Loading [Contrib]/a11y/accessibility-menu.js

A model of activity-dependent changes in dendritic spine density and spine structure

  • Received: 01 February 2007 Accepted: 29 June 2018 Published: 01 August 2007
  • MSC : 92D30.

  • Recent evidence indicates that the morphology and density of dendritic spines are regulated during synaptic plasticity. See, for instance, a review by Hayashi and Majewska [9]. In this work, we extend previous modeling studies [27] by combining a model for activity-dependent spine density with one for calcium-mediated spine stem restructuring. The model is based on the standard dimensionless cable equation, which represents the change in the membrane potential in a passive dendrite. Additional equations characterize the change in spine density along the dendrite, the current balance equation for an individual spine head, the change in calcium concentration in the spine head, and the dynamics of spine stem resistance. We use computational studies to investigate the changes in spine density and structure for differing synaptic inputs and demonstrate the effects of these changes on the input-output properties of the dendritic branch. Moderate amounts of high-frequency synaptic activation to dendritic spines result in an increase in spine stem resistance that is correlated with spine stem elongation. In addition, the spine density increases both inside and outside the input region. The model is formulated so that this long-term potentiation-inducing stimulus eventually leads to structural stability. In contrast, a prolonged low-frequency stimulation paradigm that would typically induce long-term depression results in a decrease in stem resistance (correlated with stem shortening) and an eventual decrease in spine density.

    Citation: S. M. Crook, M. Dur-e-Ahmad, S. M. Baer. A model of activity-dependent changes in dendritic spine density and spine structure[J]. Mathematical Biosciences and Engineering, 2007, 4(4): 617-631. doi: 10.3934/mbe.2007.4.617

    Related Papers:

    [1] Biao Cai, Qing Xu, Cheng Yang, Yi Lu, Cheng Ge, Zhichao Wang, Kai Liu, Xubin Qiu, Shan Chang . Spine MRI image segmentation method based on ASPP and U-Net network. Mathematical Biosciences and Engineering, 2023, 20(9): 15999-16014. doi: 10.3934/mbe.2023713
    [2] Massimo Fioranelli, O. Eze Aru, Maria Grazia Roccia, Aroonkumar Beesham, Dana Flavin . A model for analyzing evolutions of neurons by using EEG waves. Mathematical Biosciences and Engineering, 2022, 19(12): 12936-12949. doi: 10.3934/mbe.2022604
    [3] Wenlu Zhang, Ziyue Ma, Hong Wang, Juan Deng, Pengfei Li, Yu Jia, Yabin Dong, Hong Sha, Feng Yan, Wenjun Tu . Study on automatic ultrasound scanning of lumbar spine and visualization system for path planning in lumbar puncture surgery. Mathematical Biosciences and Engineering, 2023, 20(1): 613-623. doi: 10.3934/mbe.2023028
    [4] Wei-wei Jiang, Guang-quan Zhou, Ka-Lee Lai, Song-yu Hu, Qing-yu Gao, Xiao-yan Wang, Yong-ping Zheng . A fast 3-D ultrasound projection imaging method for scoliosis assessment. Mathematical Biosciences and Engineering, 2019, 16(3): 1067-1081. doi: 10.3934/mbe.2019051
    [5] Won Man Park, Young Joon Kim, Shaobai Wang, Yoon Hyuk Kim, Guoan Li . Investigation of lumbar spine biomechanics using global convergence optimization and constant loading path methods. Mathematical Biosciences and Engineering, 2020, 17(4): 2970-2983. doi: 10.3934/mbe.2020168
    [6] Hang Yu, Jiarui Shi, Jin Qian, Shi Wang, Sheng Li . Single dendritic neural classification with an effective spherical search-based whale learning algorithm. Mathematical Biosciences and Engineering, 2023, 20(4): 7594-7632. doi: 10.3934/mbe.2023328
    [7] Jing Cao, Dong Zhao, Chenlei Tian, Ting Jin, Fei Song . Adopting improved Adam optimizer to train dendritic neuron model for water quality prediction. Mathematical Biosciences and Engineering, 2023, 20(5): 9489-9510. doi: 10.3934/mbe.2023417
    [8] Siqi Hu, Fang Wang, Junjun Yang, Xingxiang Xu . Elevated ADAR expression is significantly linked to shorter overall survival and immune infiltration in patients with lung adenocarcinoma. Mathematical Biosciences and Engineering, 2023, 20(10): 18063-18082. doi: 10.3934/mbe.2023802
    [9] Huihao Wang, Kuan Wang, Zhen Deng, Xiaofei Li, Yi-Xian Qin, Hongsheng Zhan, Wenxin Niu . Effects of facet joint degeneration on stress alterations in cervical spine C5–C6: A finite element analysis. Mathematical Biosciences and Engineering, 2019, 16(6): 7447-7457. doi: 10.3934/mbe.2019373
    [10] Joanna R. Wares, Joseph J. Crivelli, Chae-Ok Yun, Il-Kyu Choi, Jana L. Gevertz, Peter S. Kim . Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections. Mathematical Biosciences and Engineering, 2015, 12(6): 1237-1256. doi: 10.3934/mbe.2015.12.1237
  • Recent evidence indicates that the morphology and density of dendritic spines are regulated during synaptic plasticity. See, for instance, a review by Hayashi and Majewska [9]. In this work, we extend previous modeling studies [27] by combining a model for activity-dependent spine density with one for calcium-mediated spine stem restructuring. The model is based on the standard dimensionless cable equation, which represents the change in the membrane potential in a passive dendrite. Additional equations characterize the change in spine density along the dendrite, the current balance equation for an individual spine head, the change in calcium concentration in the spine head, and the dynamics of spine stem resistance. We use computational studies to investigate the changes in spine density and structure for differing synaptic inputs and demonstrate the effects of these changes on the input-output properties of the dendritic branch. Moderate amounts of high-frequency synaptic activation to dendritic spines result in an increase in spine stem resistance that is correlated with spine stem elongation. In addition, the spine density increases both inside and outside the input region. The model is formulated so that this long-term potentiation-inducing stimulus eventually leads to structural stability. In contrast, a prolonged low-frequency stimulation paradigm that would typically induce long-term depression results in a decrease in stem resistance (correlated with stem shortening) and an eventual decrease in spine density.


  • This article has been cited by:

    1. Muhammad Dur-e-Ahmad, MODELING CALCIUM DYNAMICS AND INHIBITION BASED SYNAPTIC PLASTICITY IN DENDRITIC SPINES, 2014, 19, 1392-6292, 676, 10.3846/13926292.2014.980865
    2. Ahmet S. Ozcan, Mehmet S. Ozcan, Population Dynamics and Long-Term Trajectory of Dendritic Spines, 2018, 10, 1663-3563, 10.3389/fnsyn.2018.00025
    3. S.M. Baer, S. Crook, M. Dur-e-Ahmad, Z. Jackiewicz, Numerical solution of calcium-mediated dendritic branch model, 2009, 229, 03770427, 416, 10.1016/j.cam.2008.04.011
    4. M. Dur-e-Ahmad, M. Imran, Asiya Gul, Calcium dynamics in dendritic spines: A link to structural plasticity, 2011, 230, 00255564, 55, 10.1016/j.mbs.2011.01.002
    5. Morteza Rouhani, Steven M. Baer, Sharon M. Crook, A stage-structured population model for activity-dependent dendritic spines, 2020, 1751-3758, 1, 10.1080/17513758.2020.1839136
    6. Upinder S. Bhalla, 2014, 123, 9780123978974, 351, 10.1016/B978-0-12-397897-4.00012-7
    7. Upinder S. Bhalla, 2013, Chapter 9, 978-1-4614-1423-0, 187, 10.1007/978-1-4614-1424-7_9
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2389) PDF downloads(461) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog