Saturated treatments and measles resurgence episodes in South Africa: A possible linkage

  • Received: 01 September 2012 Accepted: 29 June 2018 Published: 01 June 2013
  • MSC : Primary: 92B05, 34C23, 34C60.

  • We consider the case of measles in South Africa to show that an high vaccination coverage may be not enough - alone - to ensure measles eradication. The occurrence of certain epidemic episodes may in fact be encouraged by delays in the treatments or by not adequately fast clinical case management, which may be related to the backward bifurcation phenomenon as well as to an intriguing spiking dynamics which appears in the system for specific ranges of parameter values.

    Citation: Deborah Lacitignola. Saturated treatments and measles resurgence episodes in South Africa: A possible linkage[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 1135-1157. doi: 10.3934/mbe.2013.10.1135

    Related Papers:

    [1] Anjana Pokharel, Khagendra Adhikari, Ramesh Gautam, Kedar Nath Uprety, Naveen K. Vaidya . Modeling transmission dynamics of measles in Nepal and its control with monitored vaccination program. Mathematical Biosciences and Engineering, 2022, 19(8): 8554-8579. doi: 10.3934/mbe.2022397
    [2] Roy Malka, Vered Rom-Kedar . Bacteria--phagocyte dynamics, axiomatic modelling and mass-action kinetics. Mathematical Biosciences and Engineering, 2011, 8(2): 475-502. doi: 10.3934/mbe.2011.8.475
    [3] ZongWang, Qimin Zhang, Xining Li . Markovian switching for near-optimal control of a stochastic SIV epidemic model. Mathematical Biosciences and Engineering, 2019, 16(3): 1348-1375. doi: 10.3934/mbe.2019066
    [4] Muhammad Fakhruddin, Dani Suandi, Sumiati, Hilda Fahlena, Nuning Nuraini, Edy Soewono . Investigation of a measles transmission with vaccination: a case study in Jakarta, Indonesia. Mathematical Biosciences and Engineering, 2020, 17(4): 2998-3018. doi: 10.3934/mbe.2020170
    [5] Aili Wang, Yanni Xiao, Huaiping Zhu . Dynamics of a Filippov epidemic model with limited hospital beds. Mathematical Biosciences and Engineering, 2018, 15(3): 739-764. doi: 10.3934/mbe.2018033
    [6] Baojun Song, Wen Du, Jie Lou . Different types of backward bifurcations due to density-dependent treatments. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1651-1668. doi: 10.3934/mbe.2013.10.1651
    [7] Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437
    [8] Boli Xie, Maoxing Liu, Lei Zhang . Bifurcation analysis and optimal control of SEIR epidemic model with saturated treatment function on the network. Mathematical Biosciences and Engineering, 2022, 19(2): 1677-1696. doi: 10.3934/mbe.2022079
    [9] N. Akhavan Kharazian, F. M. G. Magpantay . The honeymoon period after mass vaccination. Mathematical Biosciences and Engineering, 2021, 18(1): 354-372. doi: 10.3934/mbe.2021019
    [10] Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang . The backward bifurcation of an age-structured cholera transmission model with saturation incidence. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580
  • We consider the case of measles in South Africa to show that an high vaccination coverage may be not enough - alone - to ensure measles eradication. The occurrence of certain epidemic episodes may in fact be encouraged by delays in the treatments or by not adequately fast clinical case management, which may be related to the backward bifurcation phenomenon as well as to an intriguing spiking dynamics which appears in the system for specific ranges of parameter values.


    [1] Oxford University Press, Oxford, 1991.
    [2] SIAM J. Appl. Math., 64 (2003), 260-276.
    [3] Journal of Biological Dynamics, 5 (2011), 410-418.
    [4] Microbes and Infection, 7 (2005), 593-599.
    [5] Ric. Mat., 57 (2008), 261-281.
    [6] J. Biol. Dyn., 4 (2010), 571-593.
    [7] Nonlinear Analysis: Modelling and Control, 16 (2011), 30-46.
    [8] Math. Biosci. Engin., 1 (2004), 361-404.
    [9] MMWR, 48 (1999), 585-589.
    [10] Comm. Dis. Surveill. Bull., 8 (2009), 2-3.
    [11] Journal of Theoretical Biology, 254 (2008), 275-283.
    [12] Discrete Contin. Dynam. Syst. Ser. B, 3 (2003), 299-309.
    [13] Journal of Infectious Diseases, 189 (2004), S227-S235.
    [14] J. Math. Biol., 36 (1998), 227-248.
    [15] Math. Biosci., 128 (1995), 93-130.
    [16] Theor. Popul. Biol., 57 (2000), 235-247.
    [17] Cambridge University Press, 1994.
    [18] J. Math. Biol., 51 (2005), 414-430.
    [19] J. Math. Biol., 59 (2009), 1-36.
    [20] Springer-Verlag, Berlin, 1983.
    [21] App. Math. Comput., 143 (2003), 409-419.
    [22] Proc. R. Soc. London B, 271 (2004), 2223-2232.
    [23] Math. Biosci., 146 (1997), 15-35.
    [24] American Public Health Association, Washington, 2008.
    [25] SIAM J. Appl. Math., 52 (1992), 835-854.
    [26] Math. Biosci., 190 (2004), 39-69.
    [27] Vaccine, 21 (2003), 473-478.
    [28] Chaos Solitons Fractals, 34 (2007), 1482-1497.
    [29] Proc. R. Soc. A, 115 (1927), 700-721. (Reprinted with parts II. and III. in Bulletin of Mathematical Biology, 53 (1991), 33-118.)
    [30] Math. Biosci., 164 (2000), 183-201.
    [31] Institute for Mathematics and Its Applications, 125 (2000), 269-286.
    [32] in "Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory," IMA Math. Appl., 126 (2002), 295-311.
    [33] J. Math. Biol., 23 (1986), 187-204.
    [34] J. Math. Biol., 46 (2003), 385-424.
    [35] Comm. Dis. Surveill. Bull., 7 (2009), 15-21.
    [36] S. Afr. Med. J., 99 (2009), 314-319.
    [37] Nat. Med., 5 (2001), 619-624.
    [38] Springer, Berlin, 1998.
    [39] J. R. Soc. Interface, 4 (2007), 949-961.
    [40] SIAM J. Appl. Math., 69 (2008), 621-639.
    [41] J. Math. Biol., 53 (2006), 703-718.
    [42] Available on line at: http://www.unicef.org/infobycountry/southafrica_statistics.html.
    [43] Int. J. Epidemiol., 31 (2002), 968-976.
    [44] J. Math. Biol., 40 (2000), 525-540.
    [45] Vaccine, 30 (2012), 1594-1600.
    [46] Math. Biosci., 201 (2006), 58-71.
    [47] Acta Matematicae Applicatae Sinica, English Series, 25 (2009), 127-136.
    [48] World Health Organization. Available from http://www.who.int/immunization_delivery/adc/measles/Measles Global Plan_Eng.pdf.
    [49] Lancet, 369 (2007), 191-200.
    [50] J. Differential Equations, 168 (2000), 150-167.
    [51] J. Math. Anal. Appl., 348 (2008), 433-443.
    [52] J. Appl. Math. Comput., 34 (2010), 177-194.
    [53] Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 4438-4450.
  • This article has been cited by:

    1. Hailay Weldegiorgis Berhe, Oluwole Daniel Makinde, David Mwangi Theuri, Co-dynamics of measles and dysentery diarrhea diseases with optimal control and cost-effectiveness analysis, 2019, 347, 00963003, 903, 10.1016/j.amc.2018.11.049
    2. Linhe Zhu, Xuewei Wang, Huihui Zhang, Shuling Shen, Yimin Li, Yudong Zhou, Dynamics analysis and optimal control strategy for a SIRS epidemic model with two discrete time delays, 2020, 95, 0031-8949, 035213, 10.1088/1402-4896/ab495b
    3. K. Nudee, S. Chinviriyasit, W. Chinviriyasit, The effect of backward bifurcation in controlling measles transmission by vaccination, 2019, 123, 09600779, 400, 10.1016/j.chaos.2019.04.026
    4. Deborah Lacitignola, Giuseppe Saccomandi, Managing awareness can avoid hysteresis in disease spread: an application to coronavirus Covid-19, 2021, 144, 09600779, 110739, 10.1016/j.chaos.2021.110739
    5. Hailay Weldegiorgis Berhe, Oluwole Daniel Makinde, Computational modelling and optimal control of measles epidemic in human population, 2020, 190, 03032647, 104102, 10.1016/j.biosystems.2020.104102
    6. Sandeep Sharma, Nitu Kumari, Backward Bifurcation in a Cholera Model: A Case Study of Outbreak in Zimbabwe and Haiti, 2017, 27, 0218-1274, 1750170, 10.1142/S021812741750170X
    7. Kimberly M. Thompson, Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis, 2016, 36, 02724332, 1383, 10.1111/risa.12637
    8. Luigi Fattorini, Deborah Lacitignola, Functionality indexes assessed through a simple model of muscle activation, fatigue and recovery, 2014, 07, 1793-5245, 1450022, 10.1142/S1793524514500223
    9. Deborah Lacitignola, Fasma Diele, On the Z-type control of backward bifurcations in epidemic models, 2019, 315, 00255564, 108215, 10.1016/j.mbs.2019.108215
    10. Yanju Xiao, Weipeng Zhang, Guifeng Deng, Zhehua Liu, Stability and Bogdanov-Takens Bifurcation of an SIS Epidemic Model with Saturated Treatment Function, 2015, 2015, 1024-123X, 1, 10.1155/2015/745732
    11. BIFURCATION ANALYSIS OF AN SIRS EPIDEMIC MODEL WITH STANDARD INCIDENCE RATE AND SATURATED TREATMENT FUNCTION, 2017, 7, 2156-907X, 1070, 10.11948/2017067
    12. R.P. Gupta, Arun Kumar, Endemic bubble and multiple cusps generated by saturated treatment of an SIR model through Hopf and Bogdanov–Takens bifurcations, 2022, 197, 03784754, 1, 10.1016/j.matcom.2022.01.025
    13. Deborah Lacitignola, Fasma Diele, Using awareness to Z-control a SEIR model with overexposure: Insights on Covid-19 pandemic, 2021, 150, 09600779, 111063, 10.1016/j.chaos.2021.111063
    14. Peter J. Witbooi, An SEIR model with infected immigrants and recovered emigrants, 2021, 2021, 1687-1847, 10.1186/s13662-021-03488-5
    15. Deborah Lacitignola, Fasma Diele, Carmela Marangi, Angela Monti, Teresa Serini, Simonetta Vernocchi, Effects of Vitamin D Supplementation and Degradation on the Innate Immune System Response: Insights on SARS-CoV-2, 2023, 11, 2227-7390, 3711, 10.3390/math11173711
    16. Hailay Weldegiorgis Berhe, Abadi Abay Gebremeskel, Habtu Alemayehu Atsbaha, Yohannes Yirga Kefela, Abadi Abraha Asgedom, Woldegebriel Assefa Woldegerima, Shaibu Osman, Lamin Kabareh, Modelling and stability analysis of the dynamics of measles with application to Ethiopian data, 2024, 24058440, e33594, 10.1016/j.heliyon.2024.e33594
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2805) PDF downloads(552) Cited by(16)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog