Modeling and optimal regulation of erythropoiesis subject to benzene intoxication

  • Received: 01 February 2004 Accepted: 29 June 2018 Published: 01 March 2004
  • MSC : 34K60, 34K35, 65M60, 92C37, 93C20.

  • Benzene (C6H6) is a highly flammable, colorless liquid. Ubiquitous exposures result from its presence in gasoline vapors, cigarette smoke, and industrial processes. Benzene increases the incidence of leukemia in humans when they are exposed to high doses for extended periods; however, leukemia risks in humans subjected to low exposures are uncertain. The exposure-dose- response relationship of benzene in humans is expected to be nonlinear because benzene undergoes a series of metabolic transformations, detoxifying and activating, resulting in various metabolites that exert toxic e ffects on the bone marrow.
        Since benzene is a known human leukemogen, the toxicity of benzene in the bone marrow is of most importance. And because blood cells are produced in the bone marrow, we investigated the eff ects of benzene on hematopoiesis (blood cell production and development). An age-structured model was used to examine the process of erythropoiesis, the development of red blood cells. This investigation proved the existence and uniqueness of the solution of the system of coupled partial and ordinary di fferential equations. In addition, we formulated an optimal control problem for the control of erythropoiesis and performed numerical simulations to compare the performance of the optimal feedback law and another feedback function based on the Hill function.

    Citation: H. T. Banks, Cammey E. Cole, Paul M. Schlosser, Hien T. Tran. Modeling and optimal regulation of erythropoiesis subject to benzene intoxication[J]. Mathematical Biosciences and Engineering, 2004, 1(1): 15-48. doi: 10.3934/mbe.2004.1.15

    Related Papers:

    [1] Manoj Kumar, Syed Abbas, Abdessamad Tridane . Optimal control and stability analysis of an age-structured SEIRV model with imperfect vaccination. Mathematical Biosciences and Engineering, 2023, 20(8): 14438-14463. doi: 10.3934/mbe.2023646
    [2] Rinaldo M. Colombo, Mauro Garavello . Stability and optimization in structured population models on graphs. Mathematical Biosciences and Engineering, 2015, 12(2): 311-335. doi: 10.3934/mbe.2015.12.311
    [3] Wandi Ding . Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences and Engineering, 2007, 4(4): 633-659. doi: 10.3934/mbe.2007.4.633
    [4] Amira Bouhali, Walid Ben Aribi, Slimane Ben Miled, Amira Kebir . Impact of immunity loss on the optimal vaccination strategy for an age-structured epidemiological model. Mathematical Biosciences and Engineering, 2024, 21(6): 6372-6392. doi: 10.3934/mbe.2024278
    [5] Han Ma, Qimin Zhang . Threshold dynamics and optimal control on an age-structured SIRS epidemic model with vaccination. Mathematical Biosciences and Engineering, 2021, 18(6): 9474-9495. doi: 10.3934/mbe.2021465
    [6] Rong Liu, Fengqin Zhang . A hierarchical age-structured model of optimal vermin management by contraception. Mathematical Biosciences and Engineering, 2023, 20(4): 6691-6720. doi: 10.3934/mbe.2023288
    [7] Rinaldo M. Colombo, Mauro Garavello . Optimizing vaccination strategies in an age structured SIR model. Mathematical Biosciences and Engineering, 2020, 17(2): 1074-1089. doi: 10.3934/mbe.2020057
    [8] Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615
    [9] Azmy S. Ackleh, Jeremy J. Thibodeaux . Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences and Engineering, 2008, 5(4): 601-616. doi: 10.3934/mbe.2008.5.601
    [10] Rama Seck, Diène Ngom, Benjamin Ivorra, Ángel M. Ramos . An optimal control model to design strategies for reducing the spread of the Ebola virus disease. Mathematical Biosciences and Engineering, 2022, 19(2): 1746-1774. doi: 10.3934/mbe.2022082
  • Benzene (C6H6) is a highly flammable, colorless liquid. Ubiquitous exposures result from its presence in gasoline vapors, cigarette smoke, and industrial processes. Benzene increases the incidence of leukemia in humans when they are exposed to high doses for extended periods; however, leukemia risks in humans subjected to low exposures are uncertain. The exposure-dose- response relationship of benzene in humans is expected to be nonlinear because benzene undergoes a series of metabolic transformations, detoxifying and activating, resulting in various metabolites that exert toxic e ffects on the bone marrow.
        Since benzene is a known human leukemogen, the toxicity of benzene in the bone marrow is of most importance. And because blood cells are produced in the bone marrow, we investigated the eff ects of benzene on hematopoiesis (blood cell production and development). An age-structured model was used to examine the process of erythropoiesis, the development of red blood cells. This investigation proved the existence and uniqueness of the solution of the system of coupled partial and ordinary di fferential equations. In addition, we formulated an optimal control problem for the control of erythropoiesis and performed numerical simulations to compare the performance of the optimal feedback law and another feedback function based on the Hill function.


  • This article has been cited by:

    1. Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis, A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme, 2014, 11, 1551-0018, 679, 10.3934/mbe.2014.11.679
    2. Pablo Escandell-Montero, Milena Chermisi, José M. Martínez-Martínez, Juan Gómez-Sanchis, Carlo Barbieri, Emilio Soria-Olivas, Flavio Mari, Joan Vila-Francés, Andrea Stopper, Emanuele Gatti, José D. Martín-Guerrero, Optimization of anemia treatment in hemodialysis patients via reinforcement learning, 2014, 62, 09333657, 47, 10.1016/j.artmed.2014.07.004
    3. S. Fischer, P. Kurbatova, N. Bessonov, O. Gandrillon, V. Volpert, F. Crauste, Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage, 2012, 298, 00225193, 92, 10.1016/j.jtbi.2012.01.002
    4. Sibylle Schirm, Christoph Engel, Markus Loeffler, Markus Scholz, Modelling chemotherapy effects on granulopoiesis, 2014, 8, 1752-0509, 10.1186/s12918-014-0138-7
    5. O. Hyrien, S. A. Peslak, N. M. Yanev, J. Palis, Stochastic modeling of stress erythropoiesis using a two-type age-dependent branching process with immigration, 2015, 70, 0303-6812, 1485, 10.1007/s00285-014-0803-x
    6. O. Angulo, O. Gandrillon, F. Crauste, Investigating the role of the experimental protocol in phenylhydrazine-induced anemia on mice recovery, 2018, 437, 00225193, 286, 10.1016/j.jtbi.2017.10.031
    7. Fabien Crauste, Laurent Pujo-Menjouet, Stéphane Génieys, Clément Molina, Olivier Gandrillon, Adding self-renewal in committed erythroid progenitors improves the biological relevance of a mathematical model of erythropoiesis, 2008, 250, 00225193, 322, 10.1016/j.jtbi.2007.09.041
    8. Azmy S. Ackleh, Jeremy J. Thibodeaux, A second-order finite difference approximation for a mathematical model of erythropoiesis, 2013, 0749159X, n/a, 10.1002/num.21778
    9. Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, A second-order high-resolution finite difference scheme for a size-structured model for the spread ofMycobacterium marinum, 2015, 9, 1751-3758, 156, 10.1080/17513758.2014.962998
    10. Azmy S. Ackleh, Keng Deng, Kazufumi Ito, Jeremy Thibodeaux, A structured erythropoiesis model with nonlinear cell maturation velocity and hormone decay rate, 2006, 204, 00255564, 21, 10.1016/j.mbs.2006.08.004
    11. Doris H. Fuertinger, Franz Kappel, Hanjie Zhang, Stephan Thijssen, Peter Kotanko, Kostas Pantopoulos, Prediction of hemoglobin levels in individual hemodialysis patients by means of a mathematical model of erythropoiesis, 2018, 13, 1932-6203, e0195918, 10.1371/journal.pone.0195918
    12. Jeremy J. Thibodeaux, Timothy P. Schlittenhardt, Optimal Treatment Strategies for Malaria Infection, 2011, 73, 0092-8240, 2791, 10.1007/s11538-011-9650-8
    13. L. Pujo-Menjouet, V. Volpert, Blood Cell Dynamics: Half of a Century of Modelling, 2016, 11, 0973-5348, 92, 10.1051/mmnp/201611106
    14. Jeremy J. Thibodeaux, Daniel Nuñez, Andres Rivera, A generalized within-host model of dengue infection with a non-constant monocyte production rate, 2020, 14, 1751-3758, 143, 10.1080/17513758.2020.1733678
    15. Cammey C. Manning, Paul M. Schlosser, Hien T. Tran, A Multicompartment Liver-based Pharmacokinetic Model for Benzene and its Metabolites in Mice, 2010, 72, 0092-8240, 507, 10.1007/s11538-009-9459-x
    16. Jeremy J. Thibodeaux, Michael Hennessey, A Within-Host Model of Dengue Infection with a Non-Constant Monocyte Production Rate, 2016, 07, 2152-7385, 2382, 10.4236/am.2016.718187
    17. Azmy S. Ackleh, Baoling Ma, Jeremy J. Thibodeaux, A second-order high resolution finite difference scheme for a structured erythropoiesis model subject to malaria infection, 2013, 245, 00255564, 2, 10.1016/j.mbs.2013.03.007
    18. Jeremy J. Thibodeaux, Modeling erythropoiesis subject to malaria infection, 2010, 225, 00255564, 59, 10.1016/j.mbs.2010.02.001
    19. Doris H. Fuertinger, Franz Kappel, Stephan Thijssen, Nathan W. Levin, Peter Kotanko, A model of erythropoiesis in adults with sufficient iron availability, 2013, 66, 0303-6812, 1209, 10.1007/s00285-012-0530-0
    20. Sibylle Schirm, Christoph Engel, Markus Loeffler, Markus Scholz, Pranela Rameshwar, A Biomathematical Model of Human Erythropoiesis under Erythropoietin and Chemotherapy Administration, 2013, 8, 1932-6203, e65630, 10.1371/journal.pone.0065630
    21. Fabien Crauste, Ivan Demin, Olivier Gandrillon, Vitaly Volpert, Mathematical study of feedback control roles and relevance in stress erythropoiesis, 2010, 263, 00225193, 303, 10.1016/j.jtbi.2009.12.026
    22. Mostafa Adimy, Louis Babin, Laurent Pujo-Menjouet, Why Are Periodic Erythrocytic Diseases so Rare in Humans?, 2022, 84, 0092-8240, 10.1007/s11538-021-00973-6
    23. Sibylle Schirm, Christoph Engel, Markus Loeffler, Markus Scholz, A combined model of human erythropoiesis and granulopoiesis under growth factor and chemotherapy treatment, 2014, 11, 1742-4682, 10.1186/1742-4682-11-24
  • Reader Comments
  • © 2004 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4323) PDF downloads(1036) Cited by(23)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog