Loading [Contrib]/a11y/accessibility-menu.js

Nonlinear stochastic Markov processes and modeling uncertainty in populations

  • Received: 01 January 2011 Accepted: 29 June 2018 Published: 01 December 2011
  • MSC : 60J60, 60J22, 35Q84.

  • We consider an alternative approach to the use of nonlinear stochastic Markov processes (which have a Fokker-Planck or Forward Kolmogorov representation for density) in modeling uncertainty in populations. These alternate formulations, which involve imposing probabilistic structures on a family of deterministic dynamical systems, are shown to yield pointwise equivalent population densities. Moreover, these alternate formulations lead to fast efficient calculations in inverse problems as well as in forward simulations. Here we derive a class of stochastic formulations for which such an alternate representation is readily found.

    Citation: H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations[J]. Mathematical Biosciences and Engineering, 2012, 9(1): 1-25. doi: 10.3934/mbe.2012.9.1

    Related Papers:

    [1] Dawid Czapla, Sander C. Hille, Katarzyna Horbacz, Hanna Wojewódka-Ściążko . Continuous dependence of an invariant measure on the jump rate of a piecewise-deterministic Markov process. Mathematical Biosciences and Engineering, 2020, 17(2): 1059-1073. doi: 10.3934/mbe.2020056
    [2] Damilola Olabode, Jordan Culp, Allison Fisher, Angela Tower, Dylan Hull-Nye, Xueying Wang . Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China. Mathematical Biosciences and Engineering, 2021, 18(1): 950-967. doi: 10.3934/mbe.2021050
    [3] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile . A non-autonomous stochastic predator-prey model. Mathematical Biosciences and Engineering, 2014, 11(2): 167-188. doi: 10.3934/mbe.2014.11.167
    [4] Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445
    [5] Linda J. S. Allen, Vrushali A. Bokil . Stochastic models for competing species with a shared pathogen. Mathematical Biosciences and Engineering, 2012, 9(3): 461-485. doi: 10.3934/mbe.2012.9.461
    [6] Zhenquan Zhang, Junhao Liang, Zihao Wang, Jiajun Zhang, Tianshou Zhou . Modeling stochastic gene expression: From Markov to non-Markov models. Mathematical Biosciences and Engineering, 2020, 17(5): 5304-5325. doi: 10.3934/mbe.2020287
    [7] Stephan Gerster, Michael Herty, Elisa Iacomini . Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation. Mathematical Biosciences and Engineering, 2021, 18(4): 4372-4389. doi: 10.3934/mbe.2021220
    [8] Qiqi Deng, Aimin Chen, Huahai Qiu, Tianshou Zhou . Analysis of a non-Markov transcription model with nuclear RNA export and RNA nuclear retention. Mathematical Biosciences and Engineering, 2022, 19(8): 8426-8451. doi: 10.3934/mbe.2022392
    [9] ZongWang, Qimin Zhang, Xining Li . Markovian switching for near-optimal control of a stochastic SIV epidemic model. Mathematical Biosciences and Engineering, 2019, 16(3): 1348-1375. doi: 10.3934/mbe.2019066
    [10] Pierre Degond, Maxime Herda, Sepideh Mirrahimi . A Fokker-Planck approach to the study of robustness in gene expression. Mathematical Biosciences and Engineering, 2020, 17(6): 6459-6486. doi: 10.3934/mbe.2020338
  • We consider an alternative approach to the use of nonlinear stochastic Markov processes (which have a Fokker-Planck or Forward Kolmogorov representation for density) in modeling uncertainty in populations. These alternate formulations, which involve imposing probabilistic structures on a family of deterministic dynamical systems, are shown to yield pointwise equivalent population densities. Moreover, these alternate formulations lead to fast efficient calculations in inverse problems as well as in forward simulations. Here we derive a class of stochastic formulations for which such an alternate representation is readily found.


  • This article has been cited by:

    1. H.T. Banks, S. Hu, Propagation of Growth Uncertainty in a Physiologically Structured Population, 2012, 7, 0973-5348, 7, 10.1051/mmnp/20127503
    2. 2012, 978-1-4398-8083-8, 241, 10.1201/b12209-19
    3. Juan C. Cortés, Sandra E. Delgadillo-Alemán, Roberto A. Kú-Carrillo, Rafael J. Villanueva, Probabilistic analysis of a class of impulsive linear random differential equations forced by stochastic processes admitting Karhunen-Loève expansions, 2022, 15, 1937-1632, 3131, 10.3934/dcdss.2022079
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2549) PDF downloads(449) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog