Citation: Dominik Wodarz. Computational modeling approaches to studying the dynamics of oncolytic viruses[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 939-957. doi: 10.3934/mbe.2013.10.939
[1] | Baba Issa Camara, Houda Mokrani, Evans K. Afenya . Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences and Engineering, 2013, 10(3): 565-578. doi: 10.3934/mbe.2013.10.565 |
[2] | Nada Almuallem, Dumitru Trucu, Raluca Eftimie . Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: A mathematical approach. Mathematical Biosciences and Engineering, 2021, 18(1): 764-799. doi: 10.3934/mbe.2021041 |
[3] | Taeyong Lee, Adrianne L. Jenner, Peter S. Kim, Jeehyun Lee . Application of control theory in a delayed-infection and immune-evading oncolytic virotherapy. Mathematical Biosciences and Engineering, 2020, 17(3): 2361-2383. doi: 10.3934/mbe.2020126 |
[4] | Zizi Wang, Zhiming Guo, Hal Smith . A mathematical model of oncolytic virotherapy with time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 1836-1860. doi: 10.3934/mbe.2019089 |
[5] | Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu . Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix. Mathematical Biosciences and Engineering, 2022, 19(6): 6157-6185. doi: 10.3934/mbe.2022288 |
[6] | Prathibha Ambegoda, Hsiu-Chuan Wei, Sophia R-J Jang . The role of immune cells in resistance to oncolytic viral therapy. Mathematical Biosciences and Engineering, 2024, 21(5): 5900-5946. doi: 10.3934/mbe.2024261 |
[7] | Donggu Lee, Aurelio A. de los Reyes V, Yangjin Kim . Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network. Mathematical Biosciences and Engineering, 2024, 21(3): 3876-3909. doi: 10.3934/mbe.2024173 |
[8] | G. V. R. K. Vithanage, Hsiu-Chuan Wei, Sophia R-J Jang . Bistability in a model of tumor-immune system interactions with an oncolytic viral therapy. Mathematical Biosciences and Engineering, 2022, 19(2): 1559-1587. doi: 10.3934/mbe.2022072 |
[9] | Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang . Dynamic analysis of an age structure model for oncolytic virus therapy. Mathematical Biosciences and Engineering, 2023, 20(2): 3301-3323. doi: 10.3934/mbe.2023155 |
[10] | Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White . Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences and Engineering, 2018, 15(6): 1435-1463. doi: 10.3934/mbe.2018066 |
[1] | Curr. Cancer Drug Targets, 7 (2007), 127-131. |
[2] | Cancer Cell, 4 (2003), 7-11. |
[3] | Curr. Cancer Drug Targets, 7 (2007), 133-139. |
[4] | J. Gene. Med., 7 (2005), 1380-1389. |
[5] | Curr. Gene Ther., 5 (2005), 595-605. |
[6] | Mol. Ther., 15 (2007), 651-659. |
[7] | Mol. Med. Today, 2 (1996), 519-527. |
[8] | Cancer Biol. Ther., 2 (2003), S157-60. |
[9] | Oncogene, 24 (2005), 7817-7819. |
[10] | Oncogene, 24 (2005), 7640-7655. |
[11] | Nat. Rev. Cancer, 5 (2005), 965-976. |
[12] | Future Oncol., 1 (2005), 247-258. |
[13] | Curr. Opin. Mol. Ther., 8 (2006), 314-321. |
[14] | Cancer Lett., (2007). |
[15] | Viruses, 2 (2010), 78-106. |
[16] | Rev. Med. Virol, 21 (2011), 227-239. |
[17] | Science, 252 (1991), 854-856. |
[18] | J. Natl. Cancer Inst., 98 (2006), 298-300. |
[19] | Cancer Gene. Ther., 18 (2011), 305-317. |
[20] | Cancer Res., 61 (2001), 3501-3507. |
[21] | Hum. Gene. Ther., 14 (2003), 153-159. |
[22] | J. Theor. Biol., 252 (2008), 109-122. |
[23] | Bull. Math. Biol., 72 (2010), 469-489. |
[24] | Math. Biosci., 199 (2006), 55-78. |
[25] | Cancer Gene Ther., 16 (2009), 873-882. |
[26] | Cancer Res., 66 (2006), 2314-2319. |
[27] | Biol. Direct, 1 (2006), pp. 30. |
[28] | J. Theor. Biol., 263 (2010), 530-543. |
[29] | Biol. Direct, 1 (2006), pp. 6. |
[30] | Cancer Res., 63 (2003), 1317-1324. |
[31] | Gene Therapy and Molecular Biology, 8 (2004), 137-146. |
[32] | J. R. Soc. Interface, 6 (2009), 179-186. |
[33] | PLoS ONE, 4 (2009), e4271. |
[34] | PLoS Comput. Biol., 7 (2011), e1001085. |
[35] | J. Theor. Biol., 245 (2007), 1-8. |
[36] | Clin. Cancer Res., 15 (2009), 2352-2360. |
[37] | Cancer Res., 69 (2009), 1205-1211. |
[38] | Integr. Biol. (Camb), 2 (2010), 41-45. |
[39] | Cancer Res., 60 (2000), 1009-1013. |
[40] | Neoplasia, 1 (1999), 162-169. |
[41] | Proc. Natl. Acad. Sci. U S A, 108 (2011), 18983-18988. |
[42] | PLoS Comput. Biol., 8 (2012), e1002547. |
[43] | Journal of Mathematical Biology, 32 (1994), 251-268. |
[44] | Proceedings of the Royal Society of London Series B-Biological Sciences, 246 (1991), 117-122. |
[45] | Ecology, 82 (2001), 2357-2369. |
[46] | 1991, Oxford, England: Oxford University Press. |
[47] | 2000: Oxford University Press. |
[48] | 2000, Oxford: Oxford University Press. |
1. | John Murray, Ruy Ribeiro, Special Issue “Mathematical Modeling of Viral Infections”, 2018, 10, 1999-4915, 303, 10.3390/v10060303 | |
2. | Joanna R. Wares, Joseph J. Crivelli, Chae-Ok Yun, Il-Kyu Choi, Jana L. Gevertz, Peter S. Kim, Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections, 2015, 12, 1551-0018, 1237, 10.3934/mbe.2015.12.1237 | |
3. | David R. Berg, Chetan P. Offord, Iris Kemler, Matthew K. Ennis, Lawrence Chang, George Paulik, Zeljko Bajzer, Claudia Neuhauser, David Dingli, Dominik Wodarz, In vitro and in silico multidimensional modeling of oncolytic tumor virotherapy dynamics, 2019, 15, 1553-7358, e1006773, 10.1371/journal.pcbi.1006773 | |
4. | R. Eftimie, C.K. Macnamara, Jonathan Dushoff, J.L. Bramson, D.J.D. Earn, A. Morozov, M. Ptashnyk, V. Volpert, Bifurcations and Chaotic Dynamics in a Tumour-Immune-Virus System, 2016, 11, 1760-6101, 65, 10.1051/mmnp/201611505 | |
5. | Peter S. Kim, Joseph J. Crivelli, Il-Kyu Choi, Chae-Ok Yun, Joanna R. Wares, Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics, 2015, 12, 1551-0018, 841, 10.3934/mbe.2015.12.841 | |
6. | Iris Kemler, Matthew K. Ennis, Claudia M. Neuhauser, David Dingli, In Vivo Imaging of Oncolytic Measles Virus Propagation with Single-Cell Resolution, 2019, 12, 23727705, 68, 10.1016/j.omto.2018.12.007 | |
7. | Joseph Malinzi, Amina Eladdadi, Precious Sibanda, Modelling the spatiotemporal dynamics of chemovirotherapy cancer treatment, 2017, 11, 1751-3758, 244, 10.1080/17513758.2017.1328079 | |
8. | Adil El Alami laaroussi, Mohamed El Hia, Mostafa Rachik, Rachid Ghazzali, Analysis of a Multiple Delays Model for Treatment of Cancer with Oncolytic Virotherapy, 2019, 2019, 1748-670X, 1, 10.1155/2019/1732815 | |
9. | Cicely K. Macnamara, Biomechanical modelling of cancer: Agent‐based force‐based models of solid tumours within the context of the tumour microenvironment, 2021, 1, 2689-9655, 10.1002/cso2.1018 | |
10. | Noma Susan Senekal, Khaphetsi Joseph Mahasa, Amina Eladdadi, Lisette de Pillis, Rachid Ouifki, Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model, 2021, 83, 0092-8240, 10.1007/s11538-021-00903-6 | |
11. | Robinson Tavoni, Paulo F. A. Mancera, Rubens F. Camargo, Stability analysis of a fractional virotherapy model for cancer treatment, 2022, 55, 2357-4100, 177, 10.15446/recolma.v55n2.102677 | |
12. | Iris Kemler, Bhargav Karamched, Claudia Neuhauser, David Dingli, Quantitative imaging and dynamics of tumor therapy with viruses, 2021, 288, 1742-464X, 6273, 10.1111/febs.16102 | |
13. | Joseph Malinzi, A mathematical model for oncolytic virus spread using the telegraph equation, 2021, 102, 10075704, 105944, 10.1016/j.cnsns.2021.105944 | |
14. | Tong Zhou, Jin Yang, Yuanshun Tan, Zijian Liu, Threshold dynamics of a stochastic tumor-immune model combined oncolytic virus and chimeric antigen receptor T cell therapies, 2025, 197, 09600779, 116418, 10.1016/j.chaos.2025.116418 |