Citation: Urszula Foryś, Jan Poleszczuk. A delay-differential equation model of HIV related cancer--immune system dynamics[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 627-641. doi: 10.3934/mbe.2011.8.627
[1] | Jie Lou, Tommaso Ruggeri, Claudio Tebaldi . Modeling Cancer in HIV-1 Infected Individuals: Equilibria, Cycles and Chaotic Behavior. Mathematical Biosciences and Engineering, 2006, 3(2): 313-324. doi: 10.3934/mbe.2006.3.313 |
[2] | Bao-Zhu Guo, Li-Ming Cai . A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences and Engineering, 2011, 8(3): 689-694. doi: 10.3934/mbe.2011.8.689 |
[3] | Yu Yang, Gang Huang, Yueping Dong . Stability and Hopf bifurcation of an HIV infection model with two time delays. Mathematical Biosciences and Engineering, 2023, 20(2): 1938-1959. doi: 10.3934/mbe.2023089 |
[4] | Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014 |
[5] | Patrick W. Nelson, Michael A. Gilchrist, Daniel Coombs, James M. Hyman, Alan S. Perelson . An Age-Structured Model of HIV Infection that Allows for Variations in the Production Rate of Viral Particles and the Death Rate of Productively Infected Cells. Mathematical Biosciences and Engineering, 2004, 1(2): 267-288. doi: 10.3934/mbe.2004.1.267 |
[6] | A. M. Elaiw, N. H. AlShamrani, A. D. Hobiny . Stability of an adaptive immunity delayed HIV infection model with active and silent cell-to-cell spread. Mathematical Biosciences and Engineering, 2020, 17(6): 6401-6458. doi: 10.3934/mbe.2020337 |
[7] | Juan Wang, Chunyang Qin, Yuming Chen, Xia Wang . Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays. Mathematical Biosciences and Engineering, 2019, 16(4): 2587-2612. doi: 10.3934/mbe.2019130 |
[8] | Ning Bai, Rui Xu . Mathematical analysis of an HIV model with latent reservoir, delayed CTL immune response and immune impairment. Mathematical Biosciences and Engineering, 2021, 18(2): 1689-1707. doi: 10.3934/mbe.2021087 |
[9] | Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu . A delayed HIV-1 model with virus waning term. Mathematical Biosciences and Engineering, 2016, 13(1): 135-157. doi: 10.3934/mbe.2016.13.135 |
[10] | Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358 |
1. | MONIKA JOANNA PIOTROWSKA, MAREK BODNAR, URSZULA FORYŚ, Tractable Model of Malignant Gliomas Immunotherapy with Discrete Time Delays, 2014, 21, 0889-8480, 127, 10.1080/08898480.2013.804690 | |
2. | Natalia Z. Bielczyk, Katarzyna Piskała, Martyna Płomecka, Piotr Radziński, Lara Todorova, Urszula Foryś, Gennady Cymbalyuk, Time-delay model of perceptual decision making in cortical networks, 2019, 14, 1932-6203, e0211885, 10.1371/journal.pone.0211885 | |
3. | Monika Joanna Piotrowska, Marek Bodnar, Jan Poleszczuk, Urszula Foryś, Mathematical modelling of immune reaction against gliomas: Sensitivity analysis and influence of delays, 2013, 14, 14681218, 1601, 10.1016/j.nonrwa.2012.10.020 | |
4. | Monika J. Piotrowska, Urszula Foryś, Analysis of the Hopf bifurcation for the family of angiogenesis models, 2011, 382, 0022247X, 180, 10.1016/j.jmaa.2011.04.046 | |
5. | Monika J. Piotrowska, Urszula Foryś, The nature of Hopf bifurcation for the Gompertz model with delays, 2011, 54, 08957177, 2183, 10.1016/j.mcm.2011.05.027 | |
6. | Xiuli Sun, Luan Wang, Baochuan Tian, Stability and Hopf bifurcation of a diffusive Gompertz population model with nonlocal delay effect, 2018, 14173875, 1, 10.14232/ejqtde.2018.1.22 | |
7. | Alireza Hosseinian, Pouria Assari, Mehdi Dehghan, The numerical solution of nonlinear delay Volterra integral equations using the thin plate spline collocation method with error analysis, 2023, 42, 2238-3603, 10.1007/s40314-023-02219-8 | |
8. | Yin Gao, Lifen Jia, Stability in measure for uncertain delay differential equations based on new Lipschitz conditions, 2021, 41, 10641246, 2997, 10.3233/JIFS-210089 | |
9. | Arash Goligerdian, Mahmood Khaksar-e Oshagh, The numerical solution of a time-delay model of population growth with immigration using Legendre wavelets, 2023, 01689274, 10.1016/j.apnum.2023.11.018 | |
10. | E. Aourir, H. Laeli Dastjerdi, Numerical investigation of the mesh-free collocation approach for solving third kind VIEs with nonlinear vanishing delays, 2024, 0020-7160, 1, 10.1080/00207160.2024.2397659 | |
11. | E. Aourir, H. Laeli Dastjerdi, M. Oudani, I. El Harraki, Bernstein polynomial for solving third kind VIEs with nonlinear vanishing delays, 2025, 0003-6811, 1, 10.1080/00036811.2025.2523434 |