i]×(1t[σ](1q)[σ][σ]k=0[k1i=0(1qi[σ])(1qi+1)]qku(xqk))dqs=1tσ(1q)σ[σ]k=0([i=0(1q[σ]σ+i1)(1qk+i)(1qi+1)(1q[σ]σ1+k+i)]×([σ]m=0[m1i=0(1qi[σ])(1qi+1)]qmu(tqk+m))). $

    Thus, we have:

    $ CDσq[u](t)=1tσ(1q)σ[σ]limnnk=0([ni=0(1q[σ]σ+i1)(1qk+i)(1qi+1)(1q[σ]σ1+k+i)]×([σ]m=0[m1i=0(1qi[σ])(1qi+1)]qmu(tqk+m))). $ (2.12)

    The authors in [41] presented all algorithms and MATLAB code's lines to simplify $ q $–factorial functions $ (v -w)_q^{(n)} $, $ (v -w)_q^{(\sigma)} $, $ \Gamma_{q}(v) $, $ \mathbb{I}_q [u](t) $, and some necessary equations.

    Lemma 2.4. [27,29] For $ \sigma > 0 $, the general solution of the fractional $ q $–differential equation $ {}^C \mathbb{D}^\sigma u(t) = 0 $ is given by $ u(t) = \sum_{i = 0}^{n-1} e_i t^i $, where $ e_i \in \mathbb{R} $ for $ i = 0, 1, 2, \dots, n-1 $ and $ n = [\sigma ] + 1 $ here $ [\sigma] $ denotes the integer part of the real number $ \sigma $.

    We use the three norms: $ \|u\| = \sup_{t \in \bar{J}} |u(t)| $,

    $ \left\|( u, u') \right\|_{*} = \max \Big\{ \| u\|, \|u'\| \Big\}, $

    and $ \|u\|_1 = \int_{\bar{J}} |u(\xi)|\, {\mathrm d}\xi $ in $ \bar{\mathcal{A}} = C(\bar{J}) $, $ \bar{\mathcal{B}} = C^{1}(\bar{J}) $, and $ \bar{\mathcal{L}} = L_1(\bar{J}) $, respectively. Let $ \Psi $ be the family of nondecreasing functions $ \mathtt{ψ} : [0, \infty) \to [0, \infty) $ such that $ \sum_{n = 1}^{\infty} \mathtt{ψ}^{n}(t) < \infty $, for all $ t > 0 $. Let $ T : \mathcal{X} \to \mathcal{X} $ and $ \alpha : \mathcal{X} \times \mathcal{X} \to (0, \infty) $. $ T $ is called an $ \alpha $-admissible mapping if $ \alpha(u_1, u_2) \geq 1 $ implies that $ \alpha(T(u_1), T(u_2)) \geq 1 $ for each $ u_1, u_2 $ in $ \mathcal{X} $.

    Definition 2.5. [42] Let $ (\mathcal{X}, \rho) $ be a metric space, where $ \mathtt{ψ} \in \Psi $ and $ \alpha : \mathcal{X}^2 \to [0, \infty) $ is a map. A self-map $ T $ defined on $ \mathcal{X} $ is called an $ \alpha $-$ \mathtt{ψ} $-contraction whenever

    $ \alpha( u_1, u_2) \rho \left( T(u_1), T(u_2) \right) \leq \mathtt{ψ} \left( \rho( u_1, u_2) \right), $

    for each $ u_1, u_2 \in \mathcal{X} $.

    Lemma 2.6. [42]Let $ (\mathcal{X}, \rho) $ be a complete metric space and $ T : \mathcal{X} \to \mathcal{X} $ be a continuous, $ \alpha- $admissible and $ \alpha $–$ \mathtt{ψ} $–contraction, then $ T $ has a fixed point whenever there exists $ u_{0} \in \mathcal{X} $ such that $ \alpha(u_{0}, T (u_{0})) \geq 1 $.

    Lemma 2.7. [43,46]If $ x \in \bar{\mathcal{A}} \cap \bar{\mathcal{L}} $ with $ \mathbb{D}_q^{\alpha} x\in \mathcal{A} \cap \mathcal{L} $, then

    $ \mathbb{I}_q^{\alpha} \mathbb{D}_q^{\alpha} u(t) = u(t) + \sum\limits_{i = 1}^{n} c_i t^{\alpha - i}, $

    where $ [\alpha]\leq n < [\alpha] +1 $, and $ c_i $ is some real number.

    Let us first prove the following essential lemma:

    Lemma 3.1. Suppose that $ \alpha \geq 2 $, $ q \in J $ and $ g\in \bar{\mathcal{L}} $. The solution of the boundary value problem: $ \mathbb{D}_q^{\alpha} u(t) = g(t) $ with boundary conditions is expressed as:

    $ {u(j)(0)=0;j=2,3,4,,u(1)=u(a);aJ,b0u(ξ)dξ=0;bJ, $

    is

    $ u(t) = \int^1_0 G_q( t, \xi) g(\xi) \, \mathrm{d}_q\xi, $

    on a time scale $ \mathbb{T}_{t_0} $ where $ G_q(t, s) $ is expressed as:

    $ {A0(ts)(α1)q+A1(t)(1s)(α2)q+A2(t)(as)(α1)q+A3(t)(bs)(α)qsmin{a,b};A0(ts)(α1)q+A1(t)(1s)(α2)q+A2(t)(as)(α1)qbsa;A0(ts)(α1)q+A1(t)(1s)(α2)q+A3(t)(bs)(α)qasb;A0(ts)(α1)q+A1(t)(1s)(α2)qsmax{a,b}; $ (3.1)

    whenever $ 0\leq s \leq t \leq 1 $,

    $ {A1(t)(1s)(α2)q+A2(t)(as)(α1)q+A3(bs)(α)qsmin{a,b};A1(t)(1s)(α2)q+A2(t)(as)(α1)qbsa;A1(t)(1s)(α2)q+A3(t)(bs)(α)qasb;A1(t)(1s)(α2)qsmax{a,b}; $ (3.2)

    whenever $ 0 \leq t \leq s \leq 1 $. Also

    $ {A0=1Γq(α),A1(t)=b(1a+t)μ(a,b)μ(a,b)Γq(α1),A2(t)=μ(a,b)+b(a+t1)μ(a,b)Γq(α),A3(t)=μ(a,b)(1a)+tμ(a,b)Γq(α+1), $ (3.3)

    and

    $ μ(a,b)=b(1a)+b22>0. $ (3.4)

    Proof. Consider the problem: $ \mathbb{D}_q^{\alpha} u(t) = g(t) $. Using Lemma 2.7, it is deduced that $ u(t) = - \mathbb{I}_q^\alpha g(t) + c_0 + c_1 t $, where $ c_0 $, $ c_1 $ are some real numbers, and $ \mathbb{I}_q^\alpha $ is Riemann-Liouville type $ q $–integral of order $ \alpha $. Hence, $ u'(t) = - \mathbb{I}_q^{\alpha -1} g(t) + c_1 $ where $ \mathbb{I}_q^{\alpha -1} $ is a fractional Riemann-Liouville type $ q $–integral of order $ \alpha -1 $. By applying condition $ u'(1) = u(a) $, we get:

    $ - \mathbb{I}_q^{\alpha -1} g(1) + c_1 = - \mathbb{I}_q^\alpha g(a) + c_0 + c_{1} a, $

    and so $ c_0 = - \mathbb{I}_q^{\alpha -1} g(1) + \mathbb{I}_q^\alpha g(a) + (1- a) c_{1} $. one can easily check that

    $ \int_0^{b} u(r) \, \mathrm{d}r = - \mathbb{I}_q^{\alpha + 1} g(b) - b \mathbb{I}_q^{\alpha -1} g(1) + \mu \mathbb{I}_q^\alpha g(a) + bc_1(1- a ) + \frac{1}{2} c_{1}b^2. $

    Since $ \int_0^{b} u(r) \, \mathrm{d} r = 0 $, we get:

    $ c_1 = \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha + 1} g(b) + \frac{b} {\mu(a, b)} \mathbb{I}_q^{\alpha-1} g(1) - \frac{b} {\mu(a, b)} \mathbb{I}_q^{\alpha + 1} g(a). $

    Thus,

    $ c0=Iα1qg(1)+Iαqg(a)+1aμ(a,b)Iα+1qg(b)+b(1a)μ(a,b)Iα1qg(1)b(1a)μ(a,b)Iαqg(a) $

    and so

    $ u(t)=Iαqg(t)Iα1qg(1)+Iαqg(a)+1aμ(a,b)Iα+1qg(b)+b(1a)μ(a,b)Iα1qg(1)b(1a)μ(a,b)Iαqg(a)+tμ(a,b)Iα+1qg(b)+btμ(a,b)Iα1qg(1)btμ(a,b)Iαqg(a). $

    Hence,

    $ u(t) = - \mathbb{I}_q^\alpha g(t) + A_1(t) \mathbb{I}_q^{\alpha-1} g(1) + A_2(t) \mathbb{I}_q^\alpha g(a) + A_3(t) \mathbb{I}_q^{\alpha + 1} g(b). $

    Now, some easy evaluations show us that $ u(t) = \int_0^1 G_q(t, s) g(s) \, \mathrm{d}_qs $.

    Remark 3.2. Note that, the mappings $ G_q(t, s) $ and $ \frac{ \partial G_q(t, s)}{\partial t} $ are continuous with respect to $ t $. Let $ w $ be a map on $ \bar{J} \times \bar{\mathcal{B}}^2 $ such that $ w $ is singular at some points of $ \bar{J} $. Let us define the function $ \Theta_u : \bar{\mathcal{B}} \to \bar{\mathcal{B}} $ by

    $ Θu(t)=Iαqw(t,u(t),Dβqu(t),t0f(ξ)u(ξ)dξ,φ(u(t)))+A1(t)Iα1qw(1,u(1),Dβqu(1),10f(ξ)u(ξ)dξ,φ(u(1)))+A2(t)Iαqw(a,u(a),Dβqu(a),a0f(ξ)u(ξ)dξ,φ(u(a)))+A3(t)Iα+1qw(b,u(b),Dβqu(b),b0f(ξ)u(ξ)dξ,φ(u(b))), $

    for all $ t\in \bar{J} $, where $ \mathbb{I}_q^\alpha $ is the fractional Riemann-Liouville $ q $–integral of order $ \alpha $ which is defined in $(2.9)$, and $ \mathbb{D}^\beta_q $ is the Caputo fractional $ q $–derivative of order $ \beta $ which is defined in $(2.11)$. Then, by taking the first order derivative related to $ t $, we have:

    $ Θu(t)=10Gq(t,ξ)tw(s,u(s),Dβqu(s),s0f(ξ)u(ξ)dξ,φ(u(s)))dqs=Iα1qw(t,u(t),Dβqu(t),t0f(ξ)u(ξ)dξ,φ(u(t)))+bμ(a,b)Iα1qw(1,u(1),Dβqu(1),10f(ξ)u(ξ)dξ,φ(u(1)))+bμ(a,b)Iαqw(a,u(a),Dβqu(a),a0f(ξ)u(ξ)dξ,φ(u(a)))+1μ(a,b)Iα+1qw(b,u(b),Dβqu(b),b0f(ξ)u(ξ)dξ,φ(u(b))). $

    Obviously, the singular pointwise defined Eq $(1.1)$ has a solution iff the map $ \Theta_u $ has a fixed point.

    Now, we give our main result as follows:

    Theorem 3.3. Assume that $ \alpha\geq 2 $, $ [\alpha] = n-1 $, $ a, b, q\in J $, $ f \in \bar{\mathcal{L}} $ with $ \|f\|_1 = m $, $ \varphi : \bar{\mathcal{B}} \to \mathbb{R} $ is such that

    $ |\varphi(u(t)) - \varphi(v(t))| \leq c_1 | u(t) - v(t)| + c_2| u'(t) - v'(t)|, $

    for some $ c_1, c_2 \in [0, \infty) $. Let $ \Omega : \bar{J} \times \bar{\mathcal{B}}^{5} \to \mathbb{R} $ be a mapping which is singular on some points $ \bar{J} $ and

    $ |w(t, u_1, \dots, u_5) - w(t, v_1, \dots, v_5)| \leq \sum\limits_{i = 1}^{k_0} \mu_i(t) \Omega_i (u_1 - v_1, \dots, u_5 - v_5), $

    for all $ u_1, u_2, v_1, v_2 \in \bar{\mathcal{B}} $ and almost all $ t \in \bar{J} $, where $ k_0 $ is a natural number, $ \mu_i :\bar{J} \to \mathbb{R}^+ $, $ \hat{\mu}_i \in \bar{\mathcal{L}} $,

    $ \hat{\mu}_i(s) = (1 - s)_q^{\alpha -2} \mu_i(s), $

    $ \Omega_{i}: \bar{\mathcal{B}}^5 \to \mathbb{R}^+ $ is a nondecreasing mapping with respect to all components with

    $ \frac{\Omega_i( \nu, \nu, \nu ,\nu , \nu)}{\nu^{\gamma_i}} \to p_i, $

    as $ \nu \to 0^+ $ for some $ \gamma_i > 0 $, $ p_i \in \mathbb{R}^+ $ with $ 1 \leq i \leq k_0 $. Suppose that

    $ |w(t, u_1, \dots, u_5) | \leq h(t) T (u_1, \dots, u_5), $

    for all $ (u_1, \dots, u_5) \in \bar{\mathcal{B}}^5 $ and almost all $ t \in \bar{J} $, where $ h: \bar{J} \to \mathbb{R}^+ $, $ \hat{h} \in \bar{ \mathcal{L}} $, $ T : \bar{ \mathcal{B}}^5 \to \mathbb{R^+} $ is a nondecreasing mapping respect all their components such that

    $ \lim\limits_{\nu \to 0^{+}} \frac{ T(\nu, \nu,\nu , \nu ,\nu)}{\nu} \in [0, \tau), $

    where$ \tau = \left(\ell \| \hat{h}\|_1 M_{ \alpha, a, b} \right)^{-1} $,

    $ \ell = \max \bigg\{ 1, \frac{1}{\Gamma_q(2- \beta)}, m, c_1 + c_2 \bigg\}, $

    $ \mu(a, b) $ define by Eq $(3.4)$ in Lemma 3.1 and

    $ Mα,a,b=max{1Γq(α)+b(2a)μ(a,b)μ(a,,b)Γq(α1)+μ(a,b)+abμ(a,b)Γq(α)+μ(a,b)(1a)+1μ(a,b)Γq(α+1),1Γq(α1)+bμ(a,b)Γq(α1)+bμ(a,b)Γq(α)+1μ(a,b)Γq(α+1)}. $

    If

    $ M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} p_i \ell^{ \gamma_i} \| \hat{\mu}_i \|_{\bar{J}} < 1, $

    then the pointwise defined Eq $(1.1)$ under boundary conditions: $ u^{(j)} (0) = 0 $ for $ j\geq 2 $, $ \int_{0}^{b} u({r}) \, {\mathrm d}{r} = 0 $ and $ u'(1) = u({a}) $ has a solution.

    Proof. Let $ u, v \in \bar{\mathcal{B}} $. Then, we get:

    $ |Θu(t)Θv(t)||Iαqw(t,u(t),u(t),Dβqu(t),t0f(r)u(r)dr,φ(u(t)))+A1(t)Iα1qw(1,u(1),u(1),Dβqu(1),10f(r)u(r)dr,φ(u(1)))+A2(t)Iαqw(a,u(a),u(a),Dβqu(a),a0f(r)u(r)dr,φ(u(a)))+A3(t)Iα+1qw(b,u(b),u(b),Dβqu(b),10f(r)u(r)dr,φ(u(b)))+Iαqw(t,v(t),v(t),Dβqv(t),t0f(r)v(r)dr,φ(v(t)))A1(t)Iα1qw(1,v(1),v(1),Dβqv(1),10f(r)v(r)dr,φ(v(1)))A2(t)Iαqw(a,v(a),v(a),Dβqv(a),a0f(r)v(r)dr,φ(v(a)))A3(t)Iα+1qw(b,v(b),v(b),Dβqv(b),10f(r)v(r)dr,φ(v(b)))|Iαq|w(t,u(t),u(t),Dβqu(t),t0f(r)u(r)dr,φ(u(t)))w(t,v(t),v(t),Dβqv(t),t0f(r)v(r)dr,φ(v(t)))|+A1(t)[Iα1q|w(1,u(1),u(1),Dβqu(1),10f(r)u(r)dr,φ(u(1)))w(1,v(1),v(1),Dβqv(1),10f(r)v(r)dr,φ(v(1)))|]+A2(t)[Iαq|w(a,u(a),u(a),Dβqu(a),a0f(r)u(r)dr,φ(u(a)))w(a,v(a),v(a),Dβqv(a),a0f(r)v(r)dr,φ(v(a)))|]+A3(t)[Iα+1q|w(b,u(b),u(b),Dβqu(b),10f(r)u(r)dr,φ(u(b)))w(b,v(b),v(b),Dβqv(b),10f(r)v(r)dr,φ(v(b)))|]Iαq(k0i=1μi(t)[Ωi(u(t)v(t),u(t)v(t),Dβqu(t)Dβqv(t),t0f(r)u(r)drt0f(r)v(r)dr,φ(u(t))φ(v(t)))])+A1(t)Iα1q(k0i=1μi(1)×[Ωi(u(1)v(1),u(1)v(1),Dβqu(1)Dβqv(1),10f(r)u(r)dr10f(r)v(r)dr,φ(u(1))φ(v(1)))])+A2(t)Iαq(k0i=1μi(a)×[Ωi(u(a)v(a),u(a)v(a),Dβqu(a)Dβqv(a),a0f(r)u(r)drq0f(r)v(r)dr,φ(u(a))φ(v(a)))])+A3(t)Iα+1q(k0i=1μi(b)×[Ωi(u(b)v(b),u(b)v(b),Dβqu(b)Dβqv(b),b0f(r)u(r)drb0f(r)v(r)dr,φ(u(b))φ(v(b)))])k0i=1Iαq(μi(t)[Ωi(|u(t)v(t)|,|u(t)v(t)|,|Dβqu(t)Dβqv(t)|,|t0f(r)u(r)drt0f(r)v(r)dr|,|φ(u(t))φ(v(t))|)])+A1(t)k0i=1Iα1q(μi(1)×[Ωi(|u(1)v(1)|,|u(1)v(1)|,|Dβqu(1)Dβqv(1)|,|10f(r)u(r)dr10f(r)v(r)dr|,|φ(u(1))φ(v(1))|)])+A2(t)k0i=1Iαq(μi(a)×[Ωi(|u(a)v(a)|,|u(a)v(a)|,|Dβqu(a)Dβqv(a)|,|a0f(r)u(r)drq0f(r)v(r)dr|,|φ(u(a))φ(v(a))|)])+A3(t)k0i=1Iα+1q(μi(b)×[Ωi(|u(b)v(b)|,|u(b)v(b)|,|Dβqu(b)Dβqv(b)|,|b0f(r)u(r)drb0f(r)v(r)dr|,|φ(u(b))φ(v(b))|)]). $

    Since $ \mathbb{D}_q^{\beta} u(t) = \mathbb{I}_q^{1- \beta} u'(t) $ for $ \beta \in J $, we have

    $ | \mathbb{D}_q^{\beta} u(t)| \leq \mathbb{I}_q^{1- \beta} |u'(t)| \leq \| u'\| \mathbb{I}_q^{1- \beta} (1) = \frac{\| u'\|}{ \Gamma_q(2- \beta)}, $

    and so

    $ \left| \mathbb{D}_q^{\beta} u(t) - \mathbb{D}_q^{\beta}v(t) \right| = \left| \mathbb{D}_q^{\beta}( u(t) - v(t) ) \right| \leq \frac{\| u' - v'\|}{ \Gamma_q(2- \beta)}. $

    Thus, by considering $ \xi = \|u - v\|_{*} $, we have:

    $ |Θu(t)Θv(t)|k0i=1IαqΩi(uv,uv,uvΓq(2β),muv,c1uv+c2uv)+A1(t)k0i=1Iα1q(μi(1)[Ωi(uv,uv,uvΓq(2β),muv,c1uv+c2uv)])+A2(t)k0i=1Iαq(μi(a)[Ωi(uv,uv,uvΓq(2β),muv,c1uv+c2uv)])+A3(t)k0i=1Iα+1q(μi(b)[Ωi(uv,uv,uvΓq(2β),muv,c1uv+c2uv)])k0i=1Ωi(ξ,ξ,ξΓq(2β),mξ,c1ξ+c2ξ)Iαqμi(t)+A1(t)k0i=1Ωi(ξ,ξ,ξΓq(2β),mξ,c1ξ+c2ξ)Iα1qμi(1)+A2(t)k0i=1Ωi(ξ,ξ,ξΓq(2β),mξ,c1ξ+c2ξ)Iαqμi(a)+A3(t)k0i=1Ωi(ξ,ξ,ξΓq(2β),mξ,c1ξ+c2ξ)Iα+1qμi(b)k0i=1Ωi(ξ,ξ,ξ,ξ,ξ)Iαqμi(1)+A1(t)k0i=1Ωi(ξ,ξ,ξ,ξ,ξ)Iα1qμi(1)+A2(t)k0i=1Ωi(ξ,ξ,ξ,ξ,ξ)Iαqμi(1)+A3(t)k0i=1Ωi(ξ,ξ,ξ,ξ,ξ)Iα+1qμi(1)=A0k0i=1ˆμi1Ωi(ξ,ξ,ξ,ξ,ξ)+A1(t)k0i=1ˆμi1Ωi(ξ,ξ,ξ,ξ,ξ)+A2(t)k0i=1ˆμi1Ωi(ξ,ξ,ξ,ξ,ξ)+A3(t)k0i=1ˆμi1Ωi(ξ,ξ,ξ,ξ,ξ)=k0i=1ˆμi1Ωi(ξ,ξ,ξ,ξ,ξ)×[A0+A1(t)+A2(t)+A3(t)]. $

    This implies that

    $ \|\Theta_u - \Theta_v\| \leq \big[ A_0 + A_1(t) + A_2 (t) + A_3(t) \big] \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \left(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \right). $

    Assume that $ u, v \in \bar{\mathcal{B}} $. Then, we get:

    $ |ΘuΘv||Iα1qw(t,u(t),u(t),Dβqu(t),t0f(r)u(r)dr,φ(u(t)))+bμ(a,b)Iα1qw(1,u(1),u(1),Dβqu(1),10f(r)u(r)dr,φ(u(1)))+bμ(a,b)Iαqw(a,u(a),u(a),Dβqu(a),a0f(r)u(r)dr,φ(u(a)))+1μ(a,b)Iα+1qw(b,u(b),u(b),Dβqu(b),b0f(r)u(r)dr,φ(u(b)))+Iα1qw(t,v(t),v(t),Dβqv(t),t0f(r)v(r)dr,φ(v(t)))bμ(a,b)Iα1qw(1,v(1),v(1),Dβqv(1),10f(r)v(r)dr,φ(v(1)))bμ(a,b)Iαqw(a,v(a),v(a),Dβqv(a),a0f(r)v(r)dr,φ(v(a)))1μ(a,b)Iα+1qw(b,v(b),v(b),Dβqv(b),b0f(r)v(r)dr,φ(u(b)))|Iα1q|w(t,u(t),u(t),Dβqu(t),t0f(r)u(r)dr,φ(u(t)))w(t,v(t),v(t),Dβqv(t),t0f(r)v(r)dr,φ(v(t)))|+bμ(a,b)Iα1q|w(1,u(1),u(1),Dβqu(1),10f(r)u(r)dr,φ(u(1)))Iα1qw(1,v(1),v(1),Dβqv(1),10f(r)v(r)dr,φ(v(1)))|+bμ(a,b)Iαq|w(a,u(a),u(a),Dβqu(a),a0f(r)u(r)dr,φ(u(a)))Iαqw(a,v(a),v(a),Dβqv(a),a0f(r)v(r)dr,φ(v(a)))|+1μ(a,b)Iq3α+1|w(b,u(b),u(b),Dβqu(b),b0f(r)u(r)dr,φ(u(b)))w(b,v(b),v(b),Dβqv(b),b0f(r)v(r)dr,φ(u(b)))|Iα1qk0i=1μi(t)[Ωi(u(t)v(t),u(t)v(t),Dβqu(t)Dβqv(t),t0f(r)u(r)drt0f(r)v(r)dr,φ(u(t))φ(v(t)))]+bμ(a,b)Iα1qk0i=1μi(1)×[Ωi(u(1)v(1),u(1)v(1),Dβqu(1)Dβqv(1),10f(r)u(r)dr10f(r)v(r)dr,φ(u(1))φ(v(1)))]+bμ(a,b)Iαqk0i=1μi(a)×[Ωi(u(a)v(a),u(a)v(a),Dβqu(a)Dβqv(a),a0f(r)u(r)dra0f(r)v(r)dr,φ(u(a))φ(v(a)))] $
    $ +1μ(a,b)Iα+1qk0i=1μi(b)×[Ωi(u(b)v(b),u(b)v(b),Dβqu(b)Dβqv(b),b0f(r)u(r)drb0f(r)v(r)dr,φ(u(b))φ(v(b)))]k0i=1Iα1qμi(t)[Ωi(|u(t)v(t)|,|u(t)v(t)|,|Dβq(u(t)v(t))|,|t0f(r)(u(r)v(r))dr|,|φ(u(t))φ(v(t))|)]+bμ(a,b)k0i=1Iα1qμi(1)×[Ωi(|u(1)v(1)|,|u(1)v(1)|,|Dβq(u(1)v(1))|,|10f(r)(u(r)v(r))dr|,|φ(u(1))φ(v(1))|)]+bμ(a,b)k0i=1Iαqμi(1)×[Ωi(|u(1)v(1)|,|u(1)v(1)|,|Dβq(u(1)v(1))|,|10f(r)(u(r)v(r))dr|,|φ(u(1))φ(v(1))|)]+1μ(a,b)k0i=1Iα+1qμi(1)×[Ωi(|u(1)v(1)|,|u(1)v(1)|,|Dβq(u(1)v(1))|,|10f(r)(u(r)v(r))dr|,|φ(u(1))φ(v(1))|)]k0i=1Iα1q[Ωi(u(t)v(t),u(t)v(t),u(t)v(t)Γq(2β),mu(t)v(t),c1u(t)v(t)+c2u(t)v(t))]+bμ(a,b)k0i=1Iα1q[Ωi(u(1)v(1),u(1)v(1),u(1)v(1)Γq(2β),mu(1)v(1),c1u(1)v(1)+c2u(1)v(1))]+bμ(a,b)k0i=1Iαq[Ωi(u(a)v(a),u(a)v(a),u(a)v(a)Γq(2β),mu(a)v(a),c1u(a)v(a)+c2u(a)v(a))]+1μ(a,b)k0i=1Iα+1q[Ωi(u(b)v(b),u(b)v(b),u(b)v(b)Γq(2β),mu(b)v(b),c1u(b)v(b)+c2u(b)v(b))]k0i=1Ωi(ξ,ξ,ξΓq(2β),mξ,c1ξ+c2ξ)Iα1qμi(t)+bμ(a,b)k0i=1Ωi(ξ,ξ,ξΓq(2β),mξ,c1ξ+c2ξ)Iα1qμi(1)+bμ(a,b)k0i=1Ωi(ξ,ξ,ξΓq(2β),mξ,c1ξ+c2ξ)Iαqμi(a)+1μ(a,b)k0i=1Ωi(ξ,ξ,ξΓq(2β),mξ,c1ξ+c2ξ)Iα+1qμi(b)k0i=1Ωi(ξξ,ξ,ξ,ξ)Iα1qμi(1)+bμ(a,b)k0i=1Ωi(ξ,ξ,ξ,ξ,ξ)Iα1qμi(1)+bμ(a,b)k0i=1Ωi(ξ,ξ,ξ,ξ,ξ)Iαqμi(1)+1μ(a,b)k0i=1Ωi(ξ,ξ,ξ,ξ,ξ)Iα+1qμi(1)=1Γq(α1)k0i=1ˆμi1Ωi(ξ,ξ,ξ,ξ,ξ)+bμ(a,b)Γq(α1)k0i=1ˆμi1Ωi(ξ,ξ,ξ,ξ,ξ)+bμ(a,b)Γq(α)k0i=1ˆμi1Ωi(ξ,ξ,ξ,ξ,ξ)+1μ(a,b)Γq(α+1)k0i=1ˆμi1Ωi(ξ,ξ,ξ,ξ,ξ)=k0i=1ˆμi1Ωi(ξ,ξ,ξ,ξ,ξ)[1Γq(α1)+bμ(a,b)Γq(α1)+bμ(a,b)Γq(α)+1μ(a,b)Γq(α+1)]. $

    Hence,

    $ ΘuΘvk0i=1ˆμi1Ωi(ξ,ξ,ξ,ξ,ξ)[1Γq(α1)+bμ(a,b)Γq(α1)+bμ(a,b)Γq(α)+1μ(a,b)Γq(α+1)] $

    and so

    $ ΘuΘvk0i=1ˆμi1Ωi(ξ,ξ,ξ,ξ,ξ)max{1Γq(α)+b(2a)μ(a,b)μ(a,b)Γq(α1)+μ(a,b)+abμ(a,b)Γq(α)+μ(a,b)(1a)+1μ(a,b)Γq(α+1),1Γq(α1)+bμ(a,b)Γq(α1)+bμ(a,b)Γq(α)+1μ(a,b)Γq(α+1)}. $

    If

    $ Mα,a,b=max{1Γq(α)+b(2a)μ(a,b)μ(a,b)Γq(α1)+μ(a,b)+abμ(a,b)Γq(α)+μ(a,b)(1a)+1μ(a,b)Γq(α+1),1Γq(α1)+bμ(a,b)Γq(α1)+bμ(a,b)Γq(α)+1μ(a,b)Γq(α+1)}, $

    then

    $ ΘuΘvMα,a,bk0i=1ˆμi1Ωi(ξ,ξ,ξ,ξ,ξ). $ (3.5)

    Let $ 0 < \varepsilon \leq 1 $ be given. Since

    $ \lim\limits_{\nu \to 0^{+}} \frac{\Omega_i(\nu,\nu,\nu,\nu,\nu)}{\nu^{\gamma_i}} = p_i, $

    for $ 1 \leq i \leq k_0 $, $ \exists \; \delta_i = \delta_i(\varepsilon) $ such that $ \nu \in (0, \delta_i] $ implies

    $ \left| \frac{\Omega_i(\nu,\nu , \nu, \nu, \nu)}{\nu^{\gamma_i}} - p_i \right| < \varepsilon, $

    and so $ \Omega_i(\nu, \nu, \nu, \nu, \nu)/ \nu^{\gamma_i} < \varepsilon + p_i $. This consequents

    $ 0 \leq \Omega_i(\nu,\nu ,\nu, \nu, \nu) < ( \varepsilon + p_i) \nu^{\gamma_i}. $

    We take $ \delta = \min \{ \delta_1, \dots, \delta_{k_0}, \varepsilon \} $. In this case, $ \nu \in (0, \delta] $ implies

    $ 0Ωi(ν,ν,ν,ν,ν)<(ε+pi)νγi $ (3.6)

    for all $ 1\leq i \leq k_0 $. By using (3.6), we obtain:

    $ Ωi(ξ,,ξ)(ε+pi)(ξ)γi(ε+pi)γiεγi. $ (3.7)

    At present, by applying (3.5) and (3.7), we obtain:

    $ \| \Theta_{u} - \Theta_{v} \|_{*} \leq M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 ( \varepsilon + p_i ) \ell^{\gamma_i} \varepsilon^{\gamma_i}. $

    Now, we consider: $ \gamma = \min \{\gamma_1, \cdots, \gamma_{k_0} \} $. Hence,

    $ \left\| \Theta_{u} - \Theta_{v} \right\|_{*} \leq \varepsilon^\gamma M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i \|_1 (\varepsilon + p_i ) \ell^{\gamma_i}. $

    Therefore, this implies that $ \Theta $ is continuous. Since

    $ M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 p_i \ell^{\gamma_i} < 1, $

    there is $ \varepsilon_1 > 0 $ such that

    $ M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 (p_i + \varepsilon_1) \ell^{\gamma_i} < 1. $

    Let

    $ \lambda = \lim\limits_{\nu \to 0^{+}} \frac{T(\nu, \nu, \nu, \nu, \nu)}{\nu } \, \in [0, \tau). $

    Then, we have:

    $ \lambda = \lim\limits_{\nu \to 0^{+}} T(\ell \nu, \dots, \ell \nu)/ (\ell \nu), $

    and so for each $ \varepsilon > 0 $ there exists $ \delta(\epsilon) > 0 $ such that $ \nu \in (0, \delta(\varepsilon)] $ implies

    $ 0 \leq \frac{ T(\ell \nu, \dots, \ell \nu)}{\ell \nu} - \lambda < \varepsilon. $

    Hence, $ 0 \leq T(\ell \nu, \dots, \ell \nu) < (\lambda + \varepsilon) \ell \nu $ and

    $ 0 \leq T(\ell \delta(\varepsilon), \dots, \ell \delta( \varepsilon)) < ( \lambda + \varepsilon) \ell \delta(\varepsilon). $

    Since $ \lambda \in [0, \tau) $, choose $ \varepsilon_0 > 0 $ such that $ \lambda + \varepsilon_0 < \tau $. Assume that

    $ \eta_0 = \min \Big\{ \delta(\varepsilon_0), \delta(\varepsilon_1) \Big\}. $

    Then, $ \eta \leq \eta_0 $ implies $ 0 \leq T(\ell \eta, \dots, \ell \eta) < (\lambda + \varepsilon_0) \ell \eta $. Since

    $ \lim\limits_{\nu \to 0^{+}} \frac{ \Omega_i(\nu, \nu, \nu, \nu, \nu)}{\nu^{\gamma_i}} = p_i, $

    there exists $ \eta_1 > 0 $ such that $ \nu \in (0, \eta_1] $ implies

    $ Ωi(ν,,ν)<(pi+ε0)(ν)γi $ (3.8)

    for $ i = 1, \dots, k_0 $. Let $ \eta = \min \{\eta_0, \frac{\eta_1}{ 2}, \frac{1}{2} \} $ and

    $ E = \Big\{ u \in \bar{\mathcal{B}} : \|u\|_{*}\leq \eta \Big\}. $

    Define $ \alpha: \bar{\mathcal{B}}^2 \to \mathbb{R} $ by

    $ \alpha (u,v) = {1u=v,0uv. $

    Assume that $ u, v \in \bar{\mathcal{B}} $ be given. If $ \alpha(u, v) \geq 1 $, then for every $ t \in \bar{J} $, we have:

    $ |Θu(t)|t0|Gq(t,s)|w(s,u(s),u(s),Dβqu(s),s0f(r)u(r)dr,φ(u(s)))dqsIαq|w(t,u(t),u(t),Dβqu(t),t0f(r)u(r)dr,φ(u(t)))|+A1(t)Iα1q|w(1,u(1),u(1),Dβqu(1),10f(r)u(r)dr,φ(u(1)))|+A2(t)Iαq|w(a,u(a),u(a),Dβqu(a),a0f(r)u(r)dr,φ(u(a)))|+A3(t)Iα+1q|w(b,u(b),u(b),Dβqu(b),b0f(r)u(r)dr,φ(u(b)))|Iαq(h(t)T(u(t),u(t),Dβqu(t),t0f(r)u(r)dr,φ(u(t))))+A1(t)Iα1q(h(1)T(u(1),u(1),Dβqu(1),10f(r)u(r)dr,φ(u(1))))+A2(t)Iαq(h(a)T(u(a),u(a),Dβqu(a),a0f(r)u(r)dr,φ(u(a))))+A3(t)Iα+1q(h(b)T(u(b),u(b),Dβqu(b),b0f(r)u(r)dr,φ(u(b))))Iαq(h(t)T(|u(t)|,|u(t)|,|Dβqu(t)|,t0|f(r)||u(r)|dr,|φ(u(t))|))+A1(t)Iα1q(h(1)T(|u(1)|,|u(1)|,|Dβqu(1)|,10|f(r)||u(r)|dr,|φ(u(1))|))+A2(t)Iαq(h(a)T(|u(a)|,|u(a)|,|Dβqu(a)|,a0|f(r)||u(r)|dr,|φ(u(a))|))+A3(t)Iα+1q(h(b)T(|u(b)|,|u(b)|,|Dβqu(b)|,b0|f(r)||u(r)|dr,|φ(u(b))|))Iαq(h(t)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t)))+A1(t)Iα1q(h(1)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t)))+A2(t)Iαq(h(a)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t)))+A3(t)Iα+1q(h(b)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t)))T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t))Iαqh(t)+A1(t)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t))Iα1qh(1)+A2(t)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t))Iαqh(a)+A3(t)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t))Iα+1qh(b)T(u(t),u(t),u(t),u(t),u(t))ˆh1×[A0+A1(t)+A2(t)+A3(t)]T(r,r,r,r,r)ˆh1[A0+A1(t)+A2(t)+A3(t)]r(λ+ε)ˆh1[A0+A1(t)+A2(t)+A3(t)]=η((λ+ε)ˆh1[A0+A1(t)+A2(t)+A3(t)]). $

    Therefore,

    $ Θuη((λ+ε)ˆh1[A0+A1(t)+A2(t)+A3(t)])η. $

    Also,

    $ |Θu(t)||Iα1qw(t,u(t),u(t),Dβqu(t),t0f(r)u(r)dr,φ(u(t)))+bμ(a,b)Iα1qw(1,u(1),u(1),Dβqu(1),10f(r)u(r)dr,φ(u(1)))+bμ(a,b)Iαqw(a,u(a),u(a),Dβqu(a),a0f(r)u(r)dr,φ(u(a)))+1μ(a,b)Iα+1qw(b,u(b),u(b),Dβqu(b),b0f(r)u(r)dr,φ(u(b)))|Iα1q|w(t,u(t),u(t),Dβqu(t),t0f(r)u(r)dr,φ(u(t)))|+bμ(a,b)Iα1q|w(1,u(1),u(1),Dβqu(1),10f(r)u(r)dr,φ(u(1)))|+bμ(a,b)Iαq|w(a,u(a),u(a),Dβqu(a),a0f(r)u(r)dr,φ(u(a)))|+1μ(a,b)Iα+1q|w(b,u(b),u(b),Dβqu(b),b0f(r)u(r)dr,φ(u(b)))|Iα1q(h(t)T(u(t),u(t),Dβqu(t),t0f(r)u(r)dr,φ(u(t))))+bμ(a,b)Iα1q(h(1)T(u(1),u(1),Dβqu(1),10f(r)u(r)dr,φ(u(1))))+bμ(a,b)Iαq(h(a)T(u(a),u(a),Dβqu(a),a0f(r)u(r)dr,φ(u(a))))+1μ(a,b)Iα+1q(h(b)T(u(b),u(b),Dβqu(b),b0f(r)u(r)dr,φ(u(b))))Iα1q(h(t)T(u(t),u(t),Dβqu(t),t0f(r)u(r)dr,φ(u(t))))+bμ(a,b)Iα1q(h(1)T(u(1),u(1),Dβqu(1),10f(r)u(r)dr,φ(u(1))))+bμ(a,b)Iαq(h(a)T(u(a),u(a),Dβqu(a),a0f(r)u(r)dr,φ(u(a))))+1μ(a,b)Iα+1q(h(b)T(u(b),u(b),Dβqu(b),b0f(r)u(r)dr,φ(u(b))))Iα1q(h(t)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t)))+bμ(a,b)Iα1q(h(1)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t)))+bμ(a,b)Iαq(h(a)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t)))+1μ(a,b)Iα+1q(h(b)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t)))T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t))Iα1q(h(t))+bμ(a,b)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t))Iα1q(h(1))+bμ(a,b)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t))Iαq(h(a))+1μ(a,b)T(u(t),u(t),u(t)Γq(2β),mu(t),c1u(t)+c2u(t))Iα+1q(h(b))T(u,,u)ˆh1×[1Γq(α1)+bμ(a,b)Γq(α1)+bμ(a,b)Γq(α)+1μ(a,b)Γq(α+1)]T(r,,r)ˆh1×[1Γq(α1)+bμ(a,b)Γq(α1)+bμ(a,b)Γq(α)+1μ(a,b)Γq(α+1)](r)(λ+ε0)ˆh1×[1Γq(α1)+bμ(a,b)Γq(α1)+bμ(a,b)Γq(α)+1μ(a,b)Γq(α+1)]. $

    Indeed,

    $ |Θu(t)|(r)(λ+ε0)ˆh1×[1Γq(α1)+bμ(a,b)Γq(α1)+bμ(a,b)Γq(α)+1μ(a,b)Γq(α+1)]r. $

    Hence, $ \|\Theta_u\|_{*} \leq \eta $ and so $ \Theta_u \in E $. Using a similar proof, we can show that $ \Theta_v \in E $. This implies $ \alpha(\Theta_u, \Theta_v) \geq 1 $ and so $ \Theta_u $ is $ \alpha $-admissible. It is obvious that, $ E \neq \emptyset $. Choose $ u_0 \in E $. Hence, $ \Theta_{u_0} \in E $, and so $ \alpha(u_0, \Theta_{u_0}) \geq 1 $. Let $ u, v \in E $. Then,

    $ \xi \leq \|u\|_{*} + \| v\|_{*} \leq 2 \eta \leq \eta_1, $

    where $ \xi = \|u-v\|_{*} $. Also using (3.5), we have

    $ \| \Theta_{u} - \Theta_{v} \|_{*} \leq M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 M_i(\ell \xi, \dots, \ell \xi). $

    Now, by using (3.8), we conclude that

    $ ΘuΘvMα,a,bk0i=1ˆμi1(pi+ε1)(ξ)γiMα,a,bk0i=1ˆμi1(pi+ε1)γiξγiMα,a,b[k0i=1ˆμi1(pi+ε1)γi]ξγ, $

    where $ \gamma = \min \{\gamma_1, \dots, \gamma_{k_0} \} $. We take:

    $ \eta = M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 p_i \ell^{ \gamma_i}. $

    Note that, $ \eta \in [0, 1) $. Define the map $ \mathtt{ψ} : [0, \infty) \to \mathbb{R}^{+} $ by

    $ \mathtt{ψ}(t) = {ηtγt[0,1),ηtt[1,). $

    Then, $ \mathtt{ψ} $ is nondecreasing and

    $ \sum\limits_{i = 1}^{\infty} \mathtt{ψ}^{i}(t) = \eta t^{\gamma}+ \eta^{2} t^{2 \gamma}+ \dots \leq \sum\limits_{i = 1}^{\infty} \eta^i t^{\gamma} = \frac{\tau}{ 1- \eta} t^{\gamma} < \infty, $

    for $ 0\leq t < 1 $. Also, we obtain

    $ \sum\limits_{i = 1}^{\infty} \mathtt{ψ}^{i}(t) = \frac{\eta}{1- \eta} t < \infty, $

    for $ t \in [1, \infty) $. Thus, $ \sum_{i = 1}^{\infty} \mathtt{ψ}^{i}(t) $ is a convergent series for all $ t \geq 0 $ and so $ \mathtt{ψ} \in \Psi $. Also, we have

    $ \alpha ( u, v) \| \Theta_u - \Theta_v\|_{*} \leq \phi (\xi). $

    If $ u \notin E $ or $ v \notin E $, then the last inequality holds obviously. This shows that

    $ \alpha( u, v) d( \Theta_u, \Theta_v) \leq \phi (d( u, v)), $

    for all $ u, v \in \bar{\mathcal{B}} $. Now, Lemma 2.6 implies that $ \Theta $ has a fixed point that is the solution for problem (1.1).

    The following illustrative example is given to support the validity of our main results. A computational method is provided here to test the proposed problem (1.1). Linear motion is commonly basic among all other motions. From the 1st law of Newton's motion, objects that are not experiencing any net force will continue to move in a straight line with a constant velocity until they are subjected to a net force.

    Example 4.1. We consider a constrained motion of a particle along a straight line restrained by two linear springs with equal spring constant (stiffness coefficient) under external force and fractional damping along the $ t $-axis (Figure 1).

    Figure 1.  A particle along a straight line restrained by two linear springs with equal spring constant.

    We consider the pointwise defined equation:

    $ 100θ(t)cD2.5qu(t)+p(t)u(t)=p(t)(|u(t)|+|D12qu(t)|+|t0u(r)rdr|+|sin(u(t))|), $ (4.1)

    where

    $ p(t) = \frac{1}{8} \left( 2-2 L - \eta^2 L - \eta^2 L \cos t \right), $

    $ \eta $ is constant and $ L $ is the unstretched length of the spring. We change Eq $(4.1)$ into a form of the problem $(1.1)$ as follows:

    $ D52qu(t)=1100θ(t)(|u(t)|+|u(t)|+|D12qu(t)|+|t0u(r)rdr|+|sin(u(t))|) $ (4.2)

    with boundary conditions:

    $ \int_0^{\frac{1}{3}} u({r}) \, \mathrm{d}r = 0,\; \; \; \; u'(1) = u(\frac{1}{4}),\; \; \; \; u''(0) = 0. $

    Also

    $ \theta(t) = {0tˉJQ,1ttˉJQc. $

    Take $ \alpha = \frac{5}{2}\geq 2 $, $ \beta = \frac{1}{2}\in J $, $ a = \frac{1}{4}\in J $, $ b = \frac{1}{3} \in J $, $ k_0 = 1 $, $ \gamma_1 = 1 $, $ \mu_1 (t) = h(t) = \frac{1}{\theta (t) } $, $ c_1 = \frac{1}{3} $, $ c_2 = \frac{2}{3} $, $ f(\xi) = \frac{u(\xi)}{\sqrt{\xi} } $, $ \varphi(x) = \sin(x) $ and

    $ T ( u_1, \dots , u_5) = \Omega_1( u_1, \dots, u_5) = \frac{1}{ 500} \Big( | u_1| + \dots + |u_5| \Big). $

    Then, we get:

    $ |\varphi(u) - \varphi(v)| = | \sin(u) - \sin(v)| \leq |u- v| = c_1 |u - v| + c_2 |u' - v'|, $
    $ |w( t, u_1 , \dots, u_5) - w(t, v_1, \dots, v_5)| \leq \mu_1(t) \Big[ | u_1 - v_1| + \dots + |u_5 - v_5|\Big], $
    $ p_1 = \lim\limits_{\nu \to 0^{+}} \frac{ \Omega_1(\nu, \nu, \nu, \nu, \nu)}{\nu^{\gamma_1}} = \lim\limits_{\nu \to 0^{+}} \frac{5 |\nu|}{500 \nu} = 0.01, $

    $ \mu_1, h \in L^1 $, $ m = \|h\|_1 = 2 $,

    $ \| \hat{h}\|_{\bar{J}} = \| \hat{\mu}_1\|_{ \bar{J}} = \int_0^1 \frac{1}{ \theta (s) }( 1 - s)^{\alpha -2} \, \mathrm{d}s = \int_0^1 \frac{( 1 -s)^{\frac{1}{2} } }{ 1-s} \, \mathrm{d}s = 2, $
    $ |w(t, u_1, \dots, u_5)| \leq h(t) T(u_1, \dots, u_5), $

    $ T, \Omega_1 $ are non-negative and non-decreasing with respect to $ u_1, \dots, u_5 $,

    $ {\mu(a, b) } = b (1-a ) + \frac{b^{2}}{2} = \frac{11}{36}, $
    $ \ell = \max \bigg\{ 1, \frac{1}{\Gamma_q(2- \beta)}, m, c_1 +c_2 \bigg\} = \max \bigg\{ 1, \frac{1}{\Gamma_q(\frac{3}{2})}, 2, 1 \bigg\} = 2, $
    $ Mα,a,b=max{1Γq(α)+b(2a)μ(a,b)μ(a,b)Γq(α1)+μ(a,b)+abμ(a,b)Γq(α)+μ(a,b)(1a)+1μ(a,b)Γq(α+1),1Γq(α1)+bμ(a,b)Γq(α1)+bμ(a,b)Γq(α)+1μ(a,b)Γq(α+1)}=max{2511Γq(52)+1011Γq(32)+17744Γq(72),2311Γq(32)+1211Γq(52)+3611Γq(72)}. $

    We put:

    $ Λ1=2511Γq(52)+1011Γq(32)+17744Γq(72),Λ2=2311Γq(32)+1211Γq(52)+3611Γq(72). $ (4.3)

    Table 1 shows the values of $ \Lambda_1 $ and $ \Lambda_2 $ for $ q = \left\{\frac{1}{8}, \frac{1}{2}, \frac{4}{5}, \frac{8}{9} \right\} $. We can see that

    $ M_{\alpha, a, b} = 33.170478, 21.551855, 16.363257, 15.234356, $
    Table 1.  The results of $ \Lambda_1, \Lambda_2 $ in Eq (4.3) in Example 4.1 for $ q \in \left\{ \frac{1}{8}, \frac{1}{2}, \frac{4}{5}, \frac{8}{9} \right\} $.
    $ q =\frac{1}{8} $ $ q =\frac{1}{2} $ $ q =\frac{4}{5} $ $ q =\frac{8}{9} $
    $ n $ $ \Lambda_1 $ $ \Lambda_2 $ $ \Lambda_1 $ $ \Lambda_2 $ $ \Lambda_1 $ $ \Lambda_2 $ $ \Lambda_1 $ $ \Lambda_2 $
    $ 1 $ $ 6.4269 $ $ 33.0986 $ $ 4.1726 $ $ 17.6569 $ $ 1.6844 $ $ 4.9657 $ $ 0.9465 $ $ 2.2669 $
    $ 2 $ $ 6.4386 $ $ 33.1615 $ $ 4.5536 $ $ 19.5549 $ $ 2.1098 $ $ 6.6125 $ $ 1.1971 $ $ 3.0219 $
    $ 3 $ $ 6.4401 $ $ 33.1694 $ $ 4.7492 $ $ 20.5409 $ $ 2.4808 $ $ 8.1416 $ $ 1.4377 $ $ 3.8100 $
    $ 4 $ 6.4403 $ 33.1703 $ $ 4.8483 $ $ 21.0433 $ $ 2.7983 $ $ 9.5087 $ $ 1.6670 $ $ 4.6128 $
    $ 5 $ $ 6.4403 $ 33.1705 $ 4.8982 $ $ 21.2968 $ $ 3.0660 $ $ 10.6983 $ $ 1.8838 $ $ 5.4129 $
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ 16 $ $ 6.4403 $ $ 33.1705 $ $ 4.9482 $ $ 21.5517 $ $ 4.1529 $ $ 15.8174 $ $ 3.4095 $ $ 11.8900 $
    $ 17 $ $ 6.4403 $ $ 33.1705 $ $ 4.9482 $ $ 21.5518 $ $ 4.1750 $ $ 15.9256 $ $ 3.4840 $ $ 12.2356 $
    $ 18 $ $ 6.4403 $ $ 33.1705 $ 4.9483 $ 21.5518 $ $ 4.1928 $ $ 16.0126 $ $ 3.5509 $ $ 12.5482 $
    $ 19 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5518 $ $ 4.2070 $ $ 16.0823 $ $ 3.6110 $ $ 12.8303 $
    $ 20 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ 21.5519 $ 4.2184 $ $ 16.1383 $ $ 3.6649 $ $ 13.0844 $
    $ 21 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2275 $ $ 16.1831 $ $ 3.7132 $ $ 13.3130 $
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ 50 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2640 $ $ 16.3630 $ $ 4.0987 $ $ 15.1686 $
    $ 51 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2640 $ $ 16.3630 $ $ 4.1002 $ $ 15.1759 $
    $ 52 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2640 $ $ 16.3631 $ $ 4.1015 $ $ 15.1824 $
    $ 53 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2640 $ $ 16.3631 $ $ 4.1027 $ $ 15.1882 $
    $ 54 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ 4.2641 $ 16.3631 $ $ 4.1037 $ $ 15.1933 $
    $ 55 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ 16.3632 $ 4.1047 $ $ 15.1979 $
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ 91 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ $ 4.1120 $ $ 15.2339 $
    $ 92 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ 4.1121 $ 15.2339 $
    $ 93 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ $ 4.1121 $ $ 15.2340 $
    $ 94 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ $ 4.1121 $ $ 15.2340 $
    $ 95 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ $ 4.1121 $ $ 15.2341 $
    $ 96 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ $ 4.1121 $ $ 15.2341 $
    $ 97 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ $ 4.1121 $ $ 15.2341 $
    $ 98 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ $ 4.1121 $ $ 15.2341 $
    $ 99 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ $ 4.1121 $ $ 15.2342 $
    $ 100 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ $ 4.1121 $ $ 15.2342 $
    $ 101 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ $ 4.1121 $ $ 15.2342 $
    $ 102 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ $ 4.1121 $ $ 15.2342 $
    $ 103 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ $ 4.1121 $ 15.2343
    $ 104 $ $ 6.4403 $ $ 33.1705 $ $ 4.9483 $ $ 21.5519 $ $ 4.2641 $ $ 16.3633 $ $ 4.1121 $ $ 15.2343 $

     | Show Table
    DownLoad: CSV

    for $ q = $ $ \frac{1}{8} $, $ \frac{1}{2} $, $ \frac{4}{5} $ and $ \frac{8}{9} $, respectively. Thus, by using the numerical results, we obtain:

    $ \tau = \left( \ell \|\hat{h}\|_1 M_{\alpha, a, b} \right)^{-1} \geq \frac{1}{4 \times 33.1704} = 0.0075, $

    whenever $ q = \frac{1}{8} $,

    $ \tau = \left( \ell \|\hat{h}\|_1 M_{\alpha, a, b} \right)^{-1} \geq \frac{1}{4 \times 21.5518} = 0.0116, $

    whenever $ q = \frac{1}{2} $,

    $ \tau = \left( \ell \|\hat{h}\|_1 M_{\alpha, a, b} \right)^{-1} \geq \frac{1}{4 \times 16.3632} = 0.0153, $

    whenever $ q = \frac{4}{5} $ and

    $ \tau = \left( \ell \|\hat{h}\|_1 M_{\alpha, a, b} \right)^{-1} \geq \frac{1}{4 \times 15.2343} = 0.0164, $

    whenever $ q = \frac{8}{9} $. Also, we can check that

    $ \lim\limits_{\nu \to 0^{+}} \frac{ T(\nu, \nu, \nu, \nu, \nu)}{\nu} = 0.01 \in [0, \tau), $

    and for all $ q \in J $

    $ M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \| \hat{\mu}_i\|_{ \bar{J}} p_i \ell^{\gamma_i} = M_{\alpha, a, b} \times 2 \times 0.01 \times 2^1 = 0.04 M_{\alpha, a, b} < 1. $

    Table 2 shows numerical results for different values of $ q\in J $. Figure 2 shows the curve of these results. Now, according to the obtained results, Theorem 3.3 implies that problem $(4.2)$ has a solution.

    Table 2.  The results of $ M_{\alpha, a, b} $ and $ (*) = M_{\alpha, a, b} \sum_{i = 1}^{k_0} \| \hat{\mu}_i\|_{ \bar{J}} p_i \ell^{\gamma_i} $ in Example 4.1 for $ q \in \left\{ \frac{1}{8}, \frac{1}{2}, \frac{4}{5}, \frac{8}{9} \right\} $.
    $ q =\frac{1}{8} $ $ q =\frac{1}{2} $ $ q =\frac{4}{5} $ $ q =\frac{8}{9} $
    $ n $ $ M_{\alpha, a, b} $ $ (*) $ $ M_{\alpha, a, b} $ $ (*) $ $ M_{\alpha, a, b} $ $ (*) $ $ M_{\alpha, a, b} $ $ (*) $
    $ 1 $ $ 33.0986 $ $ 1.3239 $ $ 17.6569 $ $ 0.7063 $ $ 4.9657 $ $ 0.1986 $ $ 2.2669 $ $ 0.0907 $
    $ 2 $ $ 33.1615 $ $ 1.3265 $ $ 19.5549 $ $ 0.7822 $ $ 6.6125 $ $ 0.2645 $ $ 3.0219 $ $ 0.1209 $
    $ 3 $ $ 33.1694 $ $ 1.3268 $ $ 20.5409 $ $ 0.8216 $ $ 8.1416 $ $ 0.3257 $ $ 3.8100 $ $ 0.1524 $
    $ 4 $ $ 33.1703 $ $ 1.3268 $ $ 21.0433 $ $ 0.8417 $ $ 9.5087 $ $ 0.3803 $ $ 4.6128 $ $ 0.1845 $
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ 12 $ $ 33.1705 $ $ 1.3268 $ $ 21.5499 $ $ 0.8620 $ $ 15.0506 $ $ 0.6020 $ $ 10.1272 $ $ 0.4051 $
    $ 13 $ $ 33.1705 $ $ 1.3268 $ $ 21.5509 $ $ 0.8620 $ $ 15.3077 $ $ 0.6123 $ $ 10.6296 $ $ 0.4252 $
    $ 14 $ $ 33.1705 $ $ 1.3268 $ $ 21.5514 $ $ 0.8621 $ $ 15.5153 $ $ 0.6206 $ $ 11.0894 $ $ 0.4436 $
    $ 15 $ $ 33.1705 $ $ 1.3268 $ $ 21.5516 $ $ 0.8621 $ $ 15.6827 $ $ 0.6273 $ $ 11.5088 $ $ 0.4604 $
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ 73 $ $ 33.1705 $ $ 1.3268 $ $ 21.5519 $ $ 0.8621 $ $ 16.3633 $ $ 0.6545 $ $ 15.2300 $ $ 0.6092 $
    $ 74 $ $ 33.1705 $ $ 1.3268 $ $ 21.5519 $ $ 0.8621 $ $ 16.3633 $ $ 0.6545 $ $ 15.2305 $ $ 0.6092 $
    $ 75 $ $ 33.1705 $ $ 1.3268 $ $ 21.5519 $ $ 0.8621 $ $ 16.3633 $ $ 0.6545 $ $ 15.2309 $ $ 0.6092 $
    $ 76 $ $ 33.1705 $ $ 1.3268 $ $ 21.5519 $ $ 0.8621 $ $ 16.3633 $ $ 0.6545 $ $ 15.2313 $ $ 0.6093 $
    $ 77 $ $ 33.1705 $ $ 1.3268 $ $ 21.5519 $ $ 0.8621 $ $ 16.3633 $ $ 0.6545 $ $ 15.2316 $ $ 0.6093 $
    $ 78 $ $ 33.1705 $ $ 1.3268 $ $ 21.5519 $ $ 0.8621 $ $ 16.3633 $ $ 0.6545 $ $ 15.2319 $ $ 0.6093 $
    $ 79 $ $ 33.1705 $ $ 1.3268 $ $ 21.5519 $ $ 0.8621 $ $ 16.3633 $ $ 0.6545 $ $ 15.2322 $ $ 0.6093 $
    $ 80 $ $ 33.1705 $ $ 1.3268 $ $ 21.5519 $ $ 0.8621 $ $ 16.3633 $ $ 0.6545 $ $ 15.2325 $ $ 0.6093 $

     | Show Table
    DownLoad: CSV
    Figure 2.  Numerical results of $ M_{\alpha, a, b} \sum_{i = 1}^{k_0} \| \hat{\mu}_i\|_{ \bar{J}} p_i \ell^{\gamma_i} $ where $ q = \frac{1}{8} $, $ \frac{1}{2} $, $ \frac{4}{5} $ and $ \frac{8}{9} $ in Example 4.1.

    The multi-singular pointwise defined fractional $ q $–integro-differential equation has been successfully investigated in this work. The investigation of this particular equation provides us with a powerful tool in modeling most scientific phenomena without the need to remove most parameters which have an essential role in the physical interpretation of the studied phenomena. Multi-singular pointwise defined fractional $ q $–integro-differential equation (1.1) has been studied on a time scale under some boundary conditions. An application that describes the motion of a particle in the plane has been provided in this work to support our results' validity and applicability in the fields of physics and engineering.

    The first author was supported by Bu-Ali Sina University.

    The authors declare that they have no competing interests.

    [1] New Eng J Med, 369 (2013), 840-851.
    [2] Proceedings of the $52^{nd}$ IEEE Conference on Decision and Control, Florence, Italy, December 10-13 (2013), 3373-3378.
    [3] Springer-Verlag London, Ltd., London, 1999.
    [4] American Mathematical Society, Providence, RI, 2007.
    [5] Math Biosci Eng, 7 (2010), 739-763.
    [6] J Exp Med, 174 (1991), 1209-1220.
    [7] Comput. Biol. Med., 38 (2008), 339-347.
    [8] 9th International Symposium on Dynamics and Control of Process Systems, 9 (2010), 272-277.
    [9] Springer-Verlag, New York, 1990.
    [10] J Theor Bio, 242 (2006), 220-236.
    [11] Wiley-Interscience, Hoboken, NJ, 2006.
    [12] Oxford University Press, Oxford, 2008.
    [13] Birkhäuser Boston, Inc, Boston, MA, 1992.
  • This article has been cited by:

    1. Baojian Hong, Jinghan Wang, Exact Solutions for the Generalized Atangana-Baleanu-Riemann Fractional (3 + 1)-Dimensional Kadomtsev–Petviashvili Equation, 2022, 15, 2073-8994, 3, 10.3390/sym15010003
    2. Xiao-Guang Yue, Mohammad Esmael Samei, Azam Fathipour, Mohammed K. A. Kaabar, Artion Kashuri, Using Krasnoselskii's theorem to investigate the Cauchy and neutral fractionalq-integro-differential equationvianumerical technique, 2022, 11, 2192-8029, 186, 10.1515/nleng-2022-0023
    3. Baojian Hong, Assorted exact explicit solutions for the generalized Atangana’s fractional BBM–Burgers equation with the dissipative term, 2022, 10, 2296-424X, 10.3389/fphy.2022.1071200
    4. Dipankar Kumar, Ahmet Yildirim, Mohammed K. A. Kaabar, Hadi Rezazadeh, Mohammad Esmael Samei, Exploration of some novel solutions to a coupled Schrödinger–KdV equations in the interactions of capillary-gravity waves, 2022, 2008-1359, 10.1007/s40096-022-00501-0
    5. Xiao-Guang Yue, Zeying Zhang, Arzu Akbulut, Mohammed K.A. Kaabar, Melike Kaplan, A new computational approach to the fractional-order Liouville equation arising from mechanics of water waves and meteorological forecasts, 2022, 24680133, 10.1016/j.joes.2022.04.001
    6. Mahammad Khuddush, K. Rajendra Prasad, Existence, uniqueness and stability analysis of a tempered fractional order thermistor boundary value problems, 2023, 31, 0971-3611, 85, 10.1007/s41478-022-00438-6
    7. Jufang Wang, Si Wang, Changlong Yu, Unique iterative solution for high-order nonlinear fractional q-difference equation based on $\psi -(h,r)$-concave operators, 2023, 2023, 1687-2770, 10.1186/s13661-023-01718-1
    8. Baojian Hong, Jiaxin Zhou, Xingchen Zhu, Yiting Wang, Yusuf Gurefe, Some Novel Optical Solutions for the Generalized M -Fractional Coupled NLS System, 2023, 2023, 2314-8888, 1, 10.1155/2023/8283092
    9. Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed, On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type, 2023, 8, 2473-6988, 18206, 10.3934/math.2023925
    10. Jufang Wang, Jinye Zhang, Changlong Yu, Hyers–Ulam stability and existence of solutions for high-order fractional q-difference equations on infinite intervals, 2023, 69, 1598-5865, 4665, 10.1007/s12190-023-01947-8
    11. Khansa Hina Khalid, Akbar Zada, Ioan-Lucian Popa, Mohammad Esmael Samei, Existence and stability of a q-Caputo fractional jerk differential equation having anti-periodic boundary conditions, 2024, 2024, 1687-2770, 10.1186/s13661-024-01834-6
    12. Baojian Hong, Jinghan Wang, Chen Li, Analytical solutions to a class of fractional coupled nonlinear Schrödinger equations via Laplace-HPM technique, 2023, 8, 2473-6988, 15670, 10.3934/math.2023800
    13. Manisha Krishna Naik, Chandrali Baishya, Mohammed K.A. Kaabar, Exploring the relationship dynamics between farmers and mediators through the lens of the Caputo fractional derivatives, 2023, 12, 26667207, 100286, 10.1016/j.rico.2023.100286
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2516) PDF downloads(471) Cited by(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog