
In 2021, Ivan Gutman introduced the Sombor index, a new vertex-degree-based topological index with significant geometric meaning. This index has shown remarkable growth in research activity in recent years. Following this geometric approach, in this paper we propose several generalizations of the Sombor integral indices. In addition, we study their properties and applications in modeling the enthalpy of vaporization of octane isomers.
Citation: Jorge Batanero, Edil D. Molina, José M. Rodríguez. On h-integral Sombor indices[J]. AIMS Mathematics, 2025, 10(5): 12421-12446. doi: 10.3934/math.2025561
[1] | Chenxu Yang, Meng Ji, Kinkar Chandra Das, Yaping Mao . Extreme graphs on the Sombor indices. AIMS Mathematics, 2022, 7(10): 19126-19146. doi: 10.3934/math.20221050 |
[2] | Kun Wang, Wenjie Ning, Yuheng Song . Extremal values of the modified Sombor index in trees. AIMS Mathematics, 2025, 10(5): 12092-12103. doi: 10.3934/math.2025548 |
[3] | Fan Wu, Xinhui An, Baoyindureng Wu . Sombor indices of cacti. AIMS Mathematics, 2023, 8(1): 1550-1565. doi: 10.3934/math.2023078 |
[4] | Akbar Ali, Darko Dimitrov, Tamás Réti, Abdulaziz Mutlaq Alotaibi, Abdulaziz M. Alanazi, Taher S. Hassan . Degree-based graphical indices of $ k $-cyclic graphs. AIMS Mathematics, 2025, 10(6): 13540-13554. doi: 10.3934/math.2025609 |
[5] | Yufei Huang, Hechao Liu . Bounds of modified Sombor index, spectral radius and energy. AIMS Mathematics, 2021, 6(10): 11263-11274. doi: 10.3934/math.2021653 |
[6] | Juan C. Hernández, José M. Rodríguez, O. Rosario, José M. Sigarreta . Extremal problems on the general Sombor index of a graph. AIMS Mathematics, 2022, 7(5): 8330-8343. doi: 10.3934/math.2022464 |
[7] | Akbar Ali, Sadia Noureen, Akhlaq A. Bhatti, Abeer M. Albalahi . On optimal molecular trees with respect to Sombor indices. AIMS Mathematics, 2023, 8(3): 5369-5390. doi: 10.3934/math.2023270 |
[8] | Zenan Du, Lihua You, Hechao Liu, Yufei Huang . The Sombor index and coindex of two-trees. AIMS Mathematics, 2023, 8(8): 18982-18994. doi: 10.3934/math.2023967 |
[9] | Zhenhua Su, Zikai Tang . Extremal unicyclic and bicyclic graphs of the Euler Sombor index. AIMS Mathematics, 2025, 10(3): 6338-6354. doi: 10.3934/math.2025289 |
[10] | Akbar Ali, Ivan Gutman, Boris Furtula, Abeer M. Albalahi, Amjad E. Hamza . On chemical and mathematical characteristics of generalized degree–based molecular descriptors. AIMS Mathematics, 2025, 10(3): 6788-6804. doi: 10.3934/math.2025311 |
In 2021, Ivan Gutman introduced the Sombor index, a new vertex-degree-based topological index with significant geometric meaning. This index has shown remarkable growth in research activity in recent years. Following this geometric approach, in this paper we propose several generalizations of the Sombor integral indices. In addition, we study their properties and applications in modeling the enthalpy of vaporization of octane isomers.
Topological indices have emerged as essential tools in the analysis of complex structures across various scientific disciplines, particularly in mathematical chemistry, bioinformatics, and network theory. These indices are numerical values that capture the intrinsic properties of a structure, regardless of its specific representation or the coordinates used. This characteristic makes them powerful tools for the characterization and classification of complex systems in multiple disciplines.
In chemistry, for example, topological indices have been fundamental for the prediction of physicochemical and biological properties of molecules, facilitating the rational design of new compounds. By providing a numerical representation of molecular structure, these indices allow researchers to correlate structural features with biological activities, physical properties, and chemical reactivity, see [1,2,3]. For more information on other important applications of topological indices to specific problems in physics, computer science, and environmental science, see [4,5,6].
Vertex-degree-based topological indices are an essential category within topological indices and have received considerable attention due to their simplicity and effectiveness in a wide range of applications (see [7] for the geometric-arithmetic index, [8] for the sum-connectivity index, [9] for the arithmetic-geometric index, [10,11,12] for variable indices, [13,14] for extremal problems, [15] for spectral properties, and [16] for applications). Among these indices, the recently introduced Sombor index has proven to be a valuable tool in the characterization of molecular structure and the prediction of physicochemical properties. This index is defined in [17] for a graph G as
SO(G)=∑uv∈E(G)√d2u+d2v, |
where du denotes the degree of the vertex u.
There is a lot of work regarding this index, studying generalizations [18,19], inequalities [20,21,22], optimization problems [23,24,25], and random graphs [26,27].
In [19], the geometric approach of the SO index is emphasized. Additionally, in the same paper two new indices are defined, called Sombor integral indices, also with a geometric approach. Following this line of research, the present article proposes generalizations of the Sombor integral indices, examines their mathematical properties, and explores their application in modeling the enthalpy of vaporization (ΔH∘vap) property of octane isomers.
Throughout this work, G=(V(G),E(G)) denotes a finite simple graph without isolated vertices. The degree du of a vertex u∈V(G) is the number of vertices adjacent to u. If there is an edge from vertex u to vertex v, we indicate this by uv (or vu).
Recall that a function f:[a,b]→R is absolutely continuous if for every ε>0, there is δ>0 such that whenever a finite sequence of pairwise disjoint intervals (a1,b1),…,(aN,bN)⊂[a,b] satisfies
N∑n=1(bn−an)<δ, |
then
N∑n=1|f(bn)−f(an)|<ε. |
If I⊆R is any interval, a function f:I→R is absolutely continuous if it is absolutely continuous on each compact interval contained in I. It is well-known that f:I→R is absolutely continuous if and only if there exists f′(x) for a.e.x∈I and f(b)−f(a)=∫baf′(x)dx for every a,b∈I.
The next definitions play a fundamental role in this work.
Given a function h:[1,∞)→(0,∞) which is bounded on each compact interval, we say that a set of functions F={fα}={fα}α∈A (where A is the set to which the parameter α belongs, usually A=R+) is h-admissible if each fα:[0,∞)→[0,∞) is an absolutely continuous function satisfying the following property: For each positive integers a,b with a≥b there exists a unique α such that fα(h(a))=h(b). Given positive integers a,b with a≥b and α such that fα(h(a))=h(b), define,
FF,h,1(a,b)=FF,h,1(b,a)=∫h(a)0√1+f′α(x)2dx,FF,h,2(a,b)=FF,h,2(b,a)=∫h(a)0fα(x)dx. |
Remark 1. Note that FF,h,1(a,b) is the length of the graph of fα for 0≤x≤h(a), and, since fα≥0, FF,h,2(a,b) is the area under the graph of fα for 0≤x≤h(a). This shows the geometric meaning of these quantities.
Also, define the first and second h-integral Sombor indices of a graph G as
ISOF,h,1(G)=∑uv∈E(G)FF,h,1(du,dv),ISOF,h,2(G)=∑uv∈E(G)FF,h,2(du,dv). |
Remark 2. If we consider h(x)=x and the h-admissible set of functions F1={fα(x)=αx:α>0}, then
ISOF1,h,1(G)=SO(G) |
for every graph G (see Proposition 4.2).
Note that for h(x)=x we have ISOF,h,1=ISOF,1 and ISOF,h,2=ISOF,2, so these new indices generalize the integral Sombor indices ISOF,1 and ISOF,2 defined in [19].
For any graph G, we define
h-M1(G)=∑uv∈E(G)(h(du)+h(dv))=∑u∈V(G)duh(du), |
h-M2(G)=∑uv∈E(G)h(du)h(dv), |
and
h-SO(G)=∑uv∈E(G)√h(du)2+h(dv)2. |
Note that if h(x)=x, the first and second Zagreb indices and the Sombor index are obtained, respectively. In this context, the following inequality chain naturally arises:
√2h-M2(G)≤h-SO(G)≤h-M1(G). |
Next, we include a list summarizing the meanings of all symbols:
F={fα}: family of functions.
Fs={fα(x)=αxs:α>0} for fixed s>0.
Gs={gα(x)=αesx:α>0} for fixed s≠0.
FF,h,1(a,b)=∫h(a)0√1+f′α(x)2dx.
FF,h,2(a,b)=∫h(a)0fα(x)dx.
ISOF,h,1(G)=∑uv∈E(G)FF,h,1(du,dv): first h-integral Sombor index.
ISOF,h,2(G)=∑uv∈E(G)FF,h,2(du,dv): second h-integral Sombor index.
h-M1(G)=∑uv∈E(G)(h(du)+h(dv)).
h-M2(G)=∑uv∈E(G)h(du)h(dv).
h-SO(G)=∑uv∈E(G)√h(du)2+h(dv)2.
Next, we compute the values of the h-integral Sombor indices for some particular types of graphs. We say that a graph G with maximum degree Δ and minimum degree δ is biregular if {du,dv}={Δ,δ} for every uv∈E(G) (in particular, every regular graph is biregular).
Proposition 2.1. Let G be a biregular graph with m edges, minimum degree δ, and maximum degree Δ. Define the family of functions Fs={fα(x)=αxs:α>0} for each fixed s>0. Then, Fs is h-admissible for each s>0, and
ISOFs,h,2(G)=ms+1h(Δ)h(δ),ISOFs,h,1(G)=m∫10√h(Δ)2+h(δ)2s2x2s−2dx. |
In particular, if s=3/2, then
ISOF3/2,h,1(G)=m27h(δ)−2(4h(Δ)2+9h(δ)2)3/2. |
Proof. We have that fα(x):[0,∞)→[0,∞) is a C∞ function on (0,∞) for each α>0 and s>0.
Let a,b∈Z+ such that a≥b. If we take α=h(a)−sh(b)>0, then fα(h(a))=h(a)−sh(b)h(a)s=h(b). Therefore, Fs is h-admissible and fα0(h(Δ))=h(δ), with α0=h(Δ)−sh(δ).
Since {du,dv}={Δ,δ} for every uv∈E(G), we obtain
FFs,h,2(du,dv)=FFs,h,2(Δ,δ)=∫h(Δ)0fα0(x)dx=∫h(Δ)0h(Δ)−sh(δ)xsdx=h(Δ)−sh(δ)xs+1s+1|h(Δ)0=1s+1h(Δ)h(δ), |
and
FFs,h,1(du,dv)=FFs,h,1(Δ,δ)=∫h(Δ)0√1+f′α0(x)2dx=∫h(Δ)0√1+h(Δ)−2sh(δ)2s2x2s−2dx. |
With the change of variable t=x/h(Δ), we obtain
FFs,h,1(du,dv)=∫10√1+h(Δ)−2h(δ)2s2t2s−2h(Δ)dt=∫10√h(Δ)2+h(δ)2s2t2s−2dt. |
In particular, if s=3/2, then
FF3/2,h,1(du,dv)=∫10√h(Δ)2+h(δ)2s2x2s−2dx=∫10(h(Δ)2+h(δ)294x)1/2dx=23h(δ)−249(h(Δ)2+h(δ)294x)3/2|10=827h(δ)−2(h(Δ)2+h(δ)294)3/2=127h(δ)−2(4h(Δ)2+9h(δ)2)3/2. |
Therefore, the desired equalities hold.
Proposition 2.1 has the following consequences.
Corollary 2.2. Let G be a δ-regular graph with m edges. If Fs={fα(x)=αxs:α>0} with fixed s>0, then
ISOFs,h,2(G)=ms+1h(δ)2,ISOFs,h,1(G)=mh(δ)∫10√1+s2x2s−2dx. |
In particular, if s=3/2, then
ISOF3/2,h,1(G)=13√1327h(δ)m. |
Corollary 2.3. Let Fs={fα(x)=αxs:α>0} with fixed s>0.
● If Kn is the complete graph with n vertices (n≥2), then
ISOFs,h,2(Kn)=n(n−1)2s+2h(n−1)2,ISOF3/2,h,1(Kn)=13√1354n(n−1)h(n−1). |
● If Cn is the cycle graph with n vertices (n≥3), then
ISOFs,h,2(Cn)=ns+1h(2)2,ISOF3/2,h,1(Cn)=13√1327nh(2). |
● If Kn1,n2 is the complete bipartite graph with n1+n2 vertices (n1≥n2≥1), then
ISOFs,h,2(Kn1,n2)=n1n2s+1h(n1)h(n2),ISOF3/2,h,1(Kn1,n2)=n1n227h(n2)−2(4h(n1)2+9h(n2)2)3/2. |
● If Sn is the star graph with n vertices (n≥3), then
ISOFs,h,2(Sn)=n−1s+1h(n−1)h(1),ISOF3/2,h,1(Sn)=n−127h(1)−2(4h(n−1)2+9h(1)2)3/2. |
● If Wn is the wheel graph with n vertices (n≥4), then
ISOFs,h,2(Wn)=2n−2s+1h(n−1)h(3),ISOF3/2,h,1(Wn)=2n−227h(3)−2(4h(n−1)2+9h(3)2)3/2. |
We collect in this section some integral inequalities that will be useful throughout the paper.
The following Hardy-Muckenhoupt inequality [28] will be used to establish a relationship between the first and second h-integral Sombor indices (see Theorem 4.4). As usual, we denote by ‖f‖Lp([a,b],μ) the Lp-norm (1≤p<∞) of the function f with respect to the measure μ on [a,b]:
‖f‖Lp(X,μ)=(∫ba|f|pdμ)1/p. |
Also, denote by dμ1/dx the Radon-Nikodym derivative of the measure μ with respect to the Lebesgue measure.
Lemma 3.1. Let us consider 1≤p≤q<∞ and measures μ0,μ1 on [a,b] with μ0({b})=0. Then, there exists a positive constant C such that
‖∫xau(t)dt‖Lq([a,b],μ0)≤C‖u‖Lp([a,b],μ1) |
for any measurable function u on [a,b], if and only if
B:=supa<x<bμ0([x,b))1/q‖(dμ1/dx)−1‖1/pL1/(p−1)([a,x],μ1)<∞, | (3.1) |
where we use the convention 0⋅∞=0. Moreover, we can choose
C={B(qq−1)(p−1)/pq1/q,if p > 1 ,B,if p = 1 . | (3.2) |
Remark 3. Note that the Hardy-Muckenhoupt inequality is very useful since it allows us to bound the norm of the derivative of a function with respect to a measure in terms of the norm of the function with respect to a (possibly different) measure.
The following results for the integral of convex functions will be useful in order to obtain bounds of the first and second h-integral Sombor indices (see Theorem 4.7). First, the Hermite-Hadamard inequality, which was first presented by Jacques Hadamard in 1893, and then Bullen's inequality, proved in [29] (see also [30]).
Lemma 3.2. If f is a convex function on [a,b], then
f(a+b2)≤1b−a∫baf(x)dx≤f(a)+f(b)2. |
Lemma 3.3. If f is a convex function on [a,b], then
2b−a∫baf(x)dx≤f(a)+f(b)2+f(a+b2). |
Finally, we will need the following integral inequality (see Lemma 4.10).
Lemma 3.4. Let g:[0,a]→R be an absolutely continuous function such that g(0)=0. Then,
|∫a0g(x)dx|≤a22‖g′‖L∞[0,a]. |
Proof. We have
∫a0g(x)dx=ag(a)−∫a0xg′(x)dx=a∫a0g′(x)dx−∫a0xg′(x)dx=∫a0(a−x)g′(x)dx |
and so,
|∫a0g(x)dx|=|∫a0(a−x)g′(x)dx|≤∫a0(a−x)|g′(x)|dx≤‖g′‖L∞[0,a]∫a0(a−x)dx=a22‖g′‖L∞[0,a]. |
In this section we include some inequalities for h-integral Sombor indices which are standard consequences of convexity or known integral bounds. The novelty of these inequalities lies in their careful application to h-integral Sombor indices.
Let us start with a lower bound for the first h-integral Sombor index.
We say that a graph G is (F,h,1)-minimal if for each uv∈E(G) the function fα such that fα(h(max{du,dv}))=h(min{du,dv}) is an affine function on the interval [0,h(max{du,dv})].
Recall that a graph G with maximum degree Δ and minimum degree δ is biregular if {du,dv}={Δ,δ} for every uv∈E(G) (in particular, every regular graph is biregular). Then, a biregular graph is (F,h,1)-minimal if and only if the function fα0 such that fα0(h(Δ))=h(δ) is an affine function on the interval [0,h(Δ)].
Theorem 4.1. If F={fα} is an h-admissible set of functions such that fα(0)=0 for each α, then
ISOF,h,1(G)≥h-SO(G) |
for every graph G. The equality holds in this inequality if and only if G is a (F,h,1)-minimal graph.
Proof. Since fα(0)=0 for every α, FF,h,1(a,b) is the length of the curve γ(t)=(t,fα(t)) joining the points (0,0) and (h(a),h(b)), which is at least the Euclidean distance between these two points:
√h(a)2+h(b)2=dist((0,0),(h(a),h(b)))≤FF,h,1(a,b). |
Hence, for every graph G and uv∈E(G),
FF,h,1(du,dv)≥√h(du)2+h(dv)2,ISOF,h,1(G)≥∑uv∈E(G)√h(du)2+h(dv)2. |
The previous argument implies that the equality holds in this inequality if and only if for each uv∈E(G) the function fα such that fα(h(max{du,dv}))=h(min{du,dv}) is an affine function on the interval [0,h(max{du,dv})], i.e., if and only if G is a (F,h,1)-minimal graph.
Remark 4. Let us fix an h-admissible set of functions F={fα} such that fα(0)=0 for each α and positive integer numbers δ≤Δ. Assume that the function fα0 such that fα0(h(Δ))=h(δ) is an affine function on the interval [0,h(Δ)]. As we have seen before Theorem 4.1, every biregular graph G with maximum degree Δ and minimum degree δ is (F,h,1)-minimal graph, and so it satisfies ISOF,h,1(G)=h-SO(G) by Theorem 4.1. Hence, under these assumptions, the complete graph Kn with n vertices (n≥2), the cycle graph Cn with n vertices (n≥3), the complete bipartite graph Kn1,n2 with n1+n2 vertices (n1,n2≥1), the star graph Sn with n vertices (n≥3), the wheel graph Wn with n vertices (n≥4), the cube graph Qn with 2n vertices (n≥1), and the Petersen graph achieve the bound in Theorem 4.1.
Proposition 4.2. Let us consider the set F1={fα(x)=αx:α>0}. Then, F1 is an h-admissible set of functions, and
ISOF1,h,1(G)=h-SO(G) |
for every graph G. In particular, if h(x)=x, then
ISOF1,h,1(G)=SO(G) |
for every graph G.
Proof. Let a,b∈Z+ such that a≥b. If we take α=h(b)/h(a)>0, then fα(h(a))=h(a)−1h(b)h(a)=h(b). Therefore, F1 is h-admissible. Since fα(x)=αx is an affine function with fα(0)=0 for each α>0, Theorem 4.2 implies that
ISOF1,h,1(G)=h-SO(G) |
for every graph G. Since h-SO(G)=SO(G) for every graph G if h(x)=x, the last statement in the proposition holds.
We also have the following upper bound for the first h-integral Sombor index.
We say that a graph G is (F,h,1)-maximal if for each uv∈E(G) the function fα such that fα(h(max{du,dv}))=h(min{du,dv}) is constant on the interval [0,h(max{du,dv})].
Then, a biregular graph is (F,h,1)-maximal if and only if the function fα0 such that fα0(h(Δ))=h(δ) is constant on the interval [0,h(Δ)].
Theorem 4.3. If F={fα} is an h-admissible set of functions such that fα(0)=0 and fα is a non-decreasing function for each α, then
ISOF,h,1(G)≤h-M1(G) |
for every graph G. The equality holds in this inequality if and only if G is a (F,h,1)-maximal graph.
Proof. Since f′α≥0 for every α, we have
FF,h,1(a,b)=∫h(a)0√1+f′α(x)2dx≤∫h(a)0(1+|f′α(x)|)dx=∫h(a)0(1+f′α(x))dx=[x+fα(x)]x=h(a)x=0=h(a)+fα(h(a))=h(a)+h(b). |
Therefore, for every graph G and uv∈E(G),
FF,h,1(du,dv)≤h(du)+h(dv),ISOF,h,1(G)≤∑uv∈E(G)(h(du)+h(dv))=h-M1(G), |
for every graph G.
The previous argument implies that the equality holds in this inequality if and only if for each uv∈E(G) the function fα such that fα(h(max{du,dv}))=h(min{du,dv}) is constant on the interval [0,h(max{du,dv})], i.e., if and only if G is an (F,h,1)-maximal graph.
Remark 5. Let us fix an h-admissible set of functions F={fα} such that fα(0)=0 and fα is a non-decreasing function for each α and positive integers numbers δ≤Δ. Assume that the function fα0 such that fα0(h(Δ))=h(δ) is constant on the interval [0,h(Δ)]. As we have seen before Theorem 4.3, every biregular graph G with maximum degree Δ and minimum degree δ is (F,h,1)-maximal graph, and so it satisfies ISOF,h,1(G)=h-M1(G) by Theorem 4.3. Hence, under these assumptions, the complete graph Kn with n vertices (n≥2), the cycle graph Cn with n vertices (n≥3), the complete bipartite graph Kn1,n2 with n1+n2 vertices (n1,n2≥1), the star graph Sn with n vertices (n≥3), the wheel graph Wn with n vertices (n≥4), the cube graph Qn with 2n vertices (n≥1), and the Petersen graph achieve the bound in Theorem 4.3.
Our next result provides a relationship between the first and second h-integral Sombor indices.
Theorem 4.4. Let G be a graph with maximum degree Δ and minimum degree δ. Let F={fα} be an admissible set of functions with fα(0)=0 for each α. Then,
ISOF,h,2(G)≤supx∈[δ,Δ]{h(x)}ISOF,h,1(G). |
Proof. Let a,b∈Z+ with a≥b, and let α such that fα(h(a))=h(b).
If in Lemma 3.1 we take p=q=1 and let μ0=μ1 be the Lebesgue measure, then
C=B=sup0<x<h(a)μ0([x,h(a)))1/q‖(dμ1/dx)−1‖1/pL1/(p−1)([0,x])=sup0<x<h(a)(h(a)−x)‖1‖L∞([0,x])=h(a)<∞ |
and therefore, since fα(0)=0 and fα≥0, Lemma 3.1 implies
∫h(a)0fα(x)dx=∫h(a)0|fα(x)−fα(0)|dx≤h(a)∫h(a)0|f′α(x)|dx≤h(a)∫h(a)0√1+f′α(x)2dx. |
Thus, for each uv∈E(G), we have
FF,h,2(du,dv)≤h(max{du,dv})FF,h,1(du,dv)≤supx∈[δ,Δ]{h(x)}FF,h,1(du,dv). |
Consequently, summing for each uv∈E(G), we have
∑uv∈E(G)FF,h,2(du,dv)≤supx∈[δ,Δ]{h(x)}∑uv∈E(G)FF,h,1(du,dv),ISOF,h,2(G)≤supx∈[δ,Δ]{h(x)}ISOF,h,1(G). |
Corollary 4.5. Let G be a graph with maximum degree Δ and minimum degree δ. Let F={fα} be an admissible set of functions with fα(0)=0 for each α.
(1) If h is a non-decreasing function on [δ,Δ], then
ISOF,h,2(G)≤h(Δ)ISOF,h,1(G). |
(2) If h is a non-increasing function on [δ,Δ], then
ISOF,h,2(G)≤h(δ)ISOF,h,1(G). |
Now we shall employ the Hermite-Hadamard and Bullen's inequalities to establish the following result for the functions FF,h,1 and FF,h,2.
Lemma 4.6. Let F={fα} be an h-admissible set of functions. Let a,b∈Z+ with a≥b.
(1) If f′α(x)f‴α(x)≥0 for any x∈(0,∞) and any α, then
h(a)√1+f′α(h(a)2)2≤FF,h,1(a,b)≤h(a)4(√1+f′α(h(a))2+√1+f′α(0)2)+h(a)2√1+f′α(h(a)2)2. |
(2) If fα is a convex function for each α, then
h(a)fα(h(a)2)≤FF,h,2(a,b)≤h(a)4(h(b)+fα(0))+h(a)2fα(h(a)2). |
Proof. Assume first that f′α(x)f‴α(x)≥0 for any x∈(0,∞) and any α.
Let g(x):=√1+f′α(x)2. We have
g′(x)=f′α(x)f″α(x)(1+f′α(x)2)−1/2,g″(x)=(f″α(x)2+f′α(x)f‴α(x))(1+f′α(x)2)−1/2−f′α(x)2f″α(x)2(1+f′α(x)2)−3/2=f″α(x)2+f′α(x)f‴α(x)+f′α(x)2f″α(x)2+f′α(x)3f‴α(x)−f′α(x)2f″α(x)2(1+f′α(x)2)3/2=f″α(x)2+f′α(x)f‴α(x)+f′α(x)3f‴α(x)(1+f′α(x)2)3/2=f″α(x)2+f′α(x)f‴α(x)(1+f′α(x)2)(1+f′α(x)2)3/2≥0, |
since f′α(x)f‴α(x)≥0 for any x∈(0,∞). Hence, g(x) is a convex function on [0,h(a)] and, by Lemma 3.2, it follows that
1h(a)∫h(a)0g(x)dx≥g(h(a)2),FF,h,1(a,b)=∫h(a)0√1+f′α(x)2dx≥h(a)√1+f′α(h(a)2)2. |
In addition, Lemma 3.3 gives
2h(a)∫h(a)0g(x)dx≤g(h(a))+g(0)2+g(h(a)2),∫h(a)0√1+f′α(x)2dx≤h(a)4(√1+f′α(h(a))2+√1+f′α(0)2)+h(a)2√1+f′α(h(a)2)2. |
Assume now that fα is a convex function for each α. Then, Lemma 3.2 gives
FF,h,2(a,b)=∫h(a)0fα(x)dx≥h(a)fα(h(a)2). |
Also, Lemma 3.3 implies
∫h(a)0fα(x)dx≤h(a)4(fα(h(a))+fα(0))+h(a)2fα(h(a)2)=h(a)4(h(b)+fα(0))+h(a)2fα(h(a)2). |
Lemma 4.6 has the following consequence for the first and second h-integral Sombor indices.
Recall that h is bounded on each compact interval. Then, supx∈Kh(x)<∞ for any compact set K⊂[1,∞).
Theorem 4.7. Let G be a graph with m edges, minimum degree δ, and maximum degree Δ. Define Ω=supx∈[δ,Δ]h(x) and ω=infx∈[δ,Δ]h(x), and consider the family of functions Fs={fα(x)=αxs:α>0} for each fixed s>0. Then, the following inequalities hold:
(1) We have, for every s≥2,
mω√1+s222s−2≤ISOFs,h,1(G)≤14mΩ(√1+s2+1+2√1+s222s−2). |
(2) We have, for every s>0,
mω2s+1≤ISOFs,h,2(G)=h-M2(G)s+1≤mΩ2s+1. |
Proof. Recall that Proposition 2.1 implies that Fs is h-admissible.
If s≥2, then we have f′α(x)f‴α(x)=α2s2(s−1)(s−2)x2s−4>0 for every x>0. By Lemma 4.6, we have
FFs,h,1(a,b)≥h(a)√1+(h(a)−sh(b)s(h(a)2)s−1)2=√h(a)2+s222s−2h(b)2, |
and
FFs,h,1(a,b)≤h(a)4(√1+(h(a)−sh(b)sh(a)s−1)2+1)+12√h(a)2+s222s−2h(b)2=14√h(a)2+s2h(b)2+14h(a)+12√h(a)2+s222s−2h(b)2. |
So, for any uv∈E(G), we have
FFs,h,1(du,dv)≥√h(max{du,dv})2+s222s−2h(min{du,dv})2≥√ω2+s222s−2ω2=ω√1+s222s−2, |
and
FFs,h,1(du,dv)≤14√h(max{du,dv})2+s2h(min{du,dv})2+14h(max{du,dv})+12√h(max{du,dv})2+s222s−2h(min{du,dv})2≤14√Ω2+s2Ω2+14Ω+12√Ω2+s222s−2Ω2=14Ω(√1+s2+1+2√1+s222s−2). |
Therefore, summing for all uv∈E(G), we get
mω√1+s222s−2≤ISOFs,h,1(G)≤14mΩ(√1+s2+1+2√1+s222s−2). |
If s>0, then we have
FFs,h,2(a,b)=∫h(a)0αxsdx=h(b)h(a)−sxs+1s+1|h(a)0=h(b)h(a)s+1. |
Thus, for any uv∈E(G), we have
ω2s+1≤FFs,h,2(du,dv)=h(du)h(dv)s+1≤Ω2s+1. |
So, summing for all uv∈E(G), we get
mω2s+1≤ISOFs,h,2=1s+1∑uv∈E(G)h(du)h(dv)≤mΩ2s+1. |
The next result will be useful in the proof of Theorem 4.9 below.
Lemma 4.8. Let F={fα} be an h-admissible set of functions such that f′α is a non-decreasing absolutely continuous function with f′α≥0 on [0,∞) for each α, and a,b∈Z+ with a≥b.
(1) If f″α is a non-decreasing function, then
FF,h,1(a,b)≤h(a)[f′α(h(a))√1+f′α(h(a))2−f′α(0)√1+f′α(0)2+ln(f′α(h(a))+√1+f′α(h(a))2f′α(0)+√1+f′α(0)2)]2(f′α(h(a))−f′α(0)). |
(2) If f″α is a non-increasing function, then
FF,h,1(a,b)≥h(a)[f′α(h(a))√1+f′α(h(a))2−f′α(0)√1+f′α(0)2+ln(f′α(h(a))+√1+f′α(h(a))2f′α(0)+√1+f′α(0)2)]2(f′α(h(a))−f′α(0)). |
Proof. Since there exists f″α, we have that f′α is continuous on [0,h(a)], and so √1+(f′α)2 is bounded on [0,h(a)]. Since f′α is an absolutely continuous function on [0,∞), f″α is integrable on [0,h(a)]. Then, √1+(f′α)2f″α is integrable on [0,h(a)] and
∫h(a)0√1+f′α(x)2f″α(x)dx=∫f′α(h(a))f′α(0)√1+u2du=u2√1+u2+12ln(u+√1+u2)|f′α(h(a))f′α(0)=f′α(h(a))2√1+f′α(h(a))2−f′α(0)2√1+f′α(0)2+12ln(f′α(h(a))+√1+f′α(h(a))2f′α(0)+√1+f′α(0)2). | (4.1) |
Since f′α is non-decreasing and f′α≥0, the function √1+f′α(x)2 is also non-decreasing.
If f″α is also a non-decreasing function, Chebyshev's inequality gives
1h(a)∫h(a)0√1+f′α(x)2dx∫h(a)0f″α(x)dx≤∫h(a)0√1+f′α(x)2f″α(x)dx. |
Consequently,
FF,h,1(a,b)≤h(a)[f′α(h(a))√1+f′α(h(a))2−f′α(0)√1+f′α(0)2+ln(f′α(h(a))+√1+f′α(h(a))2f′α(0)+√1+f′α(0)2)]2(f′α(h(a))−f′α(0)). |
If f″α is a non-increasing function, Chebyshev's inequality also gives
1h(a)∫h(a)0√1+f′α(x)2dx∫h(a)0f″α(x)dx≥∫h(a)0√1+f′α(x)2f″α(x)dx. |
Consequently,
FF,h,1(a,b)≥h(a)[f′α(h(a))√1+f′α(h(a))2−f′α(0)√1+f′α(0)2+ln(f′α(h(a))+√1+f′α(h(a))2f′α(0)+√1+f′α(0)2)]2(f′α(h(a))−f′α(0)). |
Lemma 4.8 allows us to prove the following inequalities when we consider the set of functions Fs with s≥1.
Theorem 4.9. Let G be a graph with m edges, maximum degree Δ, and minimum degree δ. Define Ω=supx∈[δ,Δ]h(x) and ω=infx∈[δ,Δ]h(x). Consider the h-admissible set of functions Fs={fα(x)=αxs:α>0} with s≥1.
(1) If s≥2, then
ISOFs,h,1(G)≤12mΩ[√1+s2+Ωsωln(sΩω+√1+s2Ω2ω2)]. |
(2) If 1≤s≤2, then
ISOFs,h,1(G)≥12mω[√1+s2+ωsΩln(sωΩ+√1+s2ω2Ω2)]. |
Proof. Fix a,b∈Z+ with a≥b. We have that f′α(x)=sαxs−1 and f″α(x)=s(s−1)αxs−2. Also, f′α is a non-decreasing function and f′α≥0 on [0,h(a)] since s≥1.
If s≥2, then f″α is a non-decreasing function on [0,h(a)]. Since f′α(h(a))=sh(b)h(a), Lemma 4.8 gives
FF,h,1(a,b)≤12√h(a)2+s2h(b)2+h(a)22sh(b)ln(sh(b)h(a)+√1+s2h(b)2h(a)2). |
So, for every uv∈E(G), we have
FF,h,1(du,dv)≤12Ω[√1+s2+Ωsωln(sΩω+√1+s2Ω2ω2)]. |
If 1≤s≤2, then f″α is a non-increasing function on [0,h(a)]. Lemma 4.8 gives
FF,h,1(a,b)≥12√h(a)2+s2h(b)2+h(a)22sh(b)ln(sh(b)h(a)+√1+s2h(b)2h(a)2). |
So, for every uv∈E(G), we have
FF,h,1(du,dv)≥12ω[√1+s2+ωsΩln(sωΩ+√1+s2ω2Ω2)]. |
We need the following results.
Lemma 4.10. Let F={fα} be an h-admissible set of functions such that f′α is absolutely continuous for any α. Let a,b∈Z+ with a≥b. Then,
FF,h,1(a,b)≤h(a)√1+f′α(0)2+12h(a)2‖f′αf″α√1+(f′α)2‖L∞[0,h(a)],FF,h,1(a,b)≥h(a)√1+f′α(0)2−12h(a)2‖f′αf″α√1+(f′α)2‖L∞[0,h(a)],FF,h,2(a,b)≤h(a)fα(0)+12h(a)2‖f′α‖L∞[0,h(a)],FF,h,2(a,b)≥h(a)fα(0)−12h(a)2‖f′α‖L∞[0,h(a)]. |
Proof. Define g(x)=√1+f′α(x)2−√1+f′α(0)2. Then, g(0)=0 and Lemma 3.4 give
∫h(a)0g(x)dx≤12h(a)2‖g′‖L∞[0,h(a)],FF,h,1(a,b)−h(a)√1+f′α(0)2≤12h(a)2‖f′αf″α√1+(f′α)2‖L∞[0,h(a)]. |
If we replace g by −g, then we obtain
−∫h(a)0g(x)dx≤12h(a)2‖−g′‖L∞[0,h(a)],FF,h,1(a,b)−h(a)√1+f′α(0)2≥−12h(a)2‖f′αf″α√1+(f′α)2‖L∞[0,h(a)]. |
Let us define y(x)=fα(x)−fα(0). Then, y(0)=0 and Lemma 3.4 imply
∫h(a)0y(x)dx≤12h(a)2‖y′‖L∞[0,h(a)],FF,h,2(a,b)−h(a)fα(0)≤12h(a)2‖f′α‖L∞[0,h(a)]. |
If we replace y with −y, then we obtain
−∫h(a)0y(x)dx≤12h(a)2‖−y′‖L∞[0,h(a)],FF,h,2(a,b)−h(a)fα(0)≥−12h(a)2‖f′α‖L∞[0,h(a)]. |
Next, let us consider a new set of functions Gs.
Proposition 4.11. The family Gs={gα(x)=αesx:α>0} for s≠0 is h-admissible.
(1) If s>0, we have
maxx∈[0,h(a)]|g′α(x)g″α(x)√1+g′a(x)2|=s3h(b)2√1+s2h(b)2. |
(2) If s<0, we have
maxx∈[0,h(a)]|g′α(x)g″α(x)√1+g′a(x)2|=|s|3h(b)2e−2sh(a)√1+s2h(b)2e−2sh(a). |
Proof. Let a,b∈Z+ with a≥b. If we take α=h(b)e−sh(a), then gα(h(a))=h(b)e−sh(a)esh(a)=h(b). Also, gα is a positive C∞ function for each α. Therefore, Gs is h-admissible.
Note that g′α(x)=sgα(x) and g″α(x)=s2gα(x). For each fixed s≠0, let us define
ϕs(x)=g′α(x)g″α(x)√1+g′a(x)2=s3gα(x)2√1+s2gα(x)2. |
We have that ϕs is positive or negative if s is positive or negative, respectively. Also, we have
ddxϕs(x)=2s4gα(x)2√1+s2gα(x)2−s6ga(x)4√1+s2gα(x)21+s2gα(x)2=2s4gα(x)2+s6gα(x)4(1+s2gα(x)2)32>0. |
So, the function |ϕs| is decreasing or increasing if s<0 or s>0, respectively.
Therefore, if s<0, we have
maxx∈[0,h(a)]|ϕs(x)|=|ϕs(0)|=|s|3h(b)2e−2sh(a)√1+s2h(b)2e−2sh(a) |
and if s>0, we have
maxx∈[0,h(a)]|ϕs(x)|=|ϕs(h(a))|=ϕs(h(a))=s3h(b)2√1+s2h(b)2. |
Lemma 4.10 and Proposition 4.11 allow us to prove the following inequalities for the h-integral Sombor indices.
Theorem 4.12. Let G be a graph with m edges, maximum degree Δ, and minimum degree δ. Define Ω=supx∈[δ,Δ]h(x) and ω=infx∈[δ,Δ]h(x). Let Gs be the h-admissible set of functions Gs={αesx:α>0} with s≠0. The following facts hold:
(1) If s>0, then we have
m(ω√1+s2ω2e−2sΩ−s3Ω42√1+s2Ω2)≤ISOGs,h,1(G)≤m(Ω√1+s2Ω2e−2sω+s3Ω42√1+s2Ω2). |
(2) If s<0, then we have
m(ω√1+s2ω2e−2sΩ−s3Ω4e−2sω2√1+s2Ω2e−2sω)≤ISOGs,h,1(G)≤m2Ω+s2Ω3e−2sω(2+sΩ)2√1+s2Ω2e−2sω. |
(3) We have
ISOGs,h,2(G)=1s∑uv∈E(G)h(min{du,dv})(1−e−sh(max{du,dv})) |
and
mωs(1−e−sω)≤ISOGs,h,2(G)≤mΩs(1−e−sΩ). |
Proof. If s>0, then Lemma 4.10 and Proposition 4.11 give
FGs,h,1(a,b)≤h(a)√1+g′α(0)2+12h(a)2maxx∈[0,h(a)]|g′α(x)g″α(x)√1+g′α(x)2|=h(a)√1+s2h(b)2e−2sh(a)+s3h(a)2h(b)22√1+s2h(b)2,FGs,h,1(a,b)≥h(a)√1+g′α(0)2−12h(a)2maxx∈[0,h(a)]|g′α(x)g″α(x)√1+g′α(x)2|=h(a)√1+s2h(b)2e−2sh(a)−s3h(a)2h(b)22√1+s2h(b)2. |
Since the function x2√1+s2x2 is increasing for x>0, we have, for every uv∈E(G),
ω√1+s2ω2e−2sΩ−s3Ω42√1+s2Ω2≤FGs,h,1(du,dv)≤Ω√1+s2Ω2e−2sω+s3Ω42√1+s2Ω2. |
The first result follows by summing for each uv∈E(G).
Now, suppose s<0. Lemma 4.10 and Proposition 4.11 give
FGs,h,1(a,b)≤h(a)√1+g′α(0)2+12h(a)2maxx∈[0,h(a)]|g′α(x)g″α(x)√1+g′α(x)2|=h(a)√1+s2h(b)2e−2sh(a)+s3h(a)2h(b)2e−2sh(a)2√1+s2h(b)2e−2sh(a),FGs,h,1(a,b)≥h(a)√1+g′α(0)2−12h(a)2maxx∈[0,h(a)]|g′α(x)g″α(x)√1+g′α(x)2|=h(a)√1+s2h(b)2e−2sh(a)−s3h(a)2h(b)2e−2sh(a)2√1+s2h(b)2e−2sh(a). |
So, for every uv∈E(G), we have
FGs,h,1(du,dv)≤Ω√1+s2Ω2e−2sω+s3Ω4e−2sω2√1+s2Ω2e−2sω=2Ω+s2Ω3e−2sω(2+sΩ)2√1+s2Ω2e−2sω, |
and
FGs,h,1(du,dv)≥ω√1+s2ω2e−2sΩ−s3Ω4e−2sω2√1+s2Ω2e−2sω. |
Then, the second result follows by summing for each uv∈E(G).
Finally, we have
FGs,h,2(a,b)=∫h(a)0αesxdx=1sαesx|h(a)0=1sh(b)−1sh(b)e−sh(a). |
Thus, for each uv∈E(G), we have
FGs,h,2(du,dv)=1sh(min{du,dv})(1−e−sh(max{du,dv})) |
and
ωs(1−e−sω)≤FGs,h,2(du,dv)≤Ωs(1−e−sΩ). |
Note that these inequalities also hold if s<0.
This section examines the applicability of the proposed h-integral Sombor indices within the framework of Quantitative Structure–Property Relationship (QSPR) analysis. To this end, we assess the predictive performance of these indices, across four families of functions, in modeling the standard enthalpy of vaporization (ΔH∘vap) of octane isomers.
The dataset used in this study comprises all 18 structural isomers of octane, with their respective experimental values of standard enthalpy of vaporization (ΔH∘vap) sourced directly from the NIST Chemistry WebBook. No additional preprocessing was required as the data had already been standardized and validated in previous literature. Measurement uncertainties reported by NIST are typically within ±0.024, a range considered acceptable for modeling purposes.
The specific families of functions employed in this study are listed below:
● Fp={αxp}.
● Gp={αepx}.
● Hp={α(sin(px)+1.1)}.
● Ip={α(cos(px)+1.1)}.
It can be easily shown that these families of functions are indeed h-admissible. After testing several h-admissible families, we have chosen these four families because of their good predictive properties. Note that the use of polynomials, exponential, and trigonometric functions is natural for its regular use in many mathematical problems.
Figure 1 presents color maps displaying the absolute value of the Pearson correlation coefficient (|r|) between the standard enthalpy of vaporization (ΔH∘vap) and the first (left) and second (right) h-integral Sombor indices, evaluated at the four families of h-admissible functions. For the Fp (panels (a) and (b)) and the Gp (panels (c) and (d)) families, the parameter grid spans p,q∈(0,10] with a step size of 0.1, using h(x)=xq and h(x)=qlnx, respectively. For the trigonometric families Hp (panels (e) and (f)) and Ip (panels (g) and (h)), we consider p,q∈(0,2] with increments of 0.02, using the transformation h(x)=qx. Each subplot marks the optimal pair (p,q) that maximizes |r| with a red dot. Darker regions in the color scale correspond to higher correlation values.
We constructed linear regression models of the form ΔH∘vap=c1ISOF,h,i+c2 with i=1,2. The simple linear regression method was used for this purpose, and the following models were obtained:
ΔH∘vap=−0.188ISOF1,h(x)=x0.8,1+12.938,ΔH∘vap=−5.018ISOF0.2,h(x)=x0.2,2+45.752,ΔH∘vap=−0.762ISOG0.5,h(x)=0.4lnx,1+11.494,ΔH∘vap=0.805ISOG2.2,h(x)=2.1lnx,2+7.354,ΔH∘vap=−0.866ISOH0.14,h(x)=0.12x,1+11.342,ΔH∘vap=0.00955ISOH1.58,h(x)=1.24x,2+8.07,ΔH∘vap=−0.866ISOI0.14,h(x)=0.12x,1+11.342,ΔH∘vap=0.00437ISOI1.26,h(x)=1.04x,2+8.27. | (5.1) |
Figure 2 displays the fitted models compared with experimental data. Blue dots represent experimental values, red lines denote the predicted models.
Table 1 presents the highest values of |r| and the corresponding optimal combinations of the parameters p and q for each family of functions considered in this study. Also, the table includes the regression and statistical parameters of the above models.
h(x) | Family | Index | p | q | r | c1 | c2 | SE | F | SF |
xq | Fp | ISOFp,h,1 | 1.0 | 0.8 | −0.96 | −0.188 | 12.938 | 0.111 | 186.16 | 3.14×10−10 |
ISOFp,h,2 | 0.2 | 0.2 | −0.932 | −5.018 | 45.752 | 0.143 | 105.4 | 1.9×10−8 | ||
qln(x) | Gp | ISOGp,h,1 | 0.5 | 0.4 | −0.977 | −0.762 | 11.494 | 0.084 | 334.6 | 3.77×10−12 |
ISOGp,h,2 | 2.2 | 2.1 | 0.991 | 0.805 | 7.354 | 0.053 | 866.6 | 2.31×10−15 | ||
qx | Hp | ISOHp,h,1 | 0.14 | 0.12 | −0.968 | −0.866 | 11.342 | 0.099 | 237 | 5.17×10−11 |
ISOHp,h,2 | 1.58 | 1.24 | 0.958 | 0.00955 | 8.07 | 0.113 | 179.7 | 4.07×10−10 | ||
qx | Ip | ISOIp,h,1 | 0.14 | 0.12 | −0.968 | −0.866 | 11.342 | 0.099 | 237.2 | 5.14×10−11 |
ISOIp,h,2 | 1.26 | 1.04 | 0.947 | 0.00437 | 8.27 | 0.127 | 137.7 | 2.85×10−9 |
In addition to the correlation coefficient, we computed regression metrics including the root mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R2), summarized in Table 2.
Index | RMSE | MAE | R2 |
ISOFp,h,1 | 0.105 | 0.078 | 0.921 |
ISOFp,h,2 | 0.135 | 0.103 | 0.868 |
ISOGp,h,1 | 0.080 | 0.057 | 0.954 |
ISOGp,h,2 | 0.050 | 0.037 | 0.982 |
ISOHp,h,1 | 0.094 | 0.073 | 0.937 |
ISOHp,h,2 | 0.106 | 0.078 | 0.919 |
ISOIp,h,1 | 0.094 | 0.073 | 0.937 |
ISOIp,h,2 | 0.123 | 0.093 | 0.892 |
To complement the standard regression analysis, we performed a leave-one-out cross validation (LOOCV) procedure for all models described in Eq (5.1). This validation technique provides an estimate of the predictive performance of the models when applied to unseen data, offering a more rigorous evaluation than training-set statistics alone. For each model, we computed the root mean squared error (LOOCV-RMSE), mean absolute error (LOOCV-MAE), and coefficient of determination (LOOCV-R2) across the validation iterations. The results of this analysis are summarized in Table 3.
Index | LOOCV-RMSE | LOOCV-MAE | LOOCV-R2 |
ISOFp,h,1 | 0.123 | 0.090 | 0.891 |
ISOFp,h,2 | 0.155 | 0.119 | 0.827 |
ISOGp,h,1 | 0.092 | 0.065 | 0.939 |
ISOGp,h,2 | 0.056 | 0.042 | 0.978 |
ISOHp,h,1 | 0.108 | 0.083 | 0.916 |
ISOHp,h,2 | 0.125 | 0.095 | 0.887 |
ISOIp,h,1 | 0.108 | 0.083 | 0.916 |
ISOIp,h,2 | 0.139 | 0.105 | 0.860 |
The results obtained in this study underscore the substantial predictive capacity of the proposed h-integral Sombor indices, whose performance is governed by the choice of parameters p and q within the corresponding families of functions. The fitted models reported in Eq (5.1) exhibit consistently strong linear associations between the indices and the standard enthalpy of vaporization (ΔH∘vap), as evidenced by the high absolute values of the Pearson correlation coefficient across all tested families. Moreover, the cross-validated metrics obtained through LOOCV indicate that the models retain high predictive accuracy when applied to unseen data, thereby confirming their statistical robustness and generalizability.
Among the four families explored, the exponential-based functions Gp, in combination with the logarithmic transformation h(x)=qlnx, delivered the most accurate results. Specifically, the model ISOG2.2,h(x)=2.1lnx,2 achieved |r|=0.991, an RMSE of 0.05, an MAE of 0.037, and the highest coefficient of determination (R2=0.982) in the training phase (Table 2). This model also demonstrated superior performance under LOOCV, with an RMSE of 0.056, MAE of 0.042, and R2=0.978 (Table 3), reflecting minimal overfitting and strong predictive reliability.
The remaining function families, Fp (power-law), Hp (sine), and Ip (cosine), also produced statistically significant models, with slightly lower but still robust performance metrics. Notably, the first index variant for both trigonometric families achieved their maximum predictive accuracy at the same optimal parameter values (p=0.14,q=0.12) and yielded nearly identical regression outcomes. For instance, the models ISOH0.14,h(x)=0.12x,1 and ISOI0.14,h(x)=0.12x,1 both attained |r|=0.968, RMSE = 0.094, and LOOCV-R2=0.916, indicating that the sine and cosine transformations, despite their distinct functional forms, can encode topologically equivalent information when applied within this framework.
Ivan Gutman introduced the Sombor index in 2021, a new topological index with an important geometric meaning. This index has demonstrated remarkable growth in research activity over recent years.
In [19], the geometric approach of the SO index is emphasized, and two new indices (the Sombor integral indices) are defined. In this paper, following this geometric idea, we propose some generalizations of the Sombor integral indices: the h-integral Sombor indices.
Besides, we study the properties of these indices, proving several lower and upper bounds, and some relations between them.
Also, we show their application in modeling the enthalpy of vaporization property of octane isomers. Recall that octane isomers are widely recognized for their wide range of applications.
Finally, we would like to propose two open problems in which we are very interested: to compare the predictive capability of the h-integral Sombor indices with that of the known Kirchhoff and resistance-based indices, and to find relations between these indices and the h-integral Sombor indices. See [31,32,33] and the references therein for background about these indices.
All the authors contributed equally to this work. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
We would like to thank the referees for their comments which have improved the contents and presentation of this paper.
Prof. José M. Rodríguez is the Guest Editor of special issue "Graph theory and its applications, 2nd Edition" for AIMS Mathematics. Prof. José M. Rodríguez was not involved in the editorial review and the decision to publish this article.
The authors confirm that the content of this article has no conflict of interest or competing interests.
[1] | J. Devillers, A. T. Balaban, Topological indices and related descriptors in QSAR and QSPR, Gordon and Breach: Amsterdam, The Netherlands, 1999. https://doi.org/10.1201/9781482296945 |
[2] | M. Karelson, Molecular descriptors in QSAR/QSPR, New York, NY, USA: Wiley-Interscience, 2000. |
[3] | R. Todeschini, V. Consonni, Handbook of molecular descriptors, Wiley-VCH: Weinheim, Germany, 2000. https://doi.org/10.1002/9783527613106 |
[4] |
E. Estrada, Quantifying network heterogeneity, Phys. Rev. E, 82 (2010), 066102. https://doi.org/10.1103/PhysRevE.82.066102 doi: 10.1103/PhysRevE.82.066102
![]() |
[5] |
I. Gutman, B. Furtula, V. Katanić, Randić index and information, AKCE Int. J. Graphs Comb., 15 (2018), 307–312. https://doi.org/10.1016/j.akcej.2017.09.006 doi: 10.1016/j.akcej.2017.09.006
![]() |
[6] |
J. J. Pineda-Pineda, C. T. Martínez-Martínez, J. A. Méndez-Bermúdez, J. Muños-Rojas, J. M. Sigarreta, Application of bipartite networks to the study of water quality, Sustainability, 12 (2020), 5143. https://doi.org/10.3390/su12125143 doi: 10.3390/su12125143
![]() |
[7] | W. Carballosa, Inequalities involving the geometric-arithmetic index, Southeast Asian Bull. Math., 46 (2022), 437–452. |
[8] |
W. Carballosa, D. Pestana, J. M. Sigarreta, E. Tourís, Relations between the general sum connectivity index and the line graph, J. Math. Chem., 58 (2020), 2273–2290. https://doi.org/10.1007/s10910-020-01180-9 doi: 10.1007/s10910-020-01180-9
![]() |
[9] |
W. Carballosa, A. Granados, J. A. Méndez Bermúdez, D. Pestana, A. Portilla, Computational properties of the arithmetic-geometric index, J. Math. Chem., 60 (2022), 1854–1871. https://doi.org/10.1007/s10910-022-01390-3 doi: 10.1007/s10910-022-01390-3
![]() |
[10] |
R. Cruz, T. Pérez, J. Rada, Extremal values of vertex-degree-based topological indices over graphs, J. Appl. Math. Comput., 48 (2015), 395–406. https://doi.org/10.1007/s12190-014-0809-y doi: 10.1007/s12190-014-0809-y
![]() |
[11] |
I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351–361. https://doi.org/10.5562/cca2294 doi: 10.5562/cca2294
![]() |
[12] |
J. A. Méndez-Bermúdez, R. Reyes, J. M. Sigarreta, M. Villeta, On the variable inverse sum deg index: theory and applications, J. Math. Chem., 62 (2024), 250–268. https://doi.org/10.1007/s10910-023-01529-w doi: 10.1007/s10910-023-01529-w
![]() |
[13] |
J. M. Sigarreta, Extremal problems on exponential vertex-degree-based topological indices, Math. Biosci. Eng., 19 (2022), 6985–6995. https://doi.org/10.3934/mbe.2022329 doi: 10.3934/mbe.2022329
![]() |
[14] |
J. M. Sigarreta, Mathematical properties of variable topological indices, Symmetry, 13 (2020), 43. https://doi.org/10.3390/sym13010043 doi: 10.3390/sym13010043
![]() |
[15] |
C. T. Martínez-Martínez, J. A. Méndez-Bermúdez, J. M. Sigarreta, Topological and spectral properties of random digraphs, Phys. Rev. E, 109 (2024), 064306. https://doi.org/10.1103/PhysRevE.109.064306 doi: 10.1103/PhysRevE.109.064306
![]() |
[16] | I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices, J. Serb. Chem. Soc., 78 (2013), 805–810. |
[17] | I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16. |
[18] |
R. Abreu-Blaya, J. Batanero, J. M. Rodríguez, J. M. Sigarreta, On irregularity integral Sombor indices: theory and Chemical applications, J. Math. Chem., 63 (2025), 731–748. https://doi.org/10.1007/s10910-024-01697-3 doi: 10.1007/s10910-024-01697-3
![]() |
[19] | J. Rada, J. M. Rodríguez, J. M. Sigarreta, On integral Sombor indices, Appl. Math. Comput., 452 (2023), 128036. https://doi.org/10.1016/j.amc.2023.128036 |
[20] |
R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput., 399 (2021), 126018. https://doi.org/10.1016/j.amc.2021.126018 doi: 10.1016/j.amc.2021.126018
![]() |
[21] | K. C. Das, A. S. Çevik, I. N. Cangul, Y. Shang, On Sombor index, Symmetry, 13 (2021), 140. https://doi.org/10.3390/sym13010140 |
[22] |
J. Rada, J. M. Rodríguez, J. M. Sigarreta, General properties on Sombor indices, Discrete Appl. Math., 299 (2021), 87–97. https://doi.org/10.1016/j.dam.2021.04.014 doi: 10.1016/j.dam.2021.04.014
![]() |
[23] |
R. Cruz, J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. Chem., 59 (2021), 1098–1116. https://doi.org/10.1007/s10910-021-01232-8 doi: 10.1007/s10910-021-01232-8
![]() |
[24] |
J. C. Hernández, J. M. Rodríguez, O. Rosario, J. M. Sigarreta, Extremal problems on the general Sombor index of a graph, AIMS Math., 7 (2022), 8330–8343. https://doi.org/10.3934/math.2022464 doi: 10.3934/math.2022464
![]() |
[25] |
J. Rada, J. M. Rodríguez, J. M. Sigarreta, Sombor index and elliptic Sombor index of benzenoid systems, Appl. Math. Comput., 475 (2024), 128756. https://doi.org/10.1016/j.amc.2024.128756 doi: 10.1016/j.amc.2024.128756
![]() |
[26] |
J. B. Liu, Y. Q. Zheng, X. B. Peng, The statistical analysis for Sombor indices in a random polygonal chain networks, Discr. Appl. Math., 338 (2023), 218–233. https://doi.org/10.1016/j.dam.2023.06.006 doi: 10.1016/j.dam.2023.06.006
![]() |
[27] | J. Rada, J. M. Rodríguez, J. M. Sigarreta, Optimization problems for general elliptic Sombor index, MATCH Commun. Math. Comput. Chem., 93 (2025), 819–838. |
[28] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226. https://doi.org/10.1090/S0002-9947-1972-0293384-6 doi: 10.1090/S0002-9947-1972-0293384-6
![]() |
[29] | P. S. Bullen, Error estimates for some elementary quadrature rules, Publ. Elektrotehn. fak. Ser. Mat. Fiz., 602/633 (1978), 97–103. |
[30] | P. Bosch, J. A. Paz Moyado, J. M. Rodríguez, J. M. Sigarreta, Bullen-type inequalities, Unpublished Work. |
[31] |
M. S. Sardar, J. B. Liu, I. Siddique, M. M. M. Jaradat, A novel and efficient method for computing the resistance distance, IEEE Access, 9 (2021), 107104–107110. https://doi.org/10.1109/ACCESS.2021.3099570 doi: 10.1109/ACCESS.2021.3099570
![]() |
[32] |
M. S. Sardar, X. F. Pan, S. J. Xu, Computation of the resistance distance and the Kirchhoff index for the two types of claw-free cubic graphs, Appl. Math. Comput., 473 (2024), 128670. https://doi.org/10.1016/j.amc.2024.128670 doi: 10.1016/j.amc.2024.128670
![]() |
[33] |
M. S. Sardar, S. J. Xu, Resistance distance and Kirchhoff index in windmill graphs, Curr. Org. Synth., 22 (2025), 159–168. https://doi.org/10.2174/0115701794299562240606054510 doi: 10.2174/0115701794299562240606054510
![]() |
h(x) | Family | Index | p | q | r | c1 | c2 | SE | F | SF |
xq | Fp | ISOFp,h,1 | 1.0 | 0.8 | −0.96 | −0.188 | 12.938 | 0.111 | 186.16 | 3.14×10−10 |
ISOFp,h,2 | 0.2 | 0.2 | −0.932 | −5.018 | 45.752 | 0.143 | 105.4 | 1.9×10−8 | ||
qln(x) | Gp | ISOGp,h,1 | 0.5 | 0.4 | −0.977 | −0.762 | 11.494 | 0.084 | 334.6 | 3.77×10−12 |
ISOGp,h,2 | 2.2 | 2.1 | 0.991 | 0.805 | 7.354 | 0.053 | 866.6 | 2.31×10−15 | ||
qx | Hp | ISOHp,h,1 | 0.14 | 0.12 | −0.968 | −0.866 | 11.342 | 0.099 | 237 | 5.17×10−11 |
ISOHp,h,2 | 1.58 | 1.24 | 0.958 | 0.00955 | 8.07 | 0.113 | 179.7 | 4.07×10−10 | ||
qx | Ip | ISOIp,h,1 | 0.14 | 0.12 | −0.968 | −0.866 | 11.342 | 0.099 | 237.2 | 5.14×10−11 |
ISOIp,h,2 | 1.26 | 1.04 | 0.947 | 0.00437 | 8.27 | 0.127 | 137.7 | 2.85×10−9 |
Index | RMSE | MAE | R2 |
ISOFp,h,1 | 0.105 | 0.078 | 0.921 |
ISOFp,h,2 | 0.135 | 0.103 | 0.868 |
ISOGp,h,1 | 0.080 | 0.057 | 0.954 |
ISOGp,h,2 | 0.050 | 0.037 | 0.982 |
ISOHp,h,1 | 0.094 | 0.073 | 0.937 |
ISOHp,h,2 | 0.106 | 0.078 | 0.919 |
ISOIp,h,1 | 0.094 | 0.073 | 0.937 |
ISOIp,h,2 | 0.123 | 0.093 | 0.892 |
Index | LOOCV-RMSE | LOOCV-MAE | LOOCV-R2 |
ISOFp,h,1 | 0.123 | 0.090 | 0.891 |
ISOFp,h,2 | 0.155 | 0.119 | 0.827 |
ISOGp,h,1 | 0.092 | 0.065 | 0.939 |
ISOGp,h,2 | 0.056 | 0.042 | 0.978 |
ISOHp,h,1 | 0.108 | 0.083 | 0.916 |
ISOHp,h,2 | 0.125 | 0.095 | 0.887 |
ISOIp,h,1 | 0.108 | 0.083 | 0.916 |
ISOIp,h,2 | 0.139 | 0.105 | 0.860 |
h(x) | Family | Index | p | q | r | c1 | c2 | SE | F | SF |
xq | Fp | ISOFp,h,1 | 1.0 | 0.8 | −0.96 | −0.188 | 12.938 | 0.111 | 186.16 | 3.14×10−10 |
ISOFp,h,2 | 0.2 | 0.2 | −0.932 | −5.018 | 45.752 | 0.143 | 105.4 | 1.9×10−8 | ||
qln(x) | Gp | ISOGp,h,1 | 0.5 | 0.4 | −0.977 | −0.762 | 11.494 | 0.084 | 334.6 | 3.77×10−12 |
ISOGp,h,2 | 2.2 | 2.1 | 0.991 | 0.805 | 7.354 | 0.053 | 866.6 | 2.31×10−15 | ||
qx | Hp | ISOHp,h,1 | 0.14 | 0.12 | −0.968 | −0.866 | 11.342 | 0.099 | 237 | 5.17×10−11 |
ISOHp,h,2 | 1.58 | 1.24 | 0.958 | 0.00955 | 8.07 | 0.113 | 179.7 | 4.07×10−10 | ||
qx | Ip | ISOIp,h,1 | 0.14 | 0.12 | −0.968 | −0.866 | 11.342 | 0.099 | 237.2 | 5.14×10−11 |
ISOIp,h,2 | 1.26 | 1.04 | 0.947 | 0.00437 | 8.27 | 0.127 | 137.7 | 2.85×10−9 |
Index | RMSE | MAE | R2 |
ISOFp,h,1 | 0.105 | 0.078 | 0.921 |
ISOFp,h,2 | 0.135 | 0.103 | 0.868 |
ISOGp,h,1 | 0.080 | 0.057 | 0.954 |
ISOGp,h,2 | 0.050 | 0.037 | 0.982 |
ISOHp,h,1 | 0.094 | 0.073 | 0.937 |
ISOHp,h,2 | 0.106 | 0.078 | 0.919 |
ISOIp,h,1 | 0.094 | 0.073 | 0.937 |
ISOIp,h,2 | 0.123 | 0.093 | 0.892 |
Index | LOOCV-RMSE | LOOCV-MAE | LOOCV-R2 |
ISOFp,h,1 | 0.123 | 0.090 | 0.891 |
ISOFp,h,2 | 0.155 | 0.119 | 0.827 |
ISOGp,h,1 | 0.092 | 0.065 | 0.939 |
ISOGp,h,2 | 0.056 | 0.042 | 0.978 |
ISOHp,h,1 | 0.108 | 0.083 | 0.916 |
ISOHp,h,2 | 0.125 | 0.095 | 0.887 |
ISOIp,h,1 | 0.108 | 0.083 | 0.916 |
ISOIp,h,2 | 0.139 | 0.105 | 0.860 |