Special Issues

A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties

  • The vascular endothelial growth factor (VEGF) is known as one of the main promoter of angiogenesis - the process of blood vessel formation. Angiogenesis has been recognized as a key stage for cancer development and metastasis. In this paper, we propose a structural model of the main molecular pathways involved in the endothelial cells response to VEGF stimuli. The model, built on qualitative information from knowledge databases, is composed of 38 ordinary differential equations with 78 parameters and focuses on the signalling driving endothelial cell proliferation, migration and resistance to apoptosis. Following a VEGF stimulus, the model predicts an increase of proliferation and migration capability, and a decrease in the apoptosis activity. Model simulations and sensitivity analysis highlight the emergence of robustness and redundancy properties of the pathway. If further calibrated and validated, this model could serve as tool to analyse and formulate new hypothesis on th e VEGF signalling cascade and its role in cancer development and treatment.

    Citation: Floriane Lignet, Vincent Calvez, Emmanuel Grenier, Benjamin Ribba. A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties[J]. Mathematical Biosciences and Engineering, 2013, 10(1): 167-184. doi: 10.3934/mbe.2013.10.167

    Related Papers:

    [1] Austin Baird, Laura Oelsner, Charles Fisher, Matt Witte, My Huynh . A multiscale computational model of angiogenesis after traumatic brain injury, investigating the role location plays in volumetric recovery. Mathematical Biosciences and Engineering, 2021, 18(4): 3227-3257. doi: 10.3934/mbe.2021161
    [2] Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521
    [3] Dehua Feng, Xi Chen, Xiaoyu Wang, Xuanqin Mou, Ling Bai, Shu Zhang, Zhiguo Zhou . Predicting effectiveness of anti-VEGF injection through self-supervised learning in OCT images. Mathematical Biosciences and Engineering, 2023, 20(2): 2439-2458. doi: 10.3934/mbe.2023114
    [4] Cristina De Ambrosi, Annalisa Barla, Lorenzo Tortolina, Nicoletta Castagnino, Raffaele Pesenti, Alessandro Verri, Alberto Ballestrero, Franco Patrone, Silvio Parodi . Parameter space exploration within dynamic simulations of signaling networks. Mathematical Biosciences and Engineering, 2013, 10(1): 103-120. doi: 10.3934/mbe.2013.10.103
    [5] Quoc T. Luu, Paul DuChateau . The relative biologic effectiveness versus linear energy transfer curve as an output-input relation for linear cellular systems. Mathematical Biosciences and Engineering, 2009, 6(3): 591-602. doi: 10.3934/mbe.2009.6.591
    [6] Jose E. Zamora Alvarado, Kara E. McCloskey, Ajay Gopinathan . Migration and proliferation drive the emergence of patterns in co-cultures of differentiating vascular progenitor cells. Mathematical Biosciences and Engineering, 2024, 21(8): 6731-6757. doi: 10.3934/mbe.2024295
    [7] Adélia Sequeira, Rafael F. Santos, Tomáš Bodnár . Blood coagulation dynamics: mathematical modeling and stability results. Mathematical Biosciences and Engineering, 2011, 8(2): 425-443. doi: 10.3934/mbe.2011.8.425
    [8] Rong Qiang, Wanbiao Ma, Ke Guo, Hongwu Du . The differential equation model of pathogenesis of Kawasaki disease with theoretical analysis. Mathematical Biosciences and Engineering, 2019, 16(5): 3488-3511. doi: 10.3934/mbe.2019175
    [9] Gheorghe Craciun, Matthew D. Johnston, Gábor Szederkényi, Elisa Tonello, János Tóth, Polly Y. Yu . Realizations of kinetic differential equations. Mathematical Biosciences and Engineering, 2020, 17(1): 862-892. doi: 10.3934/mbe.2020046
    [10] Hilla Behar, Alexandra Agranovich, Yoram Louzoun . Diffusion rate determines balance between extinction and proliferationin birth-death processes. Mathematical Biosciences and Engineering, 2013, 10(3): 523-550. doi: 10.3934/mbe.2013.10.523
  • The vascular endothelial growth factor (VEGF) is known as one of the main promoter of angiogenesis - the process of blood vessel formation. Angiogenesis has been recognized as a key stage for cancer development and metastasis. In this paper, we propose a structural model of the main molecular pathways involved in the endothelial cells response to VEGF stimuli. The model, built on qualitative information from knowledge databases, is composed of 38 ordinary differential equations with 78 parameters and focuses on the signalling driving endothelial cell proliferation, migration and resistance to apoptosis. Following a VEGF stimulus, the model predicts an increase of proliferation and migration capability, and a decrease in the apoptosis activity. Model simulations and sensitivity analysis highlight the emergence of robustness and redundancy properties of the pathway. If further calibrated and validated, this model could serve as tool to analyse and formulate new hypothesis on th e VEGF signalling cascade and its role in cancer development and treatment.


    [1] Multiscale Modeling and Simulation, 3 (2005), 440-475.
    [2] Journal of The Royal Society Interface, 4 (2007), 283-304.
    [3] Nature Cell Biology, 8 (2006), 1195-1203.
    [4] Nature Biotechnology, 24 (2006), 667-672.
    [5] Bulletin of Mathematical Biology, 60 (1998), 857-899.
    [6] Bulletin of Mathematical Biology, 66 (2004) 1039-1091.
    [7] Science, 283 (1999), 381-387.
    [8] Journal of Theoretical Biology, 241 (2006), 903-918.
    [9] Journal of Theoretical Biology, 260 (2009), 545-562.
    [10] Progress in Biophysics and Molecular Biology, 97 (2008), 28-39.
    [11] Mathematical Biosciences, 130 (1995), 151-181.
    [12] Nature, 407 (2000), 249-257.
    [13] Cellular and Molecular Life Sciences, 63 (2006), 601-615.
    [14] Nature Reviews Molecular Cell Biology, 7 (2006), 505-516.
    [15] Trends in Biochemical Sciences, 28 (2003), 488-494.
    [16] Oncogene, 30 (2010), 1631-1642.
    [17] Nature Reviews Drug Discovery, 6 (2007), 734-745.
    [18] Nature Reviews Cancer, 2 (2002), 795-803.
    [19] Endocrine Reviews, 25 (2004), 581-611.
    [20] Biochemical and Biophysical Research Communications, 333 (2005), 326-335.
    [21] Cancer Research, 34 (1974), 2109.
    [22] European Journal of Cancer (Oxford, England: 1990), 32 (1996), 2534.
    [23] Microcirculation, 15 (2008), 715-738.
    [24] Journal of Clinical Oncology, 23 (2005), 1295-1311.
    [25] Journal of Biological Chemistry, 273 (1998), 30336-30343.
    [26] Physical Review Letters, 69 (1992), 2013-2016.
    [27] Biochemical Journal, 373 (2003), 451-463.
    [28] Biotechnology Progress, 24 (2008), 96-109.
    [29] Proceedings of the National Academy of Sciences, 93 (1996), 10078-10083.
    [30] Journal of Cell Science, 117 (2004), 4619-4628.
    [31] Nature Medicine, 7 (2001), 987-989.
    [32] Science, 307 (2005), 58-62.
    [33] Nature, 420 (2002), 206-210.
    [34] Nature, 426 (2003), 125-125.
    [35] Nature Biotechnology, 23 (2005), 961-966.
    [36] Physics in Medicine and Biology, 52 (2007), 3665-3677.
    [37] Journal of Biological Chemistry, 274 (1999), 30169-30181.
    [38] European Journal of Biochemistry, 267 (2001), 1583-1588.
    [39] Circulation Research, 100 (2007), 782-794.
    [40] Physical Review Letters, 96 (2006), 58104.
    [41] Molecular Cancer Therapeutics, 7 (2008), 3670-3684.
    [42] Journal of Mathematical Biology, 49 (2004), 111-187.
    [43] Clinical Cancer Research, 9 (2003), 327-337.
    [44] Blood (2012), 5599-5607.
    [45] Endocrine-related cancer, 16 (2009), 675-702.
    [46] Nature Biotechnology, 23 (2005), 1509-1515.
    [47] Nat. Rev. Mol. Cell. Biol., 7 (2006), 357-371.
    [48] International Journal of Radiation Oncology, Biology, Physics, 59 (2004), 928-942.
    [49] Experimental Eye Research, 83 (2006), 1005-1016.
    [50] Journal of Theoretical Biology, 243 (2006), 532-541.
    [51] IET Systems Biology, 3 (2009), 180-190.
    [52] Theoretical Biology and Medical Modelling, 3 (2006).
    [53] Expert review of anticancer therapy, 6 (2006), 1361-1376.
    [54] Nature biotechnology, 20 (2002), 370-375.
    [55] Progress in Biophysics and Molecular Biology, 106 (2011), 450-462.
    [56] The Oncologist, 12 (2007), 465-477.
    [57] Journal of biochemistry and molecular biology, 39 (2006), 469-478.
    [58] Experimental cell research, 312 (2006), 549-560.
    [59] Cancer Research, 64 (2004), 1094-1101.
    [60] Clinical Science, 109 (2005), 227-241.
    [61] Cancer research, 64 (2004), 3731-3736.
    [62] Cancer Research, 35 (1975), 2619-2630.
    [63] Nature Reviews. Cancer, 2 (2002), 489-501.
    [64] Theoretical Biology and Medical Modelling, 4 (2007), 50.
    [65] Frontiers in Computational Physiology And Medicine, 2 (2011) .
    [66] Journal of Theoretical Biology, 250 (2008), 257-280.
    [67] Nature medicine, 10 (2004), 145-147.
    [68] Cancer Cell, 6 (2004), 553-563.
    [69] Bulletin of mathematical biology, 67 (2005), 211-259.
  • This article has been cited by:

    1. Andrea Weiss, Xianting Ding, Judy R. van Beijnum, Ieong Wong, Tse J. Wong, Robert H. Berndsen, Olivier Dormond, Marchien Dallinga, Li Shen, Reinier O. Schlingemann, Roberto Pili, Chih-Ming Ho, Paul J. Dyson, Hubert van den Bergh, Arjan W. Griffioen, Patrycja Nowak-Sliwinska, Rapid optimization of drug combinations for the optimal angiostatic treatment of cancer, 2015, 18, 0969-6970, 233, 10.1007/s10456-015-9462-9
    2. P. Guerrero, T. Alarcón, A. Stephanou, V. Volpert, Stochastic Multiscale Models of Cell Population Dynamics: Asymptotic and Numerical Methods, 2015, 10, 0973-5348, 64, 10.1051/mmnp/201510104
    3. Xin Miao, Shichen Shen, Gilbert Koch, Xue Wang, Jun Li, Xiaomeng Shen, Jun Qu, Robert M. Straubinger, William J. Jusko, Systems Pharmacodynamic Model of Combined Gemcitabine and Trabectedin in Pancreatic Cancer Cells. Part I– Effects on Signal Transduction Pathways Related to Tumor Growth, 2023, 00223549, 10.1016/j.xphs.2023.10.030
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3312) PDF downloads(640) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog