In this paper, we introduce a novel paranormed sequence space $ \mathit{l} ({R_{\Phi}}, p) $ constructed through the application of the Riesz Euler Totient matrix. We demonstrate that the spaces $ \mathit{l} ({R_{\Phi}}, p) $ and $ \mathit{l} (p) $ are linearly isomorphic. In addition, we identify the dual spaces associated with this sequence space and establish its Schauder basis.
Citation: Pınar Zengin Alp. On paranormed sequence space arising from Riesz Euler Totient matrix[J]. AIMS Mathematics, 2025, 10(5): 11260-11270. doi: 10.3934/math.2025510
In this paper, we introduce a novel paranormed sequence space $ \mathit{l} ({R_{\Phi}}, p) $ constructed through the application of the Riesz Euler Totient matrix. We demonstrate that the spaces $ \mathit{l} ({R_{\Phi}}, p) $ and $ \mathit{l} (p) $ are linearly isomorphic. In addition, we identify the dual spaces associated with this sequence space and establish its Schauder basis.
| [1] |
I. J. Maddox, Spaces of strongly summable sequences, Q. J. Math., 18 (1967), 344–355. https://doi.org/10.1093/qmath/18.1.345 doi: 10.1093/qmath/18.1.345
|
| [2] |
S. Simons, The sequence spaces $\mathit{l} (p_v)$ and $m(p_v)$, Proc. London Math. Soc., 15 (1965), 422–436. https://doi.org/10.1112/plms/s3-15.1.422 doi: 10.1112/plms/s3-15.1.422
|
| [3] | H. Nakano, Modulared sequence spaces, Proc. Japan Acad., 27 (1951), 508–512. https://doi.org/10.3792/pja/1195571225 |
| [4] |
M. Candan, Almost convergence and double sequential band matrix, Acta Math. Sci., 34 (2014), 354–366. https://doi.org/10.1016/S0252-9602(14)60010-2 doi: 10.1016/S0252-9602(14)60010-2
|
| [5] | R. Kama, B. Altay, F. Başar, On the domains of backward difference matrix and the spaces of convergence of a series, Bull. Allahabad Math. Soc., 33 (2018), 139–153. |
| [6] |
M. Gurdal, S. Kolanci, Ȯ. Kişi, Generalized statistical relative uniform $\phi$ -convergence of triple sequences of functions, Journal of Classical Analysis, 23 (2023), 35–44. https://doi.org/10.7153/jca-2023-21-04 doi: 10.7153/jca-2023-21-04
|
| [7] | B. Altay, F. Başar, The fine spectrum and the matrix domain of the difference operator $\delta$ on the sequence space lp (0 < p < 1), Communications in Mathematical Analysis, 2 (2007), 1–11. |
| [8] |
P. Zengin Alp, E. E. Kara, The new class $Lz, p, E$ of $s$-type operators, AIMS Mathematics, 4 (2019), 779–791. https://doi.org/10.3934/math.2019.3.779 doi: 10.3934/math.2019.3.779
|
| [9] |
T. Yaying, S. A. Mohiuddine, J. Aljedani, Exploring the $ q $-analogue of Fibonacci sequence spaces associated with $ c $ and $ c_0$, AIMS Mathematics, 10 (2025), 634–653. https://doi.org/10.3934/math.2025028 doi: 10.3934/math.2025028
|
| [10] | B. Altay, F. Başar, On the paranormed Riesz sequence spaces of non-absolute type, Se. Asian B. Math., 26 (2003), 701–715. |
| [11] | B. Altay, F. Başar, Some paranormed Riesz sequence spaces of non-absolute type, Se. Asian B. Math., 30 (2006), 591–608. |
| [12] |
M. Candan, A new perspective on paranormed Riesz sequence space of non-absolute type, Global Journal of Mathematical Analysis, 3 (2015), 150–163. https://doi.org/10.14419/gjma.v3i4.5573 doi: 10.14419/gjma.v3i4.5573
|
| [13] |
M. C. Dağli, T. Yaying, Some new paranormed sequence spaces derived by regular Tribonacci matrix, J. Anal., 31 (2023), 109–127. https://doi.org/10.1007/s41478-022-00442-w doi: 10.1007/s41478-022-00442-w
|
| [14] |
E. E. Kara, S. Demiriz, Some new paranormed difference sequence spaces derived by Fibonacci numbers, 2013, Miskolc Math. Notes, 16 (2015), 907–923. https://doi.org/10.18514/MMN.2015.1227 doi: 10.18514/MMN.2015.1227
|
| [15] |
P. Zengin Alp, A new paranormed sequence space defined by Catalan conservative matrix, Math. Method. Appl. Sci., 44 (2021), 7651–7658. https://doi.org/10.1002/mma.6530 doi: 10.1002/mma.6530
|
| [16] | E. Kovac, On $\varphi$-convergence and $\varphi$-density, Math. Slovaca, 55 (2005), 329–351. |
| [17] | I. Niven, H. S. Zuckerman, H. L. Montgomery, An introduction to the theory of numbers, 5 Eds., New York: Wiley, 1991. |
| [18] |
I. J. Schoenberg, The integrability of certain functions and related summability methods, Am. Math. Mon., 66 (1959), 361–375. https://doi.org/10.1080/00029890.1959.11989303 doi: 10.1080/00029890.1959.11989303
|
| [19] |
M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13 (2019), 527–544. https://doi.org/10.7153/oam-2019-13-40 doi: 10.7153/oam-2019-13-40
|
| [20] |
M. İlkhan, M. A. Bayrakdar, A study on matrix domain of Riesz-Euler Totient matrix in the space of p-absolutely summable sequences, Communications in Advanced Mathematical Sciences, 4 (2021), 14–25. https://doi.org/10.33434/cams.845453 doi: 10.33434/cams.845453
|
| [21] | I. J. Maddox, Elements of functional analysis, 2 Eds., Cambridge: Cambridge University Press, 1989. |
| [22] | A. M. Jarrah, E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat, 17 (2003), 59–78. https://www.jstor.org/stable/43998651 |
| [23] |
K. G. Grosseerdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180 (1993), 223–238. https://doi.org/10.1006/jmaa.1993.1398 doi: 10.1006/jmaa.1993.1398
|