Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Decay properties for the Cauchy problem of the linear JMGT-viscoelastic plate with Cattaneo heat conduction

  • Received: 14 March 2025 Revised: 04 May 2025 Accepted: 13 May 2025 Published: 26 May 2025
  • MSC : 35B40, 74F05, 74K20, 93D20

  • In this work, we investigate the Cauchy problem for the JMGT-viscoelastic plate system coupled with Cattaneo-type heat conduction. Our focus is on deriving optimal decay rate results for both the subcritical and critical regimes. Specifically, we improve upon the results in [Commun. Pure Appl. Anal. 2023] by showing that the decay behavior exhibits no regularity loss in the subcritical case. In contrast, a regularity-loss phenomenon arises in the critical case. Furthermore, we perform an asymptotic analysis of the eigenvalues to confirm the optimality of the decay rates in both scenarios.

    Citation: Danhua Wang, Kewang Chen. Decay properties for the Cauchy problem of the linear JMGT-viscoelastic plate with Cattaneo heat conduction[J]. AIMS Mathematics, 2025, 10(5): 12079-12091. doi: 10.3934/math.2025547

    Related Papers:

    [1] Abdelbaki Choucha, Sofian Abuelbacher Adam Saad, Rashid Jan, Salah Boulaaras . Decay rate of the solutions to the Lord Shulman thermoelastic Timoshenko model. AIMS Mathematics, 2023, 8(7): 17246-17258. doi: 10.3934/math.2023881
    [2] Zihan Cai, Yan Liu, Baiping Ouyang . Decay properties for evolution-parabolic coupled systems related to thermoelastic plate equations. AIMS Mathematics, 2022, 7(1): 260-275. doi: 10.3934/math.2022017
    [3] Soh E. Mukiawa, Tijani A. Apalara, Salim A. Messaoudi . Stability rate of a thermoelastic laminated beam: Case of equal-wave speed and nonequal-wave speed of propagation. AIMS Mathematics, 2021, 6(1): 333-361. doi: 10.3934/math.2021021
    [4] Noelia Bazarra, José R. Fernández, Jaime E. Muñoz-Rivera, Elena Ochoa, Ramón Quintanilla . Analytical and numerical analyses of a viscous strain gradient problem involving type Ⅱ thermoelasticity. AIMS Mathematics, 2024, 9(7): 16998-17024. doi: 10.3934/math.2024825
    [5] Keltoum Bouhali, Sulima Ahmed Zubair, Wiem Abedelmonem Salah Ben Khalifa, Najla ELzein AbuKaswi Osman, Khaled Zennir . A new strict decay rate for systems of longitudinal m-nonlinear viscoelastic wave equations. AIMS Mathematics, 2023, 8(1): 962-976. doi: 10.3934/math.2023046
    [6] Zayd Hajjej, Sun-Hye Park . Asymptotic stability of a quasi-linear viscoelastic Kirchhoff plate equation with logarithmic source and time delay. AIMS Mathematics, 2023, 8(10): 24087-24115. doi: 10.3934/math.20231228
    [7] Abdelbaki Choucha, Asma Alharbi, Bahri Cherif, Rashid Jan, Salah Boulaaras . Decay rate of the solutions to the Bresse-Cattaneo system with distributed delay. AIMS Mathematics, 2023, 8(8): 17890-17913. doi: 10.3934/math.2023911
    [8] Qian Li . General and optimal decay rates for a viscoelastic wave equation with strong damping. AIMS Mathematics, 2022, 7(10): 18282-18296. doi: 10.3934/math.20221006
    [9] Abdelbaki Choucha, Salah Boulaaras, Asma Alharbi . Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms. AIMS Mathematics, 2022, 7(3): 4517-4539. doi: 10.3934/math.2022252
    [10] Jincheng Shi, Yan Liu . Spatial decay estimates for the coupled system of wave-plate type with thermal effect. AIMS Mathematics, 2025, 10(1): 338-352. doi: 10.3934/math.2025016
  • In this work, we investigate the Cauchy problem for the JMGT-viscoelastic plate system coupled with Cattaneo-type heat conduction. Our focus is on deriving optimal decay rate results for both the subcritical and critical regimes. Specifically, we improve upon the results in [Commun. Pure Appl. Anal. 2023] by showing that the decay behavior exhibits no regularity loss in the subcritical case. In contrast, a regularity-loss phenomenon arises in the critical case. Furthermore, we perform an asymptotic analysis of the eigenvalues to confirm the optimality of the decay rates in both scenarios.



    We consider the following Cauchy problem for the JMGT-thermoviscoelastic plate with Cattaneo-type heat conduction:

    {τρuttt+ρutt=kΔ2ukΔ2utmΔθ,                          (x,t)Rn×R+,θt+κqmτΔuttmΔut=0                                   (x,t)Rn×R+,τ0qt+q+κθ=0,                                                  (x,t)Rn×R+, (1.1)

    with initial data

    (u,ut,utt,θ,q)(x,0)=(u0,u1,u2,θ0,q0)(x),  xRn, (1.2)

    where τ,ρ,k,k,m,τ0,κ are positive constants, and the critical parameter is given by K:=kτk.

    The linear Jordan-Moore-Gibson-Thompson equation (JMGT) is expressed as follows:

    τuttt+δutt+βAut+γAu=0, (1.3)

    where A is a strictly positive operator in a Hilbert space, and τ,δ,β,γ are positive constants.

    Equation (1.3) originally arises as a model for wave propagation in viscous, thermally relaxing fluids (cf. [5,6]). A similar form of the equation appears in the standard linear solid model (cf. [4]) and in the formulation of a relaxation parameter within the Green–Naghdi type Ⅲ theory (cf. [3,10]), particularly when A=Δ. Furthermore, Eq (1.3) serves as a potential model for vertical displacements in viscoelastic plates (cf. [7]) when A=Δ2.

    In recent years, there has been growing interest in the study of problem (1.3). In [2], the authors investigated the MGT-viscoelastic plate coupled with the Fourier law and type Ⅲ heat conduction, proving that the corresponding semigroups are analytic in the subcritical case K>0. Subsequently, [1] focused on the MGT-viscoelastic plate with Cattaneo heat conduction and established the following decay result in the subcritical case K>0:

    ● the subcritical case K>0:

    pU(t)2L2(Rn)C(1+t)n+2p4U02L1(Rn)+C(1+t)lp+lU02L2(Rn),

    where U=(ut+τutt,Δut,Δ(u+τut),θ,q)T and U0=U(x,0).

    In this work, we improve upon the results in [1] for the subcritical case K>0 and establish the decay result for the critical case K=0. Additionally, we analyze the eigenvalues to demonstrate the optimality of the decay results in both cases. The specific decay rates are as follows:

    ● the subcritical case K>0:

    pW(t)2L2(Rn)C(1+t)n2pW02L1(Rn)+CeCtpW02L2(Rn),

    where W=(ut+τutt,Δut,Δ(u+τut),θ,q)T and W0=W(x,0).

    ● the critical case K=0:

    pZ(t)2L2(Rn)C(1+t)n2pZ02L1(Rn)+C(1+t)lp+lZ02L2(Rn),

    where Z=(ut+τutt,Δ(u+τut),θ,q)T and Z0=Z(x,0).

    The paper is organized as follows. In Section 2, we introduce some notations and present our main results. Section 3 is devoted to proving the decay estimates for the JMGT-thermoviscoelastic plate with Cattaneo heat conduction. Finally, in Section 4, we establish the optimality of the decay rates obtained.

    Before closing this section, we give some notations to be used below. Let the Fourier transform of a function f=f(x) be denoted by ˆf=ˆf(ξ), defined as

    F[f](ξ)ˆf(ξ)=1(2π)n2Rneixξf(x)dx,

    and let the complex conjugate of ˆu be denoted by ˉˆu.

    In this section, we state our main results.

    Taking the Fourier transform of system (1.1)-(1.2), we have

    {τρˆuttt+ρˆutt+k|ξ|4ˆu+k|ξ|4ˆutm|ξ|2ˆθ=0,ˆθt+κiξˆq+mτ|ξ|2ˆutt+m|ξ|2ˆut=0,τ0ˆqt+ˆq+κiξˆθ=0 (2.1)

    with initial data

    (ˆu,ˆut,ˆutt,ˆθ,ˆq)(ξ,0)=(ˆu0,ˆu1,ˆu2,ˆθ0,ˆq0)(ξ), (2.2)

    where ξRn. By the new variables

    ˆφ=ˆut,ˆw=ˆutt,

    we obtain

    {ˆutˆφ=0,ˆφtˆw=0,ˆwt+1τˆw+kτρ|ξ|4ˆu+kτρ|ξ|4ˆφmτρ|ξ|2ˆθ=0,ˆθt+κiξˆq+mτ|ξ|2ˆw+m|ξ|2ˆφ=0,ˆqt+1τ0ˆq+κτ0iξˆθ=0. (2.3)

    Then, we state the following pointwise estimates and decay results.

    Theorem 2.1. Let

    ˆW:=(ˆut+τˆutt,Δˆut,Δ(ˆu+τˆut),ˆθ,ˆq)T,

    where (ˆu(ξ,t),ˆθ(ξ,t),ˆq(ξ,t)) is the Fourier image of the solution (u(x,t),θ(x,t),q(x,t)). Assume that K>0. Then, ˆW satisfies the following pointwise estimate

    |ˆW(ξ,t)|2Cecρ1(ξ)t|ˆW0(ξ)|2, (2.4)

    for any t0, where ρ1(ξ):=|ξ|21+|ξ|2, and where C,c>0 are independent of t,ξ, and the initial data.

    Furthermore, let W=(ut+τutt,Δut,Δ(u+τut),θ,q)T, where (u(x,t),θ(x,t),q(x,t)) is the solution of problem (1.1), (1.2), and W0=W(x,0)Hs(Rn)L1(Rn), where s is nonnegative. Then, W satisfies the decay estimate

    pW(t)2L2(Rn)C(1+t)n2pW02L1(Rn)+CeCtpW02L2(Rn), (2.5)

    for all 0ps.

    Remark 2.2. The decay result (2.5) does not exhibit the regularity-loss phenomenon. In consideration of [1], the decay estimate presented here aligns with the exponential stability of the MGT-viscoelastic plate with Cattaneo-type heat conduction in a bounded domain. At the same time, we improve the result in unbounded domain obtained in [1]. Noting the asymptotic expansion of the eigenvalues in Section 4, we find that the exponent in pointwise estimate (2.4) is optimal. Thus, the decay estimate (2.5) is optimal.

    Remark 2.3. Note that the decay estimate (2.5) and the MGT-viscoelastic plate with the Gurtin-Pipkin thermal law in [11] exhibit the same decay rate when K>0, despite the absence of a regularity-loss phenomenon in (2.5).

    Theorem 2.4. Let

    ˆZ=(ˆut+τˆutt,Δ(ˆu+τˆut),ˆθ,ˆq)T,

    where (ˆu(ξ,t),ˆθ(ξ,t),ˆq(ξ,t)) is the Fourier image of the solution (u(x,t),θ(x,t),q(x,t)). Assume that K=0. Then, ˆZ has the following pointwise estimate

    |ˆZ(ξ,t)|2Cecρ2(ξ)t|ˆZ0(ξ)|2, (2.6)

    for any t0, where ρ2(ξ):=|ξ|2(1+|ξ|2)2. Furthermore, let Z=(ut+τutt,Δ(u+τut),θ,q)T, where (u(x,t),θ(x,t),q(x,t)) is the solution of problem (1.1)-(1.2), and Z0=Z(x,0)Hs(Rn)L1(Rn), where s is nonnegative. Then, Z satisfies the following decay estimate

    pZ(t)2L2(Rn)C(1+t)n2pZ02L1(Rn)+C(1+t)lp+lZ02L2(Rn), (2.7)

    for all 0p+ls.

    Remark 2.5. According to [11], we find that the MGT-viscoelastic plate with Gurtin-Pipkin thermal law has the same decay result as (2.7) under the condition K=0, including both the decay rate and regularity-loss phenomenon.

    In this section, we consider the decay estimates of the norm related to (1.1)-(1.2).

    In this subsection, we define the energy functional of system (2.3) as

    ˆE(ξ,t):=|ˆφ+τˆw|2+τρK|ξ|4|ˆφ|2+kρ|ξ|4|ˆu+τˆφ|2+1ρ|ˆθ|2+τ0ρ|ˆq|2, (3.1)

    which is equivalent to |ˆW(ξ,t)|2. To derive our main result, we begin by stating and proving several lemmas.

    Lemma 3.1. Let (ˆu,ˆφ,ˆw,ˆθ,ˆq) be the solution of (2.3). Assume that K>0. Then, ˆE(ξ,t) satisfies

    ddtˆE(ξ,t)=1ρK|ξ|4|ˆφ|21ρ|ˆq|2.

    Lemma 3.2. The following inequality holds true:

    ddtF1(t)+(kρ2ε1)|ξ|4|ˆu+τˆφ|2|ˆφ+τˆw|2+C(ε1)|ξ|4|ˆφ|2+C(ε1)|ˆθ|2, (3.2)

    for any ε1>0, where

    F1(t):=Re((ˆφ+τˆw)(ˉˆu+τˉˆφ)).

    Proof. We can easily obtain

    ddtF1(t)+kρ|ξ|4|ˆu+τˆφ|2|ˆφ+τˆw|2=1ρK|ξ|4Re(ˆφ(ˉˆu+τˉˆφ))+mρ|ξ|2Re(ˆθ(ˉˆu+τˉˆφ)). (3.3)

    By virtue of Young's inequality, for any ε1>0, we have

    1ρK|ξ|4Re(ˆφ(ˉˆu+τˉˆφ))ε1|ξ|4|ˆu+τˆφ|2+C(ε1)|ξ|4|ˆφ|2, (3.4)
    mρ|ξ|2Re(ˆθ(ˉˆu+τˉˆφ))ε1|ξ|4|ˆu+τˆφ|2+C(ε1)|ˆθ|2. (3.5)

    Combining (3.3)–(3.5), we obtain the desired result (3.2).

    Lemma 3.3. The functional

    F2(t):=Re(ˆθ(ˉˆφ+τˉˆw))

    satisfies

    ddtF2(t)+(mε2)|ξ|2|ˆφ+τˆw|2C(ε2)|ˆq|2+ε2|ξ|6|ˆu+τˆφ|2+ε2|ξ|6|ˆφ|2+C(ε2,ε2)|ξ|2|ˆθ|2, (3.6)

    for any ε2,ε2>0.

    Proof. It is easy to obtain

    ddtF2(t)+m|ξ|2|ˆφ+τˆw|2=κRe(iξˆq(ˉˆφ+τˉˆw))kρ|ξ|4Re(ˆuˉˆθ)kρ|ξ|4Re(ˆφˉˆθ)+mρ|ξ|2|ˆθ|2. (3.7)

    Applying Young's inequality with ε2,ε2>0, we get

    κRe(iξˆq(ˉˆφ+τˉˆw))ε2|ξ|2|ˆφ+τˆw|2+C(ε2)|ˆq|2, (3.8)
    kρ|ξ|4Re(ˆuˉˆθ)ε2|ξ|6|ˆu+τˆφ|2+C(ε2)|ξ|2|ˆθ|2, (3.9)
    kρ|ξ|4Re(ˆφˉˆθ)ε2|ξ|6|ˆφ|2+C(ε2)|ξ|2|ˆθ|2. (3.10)

    Thanks to (3.7)–(3.10), we deduce (3.6).

    Lemma 3.4. Define the functional

    F3(t):=Re(iξτ0ˆqˉˆθ+imττ0ξ3ˆφˉˆq).

    Then,

    ddtF3(t)+(k2ε3)|ξ|2|ˆθ|2C(ε3)(1+|ξ|2)|ˆq|2+C(ε3)|ξ|6|ˆφ|2, (3.11)

    for any ε3>0.

    Proof. Multiplying (2.3)4 and (2.3)5 by iτ0ξˉˆq and (iτ0ξˉˆθ), respectively, adding the resulting equations, and taking the real part, we have

    ddtRe(iτ0ξˆqˉˆθ)+κ|ξ|2|ˆθ|2κτ0|ξ|2|ˆq|2=Re(iξˆqˉˆθ)mττ0Re(iξ3ˆwˉˆq)mτ0Re(iξ3ˆφˉˆq). (3.12)

    To eliminate Re(iξ3ˆwˉˆq), we multiply (2.3)2 and (2.3)5 by imττ0ξ3ˉˆq and imττ0ξ3ˉˆφ, respectively. Then, combining the resulting equations and taking real parts, we have

    ddtRe(imττ0ξ3ˆφˉˆq)=mττ0Re(iξ3ˆwˉˆq)+mτRe(iξ3ˆqˉˆφ)κmτ|ξ|4Re(ˆθˉˆφ). (3.13)

    Summing up (3.12) and (3.13), we arrive at

    ddtF3(t)+κ|ξ|2|ˆθ|2κτ0|ξ|2|ˆq|2=Re(iξˆqˉˆθ)+(mτ+mτ0)Re(iξ3ˆqˉˆφ)κmτ|ξ|4Re(ˆθˉˆφ). (3.14)

    Young's inequality yields, for any ε3>0,

    Re(iξˆqˉˆθ)ε3|ξ|2|ˆθ|2+C(ε3)|ˆq|2, (3.15)
    (mτ+mτ0)Re(iξ3ˆqˉˆφ)ε3|ξ|6|ˆφ|2+C(ε3)|ˆq|2, (3.16)
    κmτ|ξ|4Re(ˆθˉˆφ)ε3|ξ|2|ˆθ|2+C(ε3)|ξ|6|ˆφ|2. (3.17)

    Hence, plugging (3.15)–(3.17) into (3.14), we arrive at (3.11).

    We now proceed to prove our main result.

    Proof of Theorem 2.1. We define the Lyapunov functional as follows:

    L1(ξ,t):=N(1+|ξ|2)ˆE(ξ,t)+|ξ|2F1(t)+N2F2(t)+N3F3(t),

    where N,N2, and N3 are positive constants to be determined later. By utilizing the previously established lemmas, we obtain

    ddtL1(ξ,t)+[(kρ2ε1)N2ε2]|ξ|6|ˆu+τˆφ|2+[N2(mε2)1]|ξ|2|ˆφ+τˆw|2+[N3(κ2ε3)C(ε1)N2C(ε2,ε2)]|ξ|2|ˆθ|2+[NKρ|ξ|4(1+|ξ|2)C(ε1)|ξ|6N2ε2|ξ|6N3C(ε3)|ξ|6]|ˆφ|2+[Nρ(1+|ξ|2)N2C(ε2)N3C(ε3)(1+|ξ|2)]|ˆq|20. (3.18)

    At this stage, we aim to determine the constants in Eq (3.18). We begin by selecting

    ε1<k2ρ,ε2<m,ε3<κ2.

    Next, we fix N2>1mε2 and choose ε2<kρN22ε1N2. Then, we select N3 such that

    N3>C(ε1)+N2C(ε2,ε2)κ2ε3.

    Finally, we choose N sufficiently large to satisfy

    N>max

    Consequently, we obtain, with a positive constant C_1 ,

    \begin{equation} \frac{d}{dt}L_1(\xi, t)+C_1M_1(t)\leq 0, \end{equation} (3.19)

    where

    \begin{align*} M_1(t)& = |\xi|^6|\hat{u}+\tau\hat{\varphi}|^2+|\xi|^2 |\hat{\varphi}+\tau\hat{w}|^2+|\xi|^2|\hat{\theta}|^2+|\xi|^6|\hat{\varphi}|^2+|\xi|^2|\hat{q}|^2\nonumber\\ & = |\xi|^2 \hat{E}(\xi, t). \end{align*}

    From the definitions of \hat{E}(\xi, t) and L_1(\xi, t) , we know that there exist two positive constants C_2 and C_3 such that the following relation holds

    C_2(1+|\xi|^2)\hat{E}(\xi, t) \leq L_1(\xi, t)\leq C_3(1+|\xi|^2)\hat{E}(\xi, t).

    Thus, Eq (3.19) transforms into

    \begin{equation} \frac{d}{dt}\hat{E}(\xi, t)+C\frac{|\xi|^2}{1+|\xi|^2}\hat{E}(\xi, t)\leq 0. \end{equation} (3.20)

    Finally, the estimate in (3.20) leads to the desired result (2.4), allowing us to derive the decay estimate (2.5). The proof of (2.5) is the same as the one of Theorem 3.6 in [8], so we omit it here.

    Based on Lemmas 3.1–3.3 and the condition K = 0 , we have the following conclusion.

    Lemma 3.5. Under the condition K = 0 , the energy functional (3.1) becomes

    \begin{equation} \hat{\mathcal{E}}(\xi,t): = |\hat{\varphi}+\tau\hat{w}|^2+\frac{k^*}{\rho}|\xi|^4|\hat{u}+\tau\hat{\varphi}|^2+\frac{1}{\rho}|\hat{\theta}|^2+\frac{\tau_0}{\rho}|\hat{q}|^2, \end{equation} (3.21)

    and then \hat{\mathcal{E}}(\xi, t) satisfies

    \begin{equation} \frac{d}{dt}\hat{\mathcal{E}}(\xi,t) = -\frac{1}{\rho}|\hat{q}|^2 \end{equation} (3.22)

    and the following inequality holds true:

    \begin{equation} \frac{d}{dt}F_1(t)+\left(\frac{k^*}{\rho}-\epsilon_1\right)|\xi|^4|\hat{u}+\tau\hat{\varphi}|^2\leq |\hat{\varphi}+\tau\hat{w}|^2+C(\epsilon_1)|\hat{\theta}|^2, \end{equation} (3.23)
    \begin{equation} \frac{d}{dt}F_2(t)+(m-\epsilon_2)|\xi|^2|\hat{\varphi}+\tau\hat{w}|^2 \leq C(\epsilon_2)|\hat{q}|^2 +\epsilon_2' |\xi|^6|\hat{u}+\tau\hat{\varphi}|^2+C(\epsilon_2') |\xi|^2|\hat{\theta}|^2, \end{equation} (3.24)

    for any \epsilon_1 > 0 and \epsilon_2, \epsilon_2' > 0 .

    Proof. It is straightforward to obtain Eqs (3.22) and (3.23). It follows from (3.7) that

    \begin{equation*} \frac{d}{dt}F_2(t)+m|\xi|^2|\hat{\varphi}+\tau\hat{w}|^2 = -\kappa{\rm{Re}}(i\xi \hat{q}(\bar{\hat{\varphi}}+\tau\bar{\hat{w}}))-\frac{k^*}{\rho}|\xi|^4{\rm{Re}}((\hat{u}+\tau\hat{\varphi})\bar{\hat{\theta}})+\frac{m}{\rho}|\xi|^2|\hat{\theta}|^2. \end{equation*}

    Using Young's inequality, we get

    \begin{align*} &-\kappa{\rm{Re}}(i\xi \hat{q}(\bar{\hat{\varphi}}+\tau\bar{\hat{w}})) \leq \epsilon_2 |\xi|^2 |\hat{\varphi}+\tau\hat{w}|^2 +C(\epsilon_2)|\hat{q}|^2,\\ &-\frac{k^*}{\rho}|\xi|^4{\rm{Re}}((\hat{u}+\tau\hat{\varphi})\bar{\hat{\theta}}) \leq \epsilon_2' |\xi|^6|\hat{u}+\tau\hat{\varphi}|^2 +C(\epsilon_2')|\xi|^2|\hat{\theta}|^2, \end{align*}

    where \epsilon_2, \epsilon_2' > 0 . Collecting the above estimates, we obtain (3.24).

    Lemma 3.6. The functional

    \bar{F}_3(t): = {\rm{Re}}\left(i\tau_0 \xi \hat{q}\bar{\hat{\theta}}\right)

    satisfies

    \begin{equation} \frac{d}{dt}\bar{F}_3(t)+\left(\kappa-\epsilon_3\right) |\xi|^2|\hat{\theta}|^2 \leq C(\epsilon_3, \epsilon_3')\left(1+|\xi|^2+|\xi|^4\right)|\hat{q}|^2+\epsilon_3' |\xi|^2 |\hat{\varphi}+\tau\hat{w}|^2, \end{equation} (3.25)

    for any \epsilon_3, \epsilon_3' > 0 .

    Proof. Taking (3.12) into account, we arrive at

    \begin{equation} \frac{d}{dt}\bar{F}_3(t) +\kappa|\xi|^2|\hat{\theta}|^2-\kappa\tau_0 |\xi|^2|\hat{q}|^2 = {\rm{Re}}(i\xi \hat{q}\bar{\hat{\theta}}) -m\tau_0 {\rm{Re}}(i\xi^3(\hat{\varphi}+\tau\hat{w})\bar{\hat{q}}). \end{equation} (3.26)

    Taking advantage of Young's inequality, we obtain (3.25). The proof is complete.

    Proof of Theorem 2.4. We define the new Lyapunov functional L_2(\xi, t) associated to the case K = 0 as follows:

    \begin{equation} L_2(\xi, t): = \bar{N}(1+|\xi|^2)^2\hat{\mathcal{E}}(\xi, t)+|\xi|^2 F_1(t)+\bar{N}_2 F_2(t) +\bar{N}_3 \bar{F}_3(t). \end{equation} (3.27)

    Taking the derivative of (3.27) with respect to t and making use of the above lemmas, we derive

    \begin{align} &\frac{d}{dt}L_2(\xi, t)+\bigg[ \left(\frac{k^*}{\rho}-\epsilon_1\right)- \bar{N}_2\epsilon_2' \bigg]|\xi|^6|\hat{u}+\tau\hat{\varphi}|^2\\ &+\bigg[\bar{N}_2\left(m-\epsilon_2\right)-1-\bar{N}_3 \epsilon_3'\bigg]|\xi|^2|\hat{\varphi}+\tau\hat{w}|^2\\ &+\bigg[ \bar{N}_3\left(\kappa-\epsilon_3 \right) -C(\epsilon_1) - \bar{N}_2 C(\epsilon_2') \bigg]|\xi|^2|\hat{\theta}|^2\\ &+\bigg[\frac{\bar{N}}{\rho}(1+|\xi|^2)^2-\bar{N}_2 C(\epsilon_2)-\bar{N}_3 C(\epsilon_3, \epsilon_3')(1+|\xi|^2+|\xi|^4) \bigg]|\hat{q}|^2\\ \leq &0. \end{align} (3.28)

    At this point, we choose our constants carefully like before. First, we pick

    \epsilon_1 < \frac{k^*}{\rho},\quad \epsilon_2 < m, \quad \epsilon_3 < \kappa.

    Next, we choose

    \bar{N}_2 > \frac{1}{m-\epsilon_2} \quad {\rm and } \quad \bar{N}_3 > \frac{C(\epsilon_1) + \bar{N}_2 C(\epsilon_2')}{\kappa-\epsilon_3}.

    Then, we fix \epsilon_3' satisfying

    \epsilon_2' < \frac{(k^*/\rho -\epsilon_1)}{\bar{N}_2},\quad \epsilon_3' < \frac{\bar{N}_2\left(m-\epsilon_2\right)-1}{\bar{N}_3}.

    Finally, we choose N large enough such that

    \bar{N} > \rho\bar{N}_2 C(\epsilon_1)+\rho\bar{N}_3 C(\epsilon_3, \epsilon_3').

    Thus, we arrive at

    \begin{equation} \frac{d}{dt}L_2(\xi, t)+C_4M_2(t)\leq 0, \end{equation} (3.29)

    where

    \begin{align*} M_2(t)& = |\xi|^6|\hat{u}+\tau\hat{\varphi}|^2+|\xi|^2|\hat{\varphi}+\tau\hat{w}|^2+|\xi|^2|\hat{\theta}|^2+|\xi|^2|\hat{q}|^2\nonumber\\ & = |\xi|^2\hat{\mathcal{E}}(\xi, t). \end{align*}

    From the definition of \hat{\mathcal{E}}(\xi, t) and (3.27), it is obviously that L_2(\xi, t)\sim (1+|\xi|^2)^2\hat{\mathcal{E}}(\xi, t) . Then,

    \begin{equation} \frac{d}{dt}\hat{\mathcal{E}}(\xi, t)+C\frac{|\xi|^2}{(1+|\xi|^2)^2}\hat{\mathcal{E}}(\xi, t)\leq 0. \end{equation} (3.30)

    Thus, we achieve the desired pointwise estimate (2.6), which leads to the conclusion (2.7). The proof process of (2.7) is similar to the proof of Theorem 3.1 in [9], so we omit it here.

    From now on, we study the asymptotic expansion of the eigenvalues for |\xi|\rightarrow 0 and |\xi| \rightarrow \infty to show the optimality.

    Let \hat{V} = (\hat{u}, \hat{\varphi}, \hat{w}, \hat{\theta}, \hat{q})^{T} and \hat{V}_0 = (\hat{u}_0, \hat{\varphi}_0, \hat{w}_0, \hat{\theta}_0, \hat{q}_0)^{T} . Then, we can rewrite system (2.1)-(2.2) as

    \begin{equation} \left\{ {{\begin{array}{*{20}l} \hat{V}_{t}+i\xi A\hat{V}+|\xi|^2 B\hat{V}+|\xi|^4D\hat{V}+L\hat{V} = 0,\\ \hat{V}(\xi,0) = \hat{V}_{0}(\xi), \end{array} }} \right. \end{equation} (4.1)

    where

    \begin{align*} &A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \kappa \\ 0 & 0 & 0 & \frac{\kappa}{\tau_0} & 0 \end{pmatrix},\quad L = \begin{pmatrix} 0 & -1 & 0 & 0 & 0\\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{\tau} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\tau_0} \end{pmatrix},\quad\\ &B = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{m}{\tau\rho} & 0 \\ 0 & m & m\tau & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},\quad D = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{k^*}{\tau\rho} & \frac{k}{\tau\rho} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}. \end{align*}

    For (4.1), the solution is given by

    \hat{V}(\xi,t) = e^{t\hat{\Phi}(i\xi)}\hat{V}_0(\xi),

    where e^{t\hat{\Phi}(i\xi)} denotes the matrix exponential with

    \hat{\Phi}(i\xi) = -(L+i\xi A+|\xi|^2 B+|\xi|^4 D).

    Setting \zeta = i\xi , we get

    \hat{\Phi}(\zeta) = -(L+\zeta A-\zeta^2 B+\zeta^4 D).

    Let \lambda_j(\zeta) denote the eigenvalues of the matrix \hat{\Phi}(\zeta). By the direct calculation, we find that the characteristic polynomial of \hat{\Phi}(\zeta) is

    \begin{align} &\tau\rho c \det(\lambda I-\hat{\Phi}(\zeta))\\ = &\tau\rho \tau_0 \lambda^5+(\tau_0 \rho+\tau\rho)\lambda^4+[(\tau_0 k+ m^2 \tau\tau_0)\zeta^4-\tau\rho\kappa^2 \zeta^2+\rho ]\lambda^3\\ &+[(\tau_0 k^*+m^2\tau+m^2\tau_0+k)\zeta^4-\rho \kappa^2 \zeta^2]\lambda^2+[(m^2+k^*)\zeta^4-\kappa^2 k \zeta^6]\lambda-\kappa^2 k^*\zeta^6.\\ \end{align} (4.2)

    Lemma 4.1. The real parts of the eigenvalues of (2.1)-(2.2) satisfy the following asymptotic expansion:

    \begin{equation} {\rm{Re}}\lambda_j(i\xi) = \left\{ {{\begin{array}{*{20}l} -\frac{1}{\tau}+O(|\xi|^2),\quad j = 1,\\ -\frac{1}{\tau_0}+O(|\xi|^2),\quad j = 2,\\ -{\rm{Re}}(\phi_j)|\xi|^2+O(|\xi|^3),\quad j = 3,4,5, \end{array} }} \right. \end{equation} (4.3)

    for |\xi|\rightarrow 0 .

    Proof. We consider \lambda_j(\zeta) the following asymptotic expansion:

    \begin{equation} \lambda_j(\zeta) = \sum\limits_{h = 0}^{\infty} \lambda_j^{(h)}|\zeta|^h, \end{equation} (4.4)

    for |\zeta|\rightarrow 0 . Straightforward computations yield

    \begin{align*} &\lambda_j^{(0)} = -\frac{1}{\tau},\quad j = 1,\\ &\lambda_j^{(0)} = -\frac{1}{\tau_0},\quad j = 2,\\ &\lambda_j^{(0)} = \lambda_j^{(1)} = 0, \quad \lambda_j^{(2)} = \phi_j, \quad j = 3,4,5, \end{align*}

    where \phi_j are the roots of equation \rho X^3-\rho\kappa^2 X^2+(m^2+k^*)X-\kappa^2 k^* = 0 . To demonstrate that {\rm{Re}}(\phi_j) > 0 , we set

    \begin{equation} f(X): = \rho X^3-\rho\kappa^2 X^2+(m^2+k^*)X-\kappa^2 k^*. \end{equation} (4.5)

    Since f(0)f(\kappa^2) < 0 , we conclude that f has at least one real root X = \phi_1 in the interval (0, \kappa^2) . We express Eq (4.5) in the form

    f(X) = (X-\phi_1)(\rho X^2+d_1X+d_0)

    with d_1 = -\rho \kappa^2 +\phi_1\rho < 0 and d_0 = \frac{\kappa^2 k^*}{\phi_1} > 0 . For the remaining roots \phi_2 and \phi_3 , we find that

    \phi_2+\phi_3 = -\frac{d_1}{\rho } > 0,\quad \phi_2 \phi_3 = \frac{d_0}{\rho } > 0.

    This implies that if \phi_2 and \phi_3 are real, they are both positive; if \phi_2 and \phi_3 are complex conjugates, then

    {\rm{Re}}(\phi_2) = {\rm{Re}}(\phi_3) = \frac{1}{2}(\kappa^2-\phi_1) > 0.

    Thus, we have arrived at the desired result in (4.3). This completes the proof.

    When |\zeta|\rightarrow \infty , we rewrite \hat{\Phi}(\zeta) as \hat{\Phi}(\zeta) = \zeta^2\hat{\Psi}(\zeta^{-1}) , where \hat{\Psi}(\zeta^{-1}) = B-\zeta^{-1}A-\zeta^{-2}L-\zeta^{2}D , and consider the eigenvalues \mu_j(\zeta^{-1}) , for j = 1, 2, 3, 4, 5 of the matrix \hat{\Psi}(\zeta^{-1}) . Meanwhile, these eigenvalues \mu_j(\zeta^{-1}) are the solutions to the characteristic equation

    \begin{align*} &\tau\rho c \det(\mu I-\hat{\Phi}(\zeta^{-1}))\\ = &\tau\rho \tau_0 \mu^5+(\tau_0\rho+ \tau\rho)\zeta^{-2} \mu^4+[\rho\zeta^{-4} -\tau\rho\kappa^2 \zeta^{-2} + (\tau_0 k+m^2\tau\tau_0)]\mu^3\\ &+[-\rho\kappa^2\zeta^{-4}+(\tau_0 k^*+m^2\tau+m^2\tau_0+k)\zeta^{-2}]\mu^2+[(m^2+k^*)\zeta^{-4}-\kappa^2 k \zeta^{-2}]\mu-\kappa^2 k^* \zeta^{-4}. \end{align*}

    Lemma 4.2. When K > 0 , the real parts of the eigenvalues of (2.1)-(2.2) satisfy the asymptotic expansion

    \begin{equation} {\rm{Re}}\lambda_j(i\xi) = \left\{ {{\begin{array}{*{20}l} -\frac{K\tau_0 \rho}{2\tau\rho(\tau_0 k+m^2\tau\tau_0)}+O(|\xi|^{-1}),\quad j = 1,2,\\ -\frac{m^2 \tau \kappa^2 k+\kappa^2 k^2+m^2 \tau_0 \kappa^2 K}{2\kappa^2 k(\tau_0 k+m^2 \tau\tau_0)}+O(|\xi|^{-1}),\quad j = 3,4,\\ -1+O(|\xi|^{-1}),\quad j = 5, \end{array} }} \right. \end{equation} (4.6)

    for |\xi| \rightarrow \infty .

    When K = 0 , the real parts of the eigenvalues of (2.1)-(2.2) satisfy the asymptotic expansion

    \begin{equation} {\rm{Re}}\lambda_j(i\xi) = \left\{ {{\begin{array}{*{20}l} -\frac{\kappa^2 m^2 \tau^2 \rho}{2\tau_0^2(k+m^2 \tau)^2} |\xi|^{-2} +O(|\xi|^{-3}),\quad j = 1,2,\\ -\frac{m^2 \tau \kappa^2 k+\kappa^2 k^2}{2\kappa^2 k(\tau_0 k+m^2 \tau\tau_0)}+O(|\xi|^{-1}),\quad j = 3,4,\\ -1+O(|\xi|^{-1}),\quad j = 5, \end{array} }} \right. \end{equation} (4.7)

    for |\xi| \rightarrow \infty .

    Proof. As |\zeta|\rightarrow \infty , similar calculation as before yields

    \begin{align*} &\mu_j^{(2)} = \pm\sqrt{\frac{k+m^2 \tau}{\tau\rho}} i, \quad \mu_j^{(1)} = 0, \quad {\rm{Re}}\bigg(\mu_j^{(0)}\bigg) = -\frac{K\tau_0 \rho}{2\tau\rho(\tau_0 k+m^2\tau\tau_0)},\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \quad\quad\quad\quad\quad\ j = 1,2,\quad {\rm when}\quad K > 0;\\ &\mu_j^{(2)} = \pm\sqrt{\frac{k+m^2 \tau}{\tau\rho}} i, \quad \mu_j^{(1)} = 0, \quad \mu_j^{(0)} = \mp\frac{\tau^2\rho \kappa^2 m^2}{2\sqrt{\tau\rho(k+m^2 \tau)} (\tau_0 k+m^2\tau\tau_0)} i,\\ &\mu_j^{(-1)} = 0, \quad {\rm{Re}}\bigg(\mu_j^{(-2)}\bigg) = \frac{\kappa^2 m^2 \tau^2 \rho}{2\tau_0^2(k+m^2 \tau)^2},\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \quad\quad\quad\quad\quad\ j = 1,2,\quad {\rm when}\quad K = 0;\\ &\mu_j^{(2)} = 0,\quad \mu_j^{(1)} = \pm\sqrt{\frac{\kappa^2 k}{\tau_0 k+m^2\tau\tau_0}},\quad \mu_j^{(0)} = -\frac{m^2 \tau \kappa^2 k+\kappa^2 k^2+m^2 \tau_0 \kappa^2 K}{2\kappa^2 k(\tau_0 k+m^2 \tau\tau_0)},\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \quad\quad\quad\quad\quad\ j = 3, 4,\\ &\mu_j^{(2)} = 0,\quad \mu_j^{(1)} = 0,\quad \mu_j^{(0)} = -1, \quad\quad\quad\quad\quad\quad\ \ \ \ \ \ j = 5. \end{align*}

    Consequently, our conclusion holds.

    In this work, we have investigated the Cauchy problem for the JMGT-viscoelastic plate system coupled with Cattaneo-type heat conduction, focusing on the optimal decay rates of solutions in both the subcritical and critical cases. Our main contributions can be summarized as follows:

    (1) The subcritical case: We proved that the system exhibits exponential decay without regularity loss, improving upon previous results in the literature. This indicates that the dissipation mechanism in this regime preserves the initial regularity of solutions.

    (2) The critical case: In contrast, we observed a regularity-loss phenomenon in the decay rates, demonstrating a fundamental difference in the long-time behavior compared to the subcritical case.

    Danhua Wang performed the formal analysis and wrote the manuscript; Kewang Chen performed the validation and review. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they haven't used Artificial Intelligence (AI) tools in the creation of this article.

    The first author is supported by the Basic Science (Natural Science) Research project of higher education institutions in Jiangsu Province (Grant No. 24KJB110021) and Youth Special project of Nanjing Xiaozhuang University (No. 2022NXY38).

    The authors declare that there is no conflict of interest.



    [1] M. Afilal, T. A. Apalara, A. Soufyane, A. Radid, On the decay of MGT-viscoelastic plate with heat conduction of Cattaneo type in bounded and unbounded domains, Commun. Pure Appl. Anal., 22 (2023), 212–227. https://doi.org/10.3934/cpaa.2022151 doi: 10.3934/cpaa.2022151
    [2] M. Conti, V. Pata, M. Pellicer, R. Quintanilla, On the analyticity of the MGT-viscoelastic plate with heat conduction, J. Differ. Equations, 269 (2020), 7862–7880. https://doi.org/10.1016/j.jde.2020.05.043 doi: 10.1016/j.jde.2020.05.043
    [3] M. Conti, V. Pata, R. Quintanilla, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptotic Anal., 120 (2020), 1–21. https://doi.org/10.3233/ASY-191576 doi: 10.3233/ASY-191576
    [4] G. C. Gorain, Stabilization for the vibrations modeled by the 'standard linear model' of viscoelasticity, Proc. Indian Acad. Sci. Math. Sci., 120 (2010), 495–506. https://doi.org/10.1007/s12044-010-0038-8 doi: 10.1007/s12044-010-0038-8
    [5] B. Kaltenbacher, I. Lasiecka, R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybern., 40 (2011), 971–988.
    [6] B. Kaltenbacher, I. Lasiecka, M. K. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Math. Mod. Meth. Appl. Sci., 22 (2012). https://doi.org/10.1142/S0218202512500352
    [7] A. N. Norris, Dynamics of thermoelastic thin plates: A comparison of four theories, J. Therm. Stresses, 29 (2006), 169–195. https://doi.org/10.1080/01495730500257482 doi: 10.1080/01495730500257482
    [8] M. Pellicer, B. Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Appl. Math. Optim., 80 (2019), 447–478. https://doi.org/10.1007/s00245-017-9471-8 doi: 10.1007/s00245-017-9471-8
    [9] M. Pellicer, B. Said-Houari, On the Cauchy problem of the standard linear solid model with Cattaneo heat conduction, Asymptotic Anal., 2021, 1–33. https://doi.org/10.3233/ASY-201666
    [10] R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 24 (2019), 4020–4031. https://doi.org/10.1177/1081286519862007 doi: 10.1177/1081286519862007
    [11] D. Wang, W. Liu, R. Racke, Decay properties for the Cauchy problem of the linear JMGT-viscoelastic plate with heat conduction, J. Math. Anal. Appl., 525 (2023), 1–25. https://doi.org/10.1016/j.jmaa.2023.127232 doi: 10.1016/j.jmaa.2023.127232
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(103) PDF downloads(13) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog