Saturated treatments and measles resurgence episodes in South Africa: A possible linkage

  • Received: 01 September 2012 Accepted: 29 June 2018 Published: 01 June 2013
  • MSC : Primary: 92B05, 34C23, 34C60.

  • We consider the case of measles in South Africa to show that an high vaccination coverage may be not enough - alone - to ensure measles eradication. The occurrence of certain epidemic episodes may in fact be encouraged by delays in the treatments or by not adequately fast clinical case management, which may be related to the backward bifurcation phenomenon as well as to an intriguing spiking dynamics which appears in the system for specific ranges of parameter values.

    Citation: Deborah Lacitignola. Saturated treatments and measles resurgence episodes in South Africa: A possible linkage[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 1135-1157. doi: 10.3934/mbe.2013.10.1135

    Related Papers:

  • We consider the case of measles in South Africa to show that an high vaccination coverage may be not enough - alone - to ensure measles eradication. The occurrence of certain epidemic episodes may in fact be encouraged by delays in the treatments or by not adequately fast clinical case management, which may be related to the backward bifurcation phenomenon as well as to an intriguing spiking dynamics which appears in the system for specific ranges of parameter values.


    加载中
    [1] Oxford University Press, Oxford, 1991.
    [2] SIAM J. Appl. Math., 64 (2003), 260-276.
    [3] Journal of Biological Dynamics, 5 (2011), 410-418.
    [4] Microbes and Infection, 7 (2005), 593-599.
    [5] Ric. Mat., 57 (2008), 261-281.
    [6] J. Biol. Dyn., 4 (2010), 571-593.
    [7] Nonlinear Analysis: Modelling and Control, 16 (2011), 30-46.
    [8] Math. Biosci. Engin., 1 (2004), 361-404.
    [9] MMWR, 48 (1999), 585-589.
    [10] Comm. Dis. Surveill. Bull., 8 (2009), 2-3.
    [11] Journal of Theoretical Biology, 254 (2008), 275-283.
    [12] Discrete Contin. Dynam. Syst. Ser. B, 3 (2003), 299-309.
    [13] Journal of Infectious Diseases, 189 (2004), S227-S235.
    [14] J. Math. Biol., 36 (1998), 227-248.
    [15] Math. Biosci., 128 (1995), 93-130.
    [16] Theor. Popul. Biol., 57 (2000), 235-247.
    [17] Cambridge University Press, 1994.
    [18] J. Math. Biol., 51 (2005), 414-430.
    [19] J. Math. Biol., 59 (2009), 1-36.
    [20] Springer-Verlag, Berlin, 1983.
    [21] App. Math. Comput., 143 (2003), 409-419.
    [22] Proc. R. Soc. London B, 271 (2004), 2223-2232.
    [23] Math. Biosci., 146 (1997), 15-35.
    [24] American Public Health Association, Washington, 2008.
    [25] SIAM J. Appl. Math., 52 (1992), 835-854.
    [26] Math. Biosci., 190 (2004), 39-69.
    [27] Vaccine, 21 (2003), 473-478.
    [28] Chaos Solitons Fractals, 34 (2007), 1482-1497.
    [29] Proc. R. Soc. A, 115 (1927), 700-721. (Reprinted with parts II. and III. in Bulletin of Mathematical Biology, 53 (1991), 33-118.)
    [30] Math. Biosci., 164 (2000), 183-201.
    [31] Institute for Mathematics and Its Applications, 125 (2000), 269-286.
    [32] in "Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory," IMA Math. Appl., 126 (2002), 295-311.
    [33] J. Math. Biol., 23 (1986), 187-204.
    [34] J. Math. Biol., 46 (2003), 385-424.
    [35] Comm. Dis. Surveill. Bull., 7 (2009), 15-21.
    [36] S. Afr. Med. J., 99 (2009), 314-319.
    [37] Nat. Med., 5 (2001), 619-624.
    [38] Springer, Berlin, 1998.
    [39] J. R. Soc. Interface, 4 (2007), 949-961.
    [40] SIAM J. Appl. Math., 69 (2008), 621-639.
    [41] J. Math. Biol., 53 (2006), 703-718.
    [42] Available on line at: http://www.unicef.org/infobycountry/southafrica_statistics.html.
    [43] Int. J. Epidemiol., 31 (2002), 968-976.
    [44] J. Math. Biol., 40 (2000), 525-540.
    [45] Vaccine, 30 (2012), 1594-1600.
    [46] Math. Biosci., 201 (2006), 58-71.
    [47] Acta Matematicae Applicatae Sinica, English Series, 25 (2009), 127-136.
    [48] World Health Organization. Available from http://www.who.int/immunization_delivery/adc/measles/Measles Global Plan_Eng.pdf.
    [49] Lancet, 369 (2007), 191-200.
    [50] J. Differential Equations, 168 (2000), 150-167.
    [51] J. Math. Anal. Appl., 348 (2008), 433-443.
    [52] J. Appl. Math. Comput., 34 (2010), 177-194.
    [53] Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 4438-4450.
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(100) PDF downloads(493) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog