Loading [Contrib]/a11y/accessibility-menu.js

Optimal control of chikungunya disease: Larvae reduction, treatment and prevention

  • Received: 01 April 2011 Accepted: 29 June 2018 Published: 01 March 2012
  • MSC : Primary: 58F15, 58F17; Secondary: 53C35.

  • Since the 1980s, there has been a worldwide re-emergence of vector-borne diseases including Malaria, Dengue, Yellow fever or, more recently, chikungunya. These viruses are arthropod-borne viruses (arboviruses) transmitted by arthropods like mosquitoes of Aedes genus. The nature of these arboviruses is complex since it conjugates human, environmental, biological and geographical factors. Recent researchs have suggested, in particular during the Réunion Island epidemic in 2006, that the transmission by Aedes albopictus (an Aedes genus specie) has been facilitated by genetic mutations of the virus and the vector capacity to adapt to non tropical regions. In this paper we formulate an optimal control problem, based on biological observations. Three main efforts are considered in order to limit the virus transmission. Indeed, there is no vaccine nor specific treatment against chikungunya, that is why the main measures to limit the impact of such epidemic have to be considered. Therefore, we look at time dependent breeding sites destruction, prevention and treatment efforts, for which optimal control theory is applied. Using analytical and numerical techniques, it is shown that there exist cost effective control efforts.

    Citation: Djamila Moulay, M. A. Aziz-Alaoui, Hee-Dae Kwon. Optimal control of chikungunya disease: Larvae reduction, treatment and prevention[J]. Mathematical Biosciences and Engineering, 2012, 9(2): 369-392. doi: 10.3934/mbe.2012.9.369

    Related Papers:

    [1] María Guadalupe Vázquez-Peña, Cruz Vargas-De-León, Jorge Fernando Camacho-Pérez, Jorge Velázquez-Castro . Analysis and Bayesian estimation of a model for Chikungunya dynamics with relapse: An outbreak in Acapulco, Mexico. Mathematical Biosciences and Engineering, 2023, 20(10): 18123-18145. doi: 10.3934/mbe.2023805
    [2] Yves Dumont, Frederic Chiroleu . Vector control for the Chikungunya disease. Mathematical Biosciences and Engineering, 2010, 7(2): 313-345. doi: 10.3934/mbe.2010.7.313
    [3] Martin Strugarek, Nicolas Vauchelet, Jorge P. Zubelli . Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model. Mathematical Biosciences and Engineering, 2018, 15(4): 961-991. doi: 10.3934/mbe.2018043
    [4] Luis Almeida, Michel Duprez, Yannick Privat, Nicolas Vauchelet . Mosquito population control strategies for fighting against arboviruses. Mathematical Biosciences and Engineering, 2019, 16(6): 6274-6297. doi: 10.3934/mbe.2019313
    [5] Maeve L. McCarthy, Dorothy I. Wallace . Optimal control of a tick population with a view to control of Rocky Mountain Spotted Fever. Mathematical Biosciences and Engineering, 2023, 20(10): 18916-18938. doi: 10.3934/mbe.2023837
    [6] Chen Liang, Hai-Feng Huo, Hong Xiang . Modelling mosquito population suppression based on competition system with strong and weak Allee effect. Mathematical Biosciences and Engineering, 2024, 21(4): 5227-5249. doi: 10.3934/mbe.2024231
    [7] Bo Zheng, Wenliang Guo, Linchao Hu, Mugen Huang, Jianshe Yu . Complex wolbachia infection dynamics in mosquitoes with imperfect maternal transmission. Mathematical Biosciences and Engineering, 2018, 15(2): 523-541. doi: 10.3934/mbe.2018024
    [8] Muhammad Altaf Khan, Navid Iqbal, Yasir Khan, Ebraheem Alzahrani . A biological mathematical model of vector-host disease with saturated treatment function and optimal control strategies. Mathematical Biosciences and Engineering, 2020, 17(4): 3972-3997. doi: 10.3934/mbe.2020220
    [9] Meili Li, Rongrong Guo, Wei Ding, Junling Ma . Temperature dependent developmental time for the larva stage of Aedes aegypti. Mathematical Biosciences and Engineering, 2022, 19(5): 4396-4406. doi: 10.3934/mbe.2022203
    [10] Yunbo Tu, Shujing Gao, Yujiang Liu, Di Chen, Yan Xu . Transmission dynamics and optimal control of stage-structured HLB model. Mathematical Biosciences and Engineering, 2019, 16(5): 5180-5205. doi: 10.3934/mbe.2019259
  • Since the 1980s, there has been a worldwide re-emergence of vector-borne diseases including Malaria, Dengue, Yellow fever or, more recently, chikungunya. These viruses are arthropod-borne viruses (arboviruses) transmitted by arthropods like mosquitoes of Aedes genus. The nature of these arboviruses is complex since it conjugates human, environmental, biological and geographical factors. Recent researchs have suggested, in particular during the Réunion Island epidemic in 2006, that the transmission by Aedes albopictus (an Aedes genus specie) has been facilitated by genetic mutations of the virus and the vector capacity to adapt to non tropical regions. In this paper we formulate an optimal control problem, based on biological observations. Three main efforts are considered in order to limit the virus transmission. Indeed, there is no vaccine nor specific treatment against chikungunya, that is why the main measures to limit the impact of such epidemic have to be considered. Therefore, we look at time dependent breeding sites destruction, prevention and treatment efforts, for which optimal control theory is applied. Using analytical and numerical techniques, it is shown that there exist cost effective control efforts.


  • This article has been cited by:

    1. Lilian Sofia Sepulveda‐Salcedo, Olga Vasilieva, Mikhail Svinin, Optimal control of dengue epidemic outbreaks under limited resources, 2020, 144, 0022-2526, 185, 10.1111/sapm.12295
    2. Shousheng Zhu, Nathalie Verdière, Lilianne Denis-Vidal, Djalil Kateb, Identifiability analysis and parameter estimation of a chikungunya model in a spatially continuous domain, 2018, 34, 1476945X, 80, 10.1016/j.ecocom.2017.12.004
    3. Benjamin Ambrosio, M. A. Aziz-Alaoui, On a Coupled Time-Dependent SIR Models Fitting with New York and New-Jersey States COVID-19 Data, 2020, 9, 2079-7737, 135, 10.3390/biology9060135
    4. Xinzhi Liu, Peter Stechlinski, Application of control strategies to a seasonal model of chikungunya disease, 2015, 39, 0307904X, 3194, 10.1016/j.apm.2014.10.035
    5. Xianning Liu, Yan Wang, Xiao-Qiang Zhao, Dynamics of a periodic Chikungunya model with temperature and rainfall effects, 2020, 90, 10075704, 105409, 10.1016/j.cnsns.2020.105409
    6. Hamadjam Abboubakar, Jean Claude Kamgang, Leontine Nkague Nkamba, Daniel Tieudjo, Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, 2018, 76, 0303-6812, 379, 10.1007/s00285-017-1146-1
    7. Kamil Erguler, Stephanie E. Smith-Unna, Joanna Waldock, Yiannis Proestos, George K. Christophides, Jos Lelieveld, Paul E. Parham, Pedro L. Oliveira, Large-Scale Modelling of the Environmentally-Driven Population Dynamics of Temperate Aedes albopictus (Skuse), 2016, 11, 1932-6203, e0149282, 10.1371/journal.pone.0149282
    8. Ahmed M. Elaiw, Taofeek O. Alade, Saud M. Alsulami, Analysis of within-host CHIKV dynamics models with general incidence rate, 2018, 11, 1793-5245, 1850062, 10.1142/S1793524518500626
    9. T.K. Kar, Soovoojeet Jana, Application of three controls optimally in a vector-borne disease – a mathematical study, 2013, 18, 10075704, 2868, 10.1016/j.cnsns.2013.01.022
    10. Ahmed M. Elaiw, Taofeek O. Alade, Saud M. Alsulami, Analysis of latent CHIKV dynamics models with general incidence rate and time delays, 2018, 12, 1751-3758, 700, 10.1080/17513758.2018.1503349
    11. N. Verdière, S. Zhu, L. Denis-Vidal, A distribution input–output polynomial approach for estimating parameters in nonlinear models. Application to a chikungunya model, 2018, 331, 03770427, 104, 10.1016/j.cam.2017.09.044
    12. XINZHI LIU, PETER STECHLINSKI, SWITCHING VACCINATION SCHEMES FOR VECTOR-BORNE DISEASES WITH SEASONAL FLUCTUATIONS, 2017, 25, 0218-3390, 441, 10.1142/S0218339017500218
    13. Taofeek O. Alade, On the generalized Chikungunya virus dynamics model with distributed time delays, 2020, 2195-268X, 10.1007/s40435-020-00723-x
    14. Hamadjam Abboubakar, Jean Claude Kamgang, Daniel Tieudjo, Backward bifurcation and control in transmission dynamics of arboviral diseases, 2016, 278, 00255564, 100, 10.1016/j.mbs.2016.06.002
    15. Yan Wang, Xianning Liu, Stability and Hopf bifurcation of a within-host chikungunya virus infection model with two delays, 2017, 138, 03784754, 31, 10.1016/j.matcom.2016.12.011
    16. Djamila Moulay, Yoann Pigné, A metapopulation model for chikungunya including populations mobility on a large-scale network, 2013, 318, 00225193, 129, 10.1016/j.jtbi.2012.11.008
    17. Lilian S. Sepulveda, Olga Vasilieva, Optimal control approach to dengue reduction and prevention in Cali, Colombia, 2016, 39, 01704214, 5475, 10.1002/mma.3932
    18. Xinzhi Liu, Peter Stechlinski, 2017, Chapter 7, 978-3-319-53206-6, 227, 10.1007/978-3-319-53208-0_7
    19. PARIMITA ROY, RANJIT KUMAR UPADHYAY, JASMINE CAUR, MODELING ZIKA TRANSMISSION DYNAMICS: PREVENTION AND CONTROL, 2020, 28, 0218-3390, 719, 10.1142/S021833902050014X
    20. Ahmed M. Elaiw, Taofeek O. Alade, Saud M. Alsulami, Global dynamics of delayed CHIKV infection model with multitarget cells, 2019, 60, 1598-5865, 303, 10.1007/s12190-018-1215-7
    21. A. M. Elaiw, S. E. Almalki, A. D. Hobiny, Stability of CHIKV infection models with CHIKV-monocyte and infected-monocyte saturated incidences, 2019, 9, 2158-3226, 025308, 10.1063/1.5085804
    22. Edwin Setiawan Nugraha, Janson Naiborhu, Nuning Nuraini, 2017, 1825, 0094-243X, 020015, 10.1063/1.4978984
    23. Guillaume Cantin, Nathalie Verdière, 2021, Chapter 9, 978-3-030-59301-8, 169, 10.1007/978-3-030-59302-5_9
    24. Malicki Zorom, Pascal Zongo, Bruno Barbier, Blaise Somé, Optimal Control of a Spatio-Temporal Model for Malaria: Synergy Treatment and Prevention, 2012, 2012, 1110-757X, 1, 10.1155/2012/854723
    25. Nonthamon Chaikham, Wannika Sawangtong, Optimal control of Zika virus infection by vector elimination, vector-to-human and human-to-human contact reduction, 2017, 2017, 1687-1847, 10.1186/s13662-017-1220-4
    26. Catherine Hierlihy, Lisa Waddell, Ian Young, Judy Greig, Tricia Corrin, Mariola Mascarenhas, Abdallah M. Samy, A systematic review of individual and community mitigation measures for prevention and control of chikungunya virus, 2019, 14, 1932-6203, e0212054, 10.1371/journal.pone.0212054
    27. Kwang Sung Lee, Abid Ali Lashari, Stability analysis and optimal control of pine wilt disease with horizontal transmission in vector population, 2014, 226, 00963003, 793, 10.1016/j.amc.2013.09.061
    28. Carrie A. Manore, Kyle S. Hickmann, Sen Xu, Helen J. Wearing, James M. Hyman, Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus, 2014, 356, 00225193, 174, 10.1016/j.jtbi.2014.04.033
    29. Carrie A. Manore, Richard S. Ostfeld, Folashade B. Agusto, Holly Gaff, Shannon L. LaDeau, Samuel V. Scarpino, Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States, 2017, 11, 1935-2735, e0005255, 10.1371/journal.pntd.0005255
    30. Xianning Liu, Yan Wang, Xiao-Qiang Zhao, Dynamics of a climate-based periodic Chikungunya model with incubation period, 2020, 80, 0307904X, 151, 10.1016/j.apm.2019.11.038
    31. Mariola Mascarenhas, Sophiya Garasia, Philippe Berthiaume, Tricia Corrin, Judy Greig, Victoria Ng, Ian Young, Lisa Waddell, Abdallah M. Samy, A scoping review of published literature on chikungunya virus, 2018, 13, 1932-6203, e0207554, 10.1371/journal.pone.0207554
    32. Gerardo Ortigoza, Fred Brauer, Iris Neri, Modelling and simulating Chikungunya spread with an unstructured triangular cellular automata, 2020, 5, 24680427, 197, 10.1016/j.idm.2019.12.005
    33. M. A. Aziz-Alaoui, Sunita Gakkhar, Benjamin Ambrosio, Arti Mishra, A network model for control of dengue epidemic using sterile insect technique, 2017, 15, 1551-0018, 441, 10.3934/mbe.2018020
    34. Anuj Kumar, Prashant K. Srivastava, Role of Optimal Screening and Treatment on Infectious Diseases Dynamics in Presence of Self-protection of Susceptible, 2019, 0971-3514, 10.1007/s12591-019-00467-x
    35. Xia Wang, Mingwang Shen, Yanni Xiao, Libin Rong, Optimal control and cost-effectiveness analysis of a Zika virus infection model with comprehensive interventions, 2019, 359, 00963003, 165, 10.1016/j.amc.2019.04.026
    36. Emilene Pliego-Pliego, Olga Vasilieva, Jorge Velázquez-Castro, Andrés Fraguela Collar, Control strategies for a population dynamics model of Aedes aegypti with seasonal variability and their effects on dengue incidence, 2020, 81, 0307904X, 296, 10.1016/j.apm.2019.12.025
    37. Yu-Han Kao, Marisa C. Eisenberg, Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment, 2018, 25, 17554365, 89, 10.1016/j.epidem.2018.05.010
    38. Gilberto González-Parra, Miguel Díaz-Rodríguez, Abraham J. Arenas, Optimization of the Controls against the Spread of Zika Virus in Populations, 2020, 8, 2079-3197, 76, 10.3390/computation8030076
    39. Doris E. Campo-Duarte, Olga Vasilieva, Daiver Cardona-Salgado, Mikhail Svinin, Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations, 2018, 76, 0303-6812, 1907, 10.1007/s00285-018-1213-2
    40. Xinzhi Liu, Peter Stechlinski, 2017, Chapter 4, 978-3-319-53206-6, 83, 10.1007/978-3-319-53208-0_4
    41. Ahmed M. Elaiw, Sami E. Almalki, A.D. Hobiny, Ahmed Farouk, Stability of delayed CHIKV dynamics model with cell-to-cell transmission, 2020, 38, 10641246, 2425, 10.3233/JIFS-179531
    42. Sylvestre Aureliano Carvalho, Stella Olivia da Silva, Iraziet da Cunha Charret, Mathematical modeling of dengue epidemic: control methods and vaccination strategies, 2019, 138, 1431-7613, 223, 10.1007/s12064-019-00273-7
    43. Nathalie Verdière, David Manceau, Shousheng Zhu, Lilianne Denis-Vidal, Inverse problem for a coupling model of reaction-diffusion and ordinary differential equations systems. Application to an epidemiological model, 2020, 375, 00963003, 125067, 10.1016/j.amc.2020.125067
    44. Taofeek O. Alade, Ahmed M. Elaiw, Saud M. Alsulami, Stability dynamics of a delayed generalized Chikungunya virus infection model, 2021, 65, 1598-5865, 575, 10.1007/s12190-020-01405-9
    45. Hamadjam Abboubakar, Albert Kouchéré Guidzavaï, Joseph Yangla, Irépran Damakoa, Ruben Mouangue, Mathematical modeling and projections of a vector-borne disease with optimal control strategies: A case study of the Chikungunya in Chad, 2021, 150, 09600779, 111197, 10.1016/j.chaos.2021.111197
    46. Taofeek O. Alade, Mohammad Alnegga, Samson Olaniyi, Afeez Abidemi, Mathematical modelling of within-host Chikungunya virus dynamics with adaptive immune response, 2023, 2363-6203, 10.1007/s40808-023-01737-y
    47. C. Gokila, M. Sambath, The threshold for a stochastic within-host CHIKV virus model with saturated incidence rate, 2021, 14, 1793-5245, 2150042, 10.1142/S179352452150042X
    48. Ibrahim M. Hezam, COVID-19 and Chikungunya: an optimal control model with consideration of social and environmental factors, 2022, 1868-5137, 10.1007/s12652-022-03796-y
    49. Fajar Sofyantoro, Andri Frediansyah, Dwi Sendi Priyono, Wahyu Aristyaning Putri, Nur Indah Septriani, Nastiti Wijayanti, Winda Adipuri Ramadaningrum, Safaa A. Turkistani, Mohammed Garout, Mohammed Aljeldah, Basim R. Al Shammari, Ameen S. S. Alwashmi, Amal H. Alfaraj, Abdulsalam Alawfi, Amer Alshengeti, Maha H. Aljohani, Sahar Aldossary, Ali A. Rabaan, Growth in chikungunya virus-related research in ASEAN and South Asian countries from 1967 to 2022 following disease emergence: a bibliometric and graphical analysis, 2023, 19, 1744-8603, 10.1186/s12992-023-00906-z
    50. Amália S. V. Vasconcelos, Josenildo S. Lima, Rodrigo T. N. Cardoso, José L. Acebal, Aníbal M. Loaiza, Optimal control of Aedes aegypti using rainfall and temperature data, 2022, 41, 2238-3603, 10.1007/s40314-022-01804-7
    51. Afeez Abidemi, Nur Arina Bazilah Aziz, Analysis of deterministic models for dengue disease transmission dynamics with vaccination perspective in Johor, Malaysia, 2022, 8, 2349-5103, 10.1007/s40819-022-01250-3
    52. Joseph Yangla, Hamadjam Abboubakar, Ezekiel Dangbe, Richard Yankoulo, Ado Adamou Abba Ari, Irépran Damakoa, Kottakkaran Sooppy Nisar, Fractional dynamics of a Chikungunya transmission model, 2023, 24682276, e01812, 10.1016/j.sciaf.2023.e01812
    53. Baaba A. Danquah, Faraimunashe Chirove, Jacek Banasiak, Controlling malaria in a population accessing counterfeit antimalarial drugs, 2023, 20, 1551-0018, 11895, 10.3934/mbe.2023529
    54. Wisdom S. Avusuglo, Nicola Bragazzi, Ali Asgary, James Orbinski, Jianhong Wu, Jude Dzevela Kong, Leveraging an epidemic–economic mathematical model to assess human responses to COVID-19 policies and disease progression, 2023, 13, 2045-2322, 10.1038/s41598-023-39723-0
    55. Víctor Manuel Alvarado-Castro, Cruz Vargas-De-León, Sergio Paredes-Solis, Alian Li-Martin, Elizabeth Nava-Aguilera, Arcadio Morales-Pérez, José Legorreta-Soberanis, Belén Madeline Sánchez-Gervacio, Anne Cockcroft, Neil Andersson, The influence of gender and temephos exposure on community participation in dengue prevention: a compartmental mathematical model, 2024, 24, 1471-2334, 10.1186/s12879-024-09341-w
    56. Baaba A. Danquah, Faraimunashe Chirove, Jacek Banasiak, A climate-based metapopulation malaria model with human travel and treatment, 2025, 36, 1012-9405, 10.1007/s13370-024-01219-z
    57. Nonthamon Chaikham, Wannika Sawangtong, Sub-Optimal Control in the Zika Virus Epidemic Model Using Differential Evolution, 2018, 7, 2075-1680, 61, 10.3390/axioms7030061
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3738) PDF downloads(691) Cited by(56)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog