Citation: Christine K. Yang, Fred Brauer. Calculation of R0 for age-of-infection models[J]. Mathematical Biosciences and Engineering, 2008, 5(3): 585-599. doi: 10.3934/mbe.2008.5.585
[1] | Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang . The backward bifurcation of an age-structured cholera transmission model with saturation incidence. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580 |
[2] | Gergely Röst, Jianhong Wu . SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences and Engineering, 2008, 5(2): 389-402. doi: 10.3934/mbe.2008.5.389 |
[3] | Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva . Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060 |
[4] | Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123 |
[5] | Xichao Duan, Sanling Yuan, Kaifa Wang . Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences and Engineering, 2016, 13(5): 935-968. doi: 10.3934/mbe.2016024 |
[6] | Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li . Global stability of an age-structured cholera model. Mathematical Biosciences and Engineering, 2014, 11(3): 641-665. doi: 10.3934/mbe.2014.11.641 |
[7] | Xia Wang, Shengqiang Liu . Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Mathematical Biosciences and Engineering, 2012, 9(3): 685-695. doi: 10.3934/mbe.2012.9.685 |
[8] | Georgi Kapitanov . A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences and Engineering, 2015, 12(1): 23-40. doi: 10.3934/mbe.2015.12.23 |
[9] | Shaoli Wang, Jianhong Wu, Libin Rong . A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences and Engineering, 2017, 14(3): 805-820. doi: 10.3934/mbe.2017044 |
[10] | Simone De Reggi, Francesca Scarabel, Rossana Vermiglio . Approximating reproduction numbers: a general numerical method for age-structured models. Mathematical Biosciences and Engineering, 2024, 21(4): 5360-5393. doi: 10.3934/mbe.2024236 |
1. | Gerardo Chowell, Fred Brauer, 2009, Chapter 1, 978-90-481-2312-4, 1, 10.1007/978-90-481-2313-1_1 | |
2. | Carlos Llensa, David Juher, Joan Saldaña, On the early epidemic dynamics for pairwise models, 2014, 352, 00225193, 71, 10.1016/j.jtbi.2014.02.037 | |
3. | Fred Brauer, General compartmental epidemic models, 2010, 31, 0252-9599, 289, 10.1007/s11401-009-0454-1 | |
4. | Fred Brauer, James Watmough, Age of infection epidemic models with heterogeneous mixing, 2009, 3, 1751-3758, 324, 10.1080/17513750802415822 | |
5. | Brandy Rapatski, Juan Tolosa, Modeling and analysis of the San Francisco City Clinic Cohort (SFCCC) HIV-epidemic including treatment, 2014, 11, 1551-0018, 599, 10.3934/mbe.2014.11.599 | |
6. | Ping Yan, Zhilan Feng, Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness, 2010, 224, 00255564, 43, 10.1016/j.mbs.2009.12.007 | |
7. | Zhipeng Qiu, Zhilan Feng, Transmission Dynamics of an Influenza Model with Age of Infection and Antiviral Treatment, 2010, 22, 1040-7294, 823, 10.1007/s10884-010-9178-x | |
8. | Nancy Hernandez-Ceron, Zhilan Feng, Carlos Castillo-Chavez, Discrete Epidemic Models with Arbitrary Stage Distributions and Applications to Disease Control, 2013, 75, 0092-8240, 1716, 10.1007/s11538-013-9866-x | |
9. | 2022, chapter 3, 9781799883432, 56, 10.4018/978-1-7998-8343-2.ch003 | |
10. | Fan Bai, An age-of-infection model with both symptomatic and asymptomatic infections, 2023, 86, 0303-6812, 10.1007/s00285-023-01920-w | |
11. | Qihui Yang, Joan Saldaña, Caterina Scoglio, Generalized epidemic model incorporating non-Markovian infection processes and waning immunity, 2023, 108, 2470-0045, 10.1103/PhysRevE.108.014405 | |
12. | Ao Li, Jianhong Wu, Seyed M. Moghadas, Epidemic dynamics with time-varying transmission risk reveal the role of disease stage-dependent infectiousness, 2023, 573, 00225193, 111594, 10.1016/j.jtbi.2023.111594 | |
13. | Florin Avram, Rim Adenane, Mircea Neagu, Advancing Mathematical Epidemiology and Chemical Reaction Network Theory via Synergies Between Them, 2024, 26, 1099-4300, 936, 10.3390/e26110936 | |
14. | Glenn F. Webb, Basic reproduction numbers for infection and vaccination age epidemic models, 2025, 0, 2155-3289, 0, 10.3934/naco.2025013 |