Loading [Contrib]/a11y/accessibility-menu.js

Nonlinear functional response parameter estimation in a stochastic predator-prey model

  • Received: 01 May 2010 Accepted: 29 June 2018 Published: 01 December 2011
  • MSC : Primary: 62F15, 92D25, 65C05; Secondary: 65C30.

  • Parameter estimation for the functional response of predator-prey systems is a critical methodological problem in population ecology. In this paper we consider a stochastic predator-prey system with non-linear Ivlev functional response and propose a method for model parameter estimation based on time series of field data. We tackle the problem of parameter estimation using a Bayesian approach relying on a Markov Chain Monte Carlo algorithm. The efficiency of the method is tested on a set of simulated data. Then, the method is applied to a predator-prey system of importance for Integrated Pest Management and biological control, the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. The model is estimated on a dataset obtained from a field survey. Finally, the estimated model is used to forecast predator-prey dynamics in similar fields, with slightly different initial conditions.

    Citation: Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model[J]. Mathematical Biosciences and Engineering, 2012, 9(1): 75-96. doi: 10.3934/mbe.2012.9.75

    Related Papers:

  • Parameter estimation for the functional response of predator-prey systems is a critical methodological problem in population ecology. In this paper we consider a stochastic predator-prey system with non-linear Ivlev functional response and propose a method for model parameter estimation based on time series of field data. We tackle the problem of parameter estimation using a Bayesian approach relying on a Markov Chain Monte Carlo algorithm. The efficiency of the method is tested on a set of simulated data. Then, the method is applied to a predator-prey system of importance for Integrated Pest Management and biological control, the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. The model is estimated on a dataset obtained from a field survey. Finally, the estimated model is used to forecast predator-prey dynamics in similar fields, with slightly different initial conditions.


  • This article has been cited by:

    1. Ettore Lanzarone, Sara Pasquali, Valerio Mussi, Fabrizio Ruggeri, Bayesian Estimation of Thermal Conductivity and Temperature Profile in a Homogeneous Mass, 2014, 66, 1040-7790, 397, 10.1080/10407790.2014.922848
    2. D. Pal, G. S. Mahapatra, G. P. Samanta, Effects of fuzzy harvesting on logistic growth models for uncertain ecological parameter, 2016, 19, 0972-0502, 433, 10.1080/09720502.2014.914277
    3. Laura Martín-Fernández, Ettore Lanzarone, A Particle-Filtering Approach for Real-Time Estimation of Thermal Conductivity and Temperature Tracking in Homogeneous Masses, 2015, 67, 1040-7790, 507, 10.1080/10407790.2014.992060
    4. Camilla Bianchi, Ettore Lanzarone, Giustina Casagrande, Maria Laura Costantino, A Bayesian approach for the identification of patient-specific parameters in a dialysis kinetic model, 2019, 28, 0962-2802, 2069, 10.1177/0962280217745572
    5. Ettore Lanzarone, Fabrizio Ruggeri, Inertance Estimation in a Lumped-Parameter Hydraulic Simulator of Human Circulation, 2013, 135, 0148-0731, 10.1115/1.4024138
    6. Benjamin Planque, Ulf Lindstrøm, Sam Subbey, André Chiaradia, Non-Deterministic Modelling of Food-Web Dynamics, 2014, 9, 1932-6203, e108243, 10.1371/journal.pone.0108243
    7. 2012, 9780470744536, 135, 10.1002/9780470975916.ch6
    8. E. Lanzarone, S. Pasquali, G. Gilioli, E. Marchesini, A Bayesian estimation approach for the mortality in a stage-structured demographic model, 2017, 75, 0303-6812, 759, 10.1007/s00285-017-1099-4
    9. Chang-qin Zhang, Liping Liu, Ping Yan, Lin-zhong Zhang, Stability and Hopf bifurcation analysis of a predator-prey model with time delayed incomplete trophic transfer, 2015, 31, 0168-9673, 235, 10.1007/s10255-015-0463-7
    10. Ettore Lanzarone, Ferdinando Auricchio, Michele Conti, Anna Ferrara, 2015, Chapter 12, 978-3-319-16237-9, 133, 10.1007/978-3-319-16238-6_12
    11. Frédéric Barraquand, Olivier Gimenez, Fitting stochastic predator–prey models using both population density and kill rate data, 2021, 138, 00405809, 1, 10.1016/j.tpb.2021.01.003
    12. Blaine D. Griffen, Considerations When Applying the Consumer Functional Response Measured Under Artificial Conditions, 2021, 9, 2296-701X, 10.3389/fevo.2021.713147
    13. Wanying Shi, Youlin Huang, Chunjin Wei, Shuwen Zhang, Giorgio Kaniadakis, A Stochastic Holling-Type II Predator-Prey Model with Stage Structure and Refuge for Prey, 2021, 2021, 1687-9139, 1, 10.1155/2021/9479012
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2991) PDF downloads(463) Cited by(13)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog