A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis

  • Received: 01 November 2013 Accepted: 29 June 2018 Published: 01 September 2014
  • MSC : Primary: 92C35, 92C45, 92C50, 92C60; Secondary: 92B05, 92C05.

  • A study of the process of pharmacokinetics-pharmacodynamics (PKPD) of antibiotics and their interaction with bacteria during peritoneal dialysis associated peritonitis (PDAP) is presented. We propose a mathematical model describing the evolution of bacteria population in the presence of antibiotics for different peritoneal dialysis regimens. Using the model along with experimental data, clinical parameters, and physiological values, we compute variations in PD fluid distributions, drug concentrations, and number of bacteria in peritoneal and extra-peritoneal cavities. Scheduling algorithms for the PD exchanges that minimize bacteria count are investigated.

    Citation: Colette Calmelet, John Hotchkiss, Philip Crooke. A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis[J]. Mathematical Biosciences and Engineering, 2014, 11(6): 1449-1464. doi: 10.3934/mbe.2014.11.1449

    Related Papers:

    [1] Sangita Swapnasrita, Joost C de Vries, Carl M. Öberg, Aurélie MF Carlier, Karin GF Gerritsen . Computational modeling of peritoneal dialysis: An overview. Mathematical Biosciences and Engineering, 2025, 22(2): 431-476. doi: 10.3934/mbe.2025017
    [2] Mudassar Imran, Hal L. Smith . A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences and Engineering, 2014, 11(3): 547-571. doi: 10.3934/mbe.2014.11.547
    [3] Michele L. Joyner, Cammey C. Manning, Brandi N. Canter . Modeling the effects of introducing a new antibiotic in a hospital setting: A case study. Mathematical Biosciences and Engineering, 2012, 9(3): 601-625. doi: 10.3934/mbe.2012.9.601
    [4] Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton . Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247
    [5] Alex Viguerie, Sangita Swapnasrita, Alessandro Veneziani, Aurélie Carlier . A multi-domain shear-stress dependent diffusive model of cell transport-aided dialysis: analysis and simulation. Mathematical Biosciences and Engineering, 2021, 18(6): 8188-8200. doi: 10.3934/mbe.2021406
    [6] Urszula Ledzewicz, Heinz Schättler . The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences and Engineering, 2005, 2(3): 561-578. doi: 10.3934/mbe.2005.2.561
    [7] Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354
    [8] Qimin Huang, Mary Ann Horn, Shigui Ruan . Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination. Mathematical Biosciences and Engineering, 2019, 16(5): 3641-3673. doi: 10.3934/mbe.2019181
    [9] Xiaoxiao Yan, Zhong Zhao, Yuanxian Hui, Jingen Yang . Dynamic analysis of a bacterial resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(12): 20422-20436. doi: 10.3934/mbe.2023903
    [10] Michele L. Joyner, Cammey C. Manning, Whitney Forbes, Michelle Maiden, Ariel N. Nikas . A physiologically-based pharmacokinetic model for the antibiotic ertapenem. Mathematical Biosciences and Engineering, 2016, 13(1): 119-133. doi: 10.3934/mbe.2016.13.119
  • A study of the process of pharmacokinetics-pharmacodynamics (PKPD) of antibiotics and their interaction with bacteria during peritoneal dialysis associated peritonitis (PDAP) is presented. We propose a mathematical model describing the evolution of bacteria population in the presence of antibiotics for different peritoneal dialysis regimens. Using the model along with experimental data, clinical parameters, and physiological values, we compute variations in PD fluid distributions, drug concentrations, and number of bacteria in peritoneal and extra-peritoneal cavities. Scheduling algorithms for the PD exchanges that minimize bacteria count are investigated.


    [1] Clin. Drug. Invest., 11 (1996), 229-239.
    [2] Clin. Infect. Dis., 15 (2002), 1212-1218.
    [3] Lippincott Williams & Wilkins, 2011.
    [4] Antimicrobial Agents Chemotherapy, 47 (2003), 3764-3767.
    [5] Adv. Exp. Med. Biol., 696 (2011), 401-410.
    [6] ASAIO Journal, (2004), 568-576.
    [7] Peritoneal Dialysis International, 22 (2002), 339-344.
    [8] in The Textbook of Peritoneal Dialysis, Kluwer Academic Publishers, 1994, 135-160.
    [9] Peritoneal Dialysis International, 11 (1991), 252-260.
    [10] Pharmacol. Rev., 65 (2013), 1053-1090.
    [11] Antimicrob. Agents & Chemo., 48 (2004), 3670-3676.
    [12] Lippincott Williams & Wilkins, 2006.
    [13] J. Pharm. Sci., 75 (1986), 1063-1067.
  • This article has been cited by:

    1. Jermiah J. Joseph, Timothy J. Hunter, Clara Sun, Daniel Goldman, Sanjay R. Kharche, Christopher W. McIntyre, Using a Human Circulation Mathematical Model to Simulate the Effects of Hemodialysis and Therapeutic Hypothermia, 2021, 12, 2076-3417, 307, 10.3390/app12010307
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2737) PDF downloads(586) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog