Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

A new constant in Banach spaces based on the Zbˇaganu constant CZ(B)

  • Received: 28 December 2024 Revised: 07 March 2025 Accepted: 12 March 2025 Published: 24 March 2025
  • MSC : 46B20

  • In Banach spaces, first we present a new geometric constant, C(q)Z(t,B), which is closely related to the Zbˇaganu constant. We prove that (t+2)q2q1(2q1+tq) and 43 are respectively the lower and upper bounds for C(q)Z(t,B). Furthermore, we also derive that C(q)Z(t,B)=C(q)Z(t,˜B), where ˜B denotes the ultrapower spaces of B. Then, we can establish certain sufficient conditions that ensure a Banach spaces possesses a normal structure, which involve different constants such as the Zbˇaganu constant and Domínguez–Benavides coefficient.

    Citation: Qian Li, Zhouping Yin, Yuxin Wang, Qi Liu, Hongmei Zhang. A new constant in Banach spaces based on the Zbˇaganu constant CZ(B)[J]. AIMS Mathematics, 2025, 10(3): 6480-6491. doi: 10.3934/math.2025296

    Related Papers:

    [1] Qi Liu, Anwarud Din, Yongjin Li . Some aspects of generalized von Neumann-Jordan type constant. AIMS Mathematics, 2021, 6(6): 6309-6321. doi: 10.3934/math.2021370
    [2] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [3] Julieta Bollati, María F. Natale, José A. Semitiel, Domingo A. Tarzia . A two-phase Stefan problem with power-type temperature-dependent thermal conductivity. Existence of a solution by two fixed points and numerical results. AIMS Mathematics, 2024, 9(8): 21189-21211. doi: 10.3934/math.20241029
    [4] Cai-Yun Li, Chun-Gang Zhu . Construction of the spacelike constant angle surface family in Minkowski 3-space. AIMS Mathematics, 2020, 5(6): 6341-6354. doi: 10.3934/math.2020408
    [5] Almudena Campos-Jiménez, Francisco Javier García-Pacheco . The core of the unit sphere of a Banach space. AIMS Mathematics, 2024, 9(2): 3440-3452. doi: 10.3934/math.2024169
    [6] Fei Ma, Jun Yang, Min Yin . A strong convergence theorem for solving pseudo-monotone variational inequalities and fixed point problems using subgradient extragradient method in Banach spaces. AIMS Mathematics, 2022, 7(4): 5015-5028. doi: 10.3934/math.2022279
    [7] Aliya Naaz Siddiqui, Mohammad Hasan Shahid, Jae Won Lee . On Ricci curvature of submanifolds in statistical manifolds of constant (quasi-constant) curvature. AIMS Mathematics, 2020, 5(4): 3495-3509. doi: 10.3934/math.2020227
    [8] Delia-Maria Kerekes, Bianca Moșneguțu, Dorian Popa . On Ulam stability of a second order linear difference equation. AIMS Mathematics, 2023, 8(9): 20254-20268. doi: 10.3934/math.20231032
    [9] Mahmut Karakuş . Spaces of multiplier σ-convergent vector valued sequences and uniform σ-summability. AIMS Mathematics, 2025, 10(3): 5095-5109. doi: 10.3934/math.2025233
    [10] Derya Sağlam, Cumali Sunar . Translation hypersurfaces of semi-Euclidean spaces with constant scalar curvature. AIMS Mathematics, 2023, 8(2): 5036-5048. doi: 10.3934/math.2023252
  • In Banach spaces, first we present a new geometric constant, C(q)Z(t,B), which is closely related to the Zbˇaganu constant. We prove that (t+2)q2q1(2q1+tq) and 43 are respectively the lower and upper bounds for C(q)Z(t,B). Furthermore, we also derive that C(q)Z(t,B)=C(q)Z(t,˜B), where ˜B denotes the ultrapower spaces of B. Then, we can establish certain sufficient conditions that ensure a Banach spaces possesses a normal structure, which involve different constants such as the Zbˇaganu constant and Domínguez–Benavides coefficient.



    In recent years, geometric constants have been extensively cited and extensively studied in academic research in functional analysis. These constants serve as quantitative measures of the geometric attributes of spaces, thereby facilitating a more streamlined approach to tackling challenges within Banach spaces. The elegance of these mathematical constructs is undeniable, and they exhibit an intricate web of interrelationships. For scholars who are enthused by geometric constants of study, we suggest consulting the references listed in [1,2,3] along with any additional citations mentioned within. Furthermore, it is important to recognize that geometric constants have a significant impact on addressing a range of mathematical challenges, including investigations into the Banach–Stone theorem, the Bishop–Phelps–Bollobas theorem, and Tingley's problem. These represent significant avenues of investigation within the field of functional analysis, and if the reader wishes to go into more depth, they may refer to the literature in [4,5].

    Brodskii and Milman initially introduced the notion of normal structure in [6]. Subsequently, Kirk showed in [7] that a single-valued nonexpansive mapping in a Banach space with normal structure has the fixed–point property. As a result, the examination of normal structure constitutes the most crucial aspect of research in fixed point theory [8,9,10,11].

    The configuration of the unit sphere in a Banach space dictates its normal structure; however, it does not adequately capture the spatial geometric structure's features. Hence, in recent years, numerous scholars have introduced a variety of geometric constants to characterize the geometric structure of Banach spaces.

    The James, Jordan-von Neumann, and Zbˇaganu constants are widely studied classical constant in [12,13,14]. In this article, for Banach spaces B, B denotes the dual spaces of B. Let UB and VB represent the unit sphere and the unit ball of the spaces B, respectively:

    J(B)=sup{min{a+b,ab}:a,bVB},CNJ(B)=sup{a+b2+ab22(a2+b2):a,bB,a+b>0},CZ(B):=sup{a+baba2+b2:a,bB,(a,b)(0B,0B)}.

    In order to generalize the results of geometric constants, first Dhompongsa introduced two constants, J(t,B) and CNJ(t,B) (see [1,15]), where t0,

    J(t,B)=sup

    when a, b, c are not all zero and \|b-c\| \leqslant t\|a\| . The constants have the following properties:

    (1) C_{N J}(0, B) = C_{N J}(B) , J(0, B) = J(B) ;

    (2) C_{N J}(t, B) and J(t, B) are increasing continuous functions;

    (3) When X is Banach spaces, 1+\frac{4 t}{4+t^2} \leqslant C_{N J}(t, B) \leqslant 2 for all t \geqslant 0 . For Hilbert spaces, we have C_{N J}(t, B) = 1+\frac{4 t}{4+t^2} for all t \in[0, 2] .

    Cui [16] and Dinarvand [17] respectively introduced the constants C_{N J}^{(q)}(B) and C_{N J}^{(q)}(t, B) and give sufficient conditions for its normal structure when t \geqslant 0 , 1 \leqslant q < \infty ,

    \begin{aligned} & C_{N J}^{(q)}(B) = \sup \left\{\frac{\|a+b\|^{q}+\|a-b\|^{q}}{2^{q-1}\left(\|a\|^{q}+\|b\|^{q}\right)}: a, b \in B, (a, b) \neq (0, 0)\right\} , \\ & C_{N J}^{(q)}(t, B) = \sup \left\{\frac{\|a+b\|^{q}+\|a-c\|^{q}}{2^{q-1}\|a\|^{q}+2^{q-2}\left(\|b\|^{q}+\|c\|^{q}\right)}: a, b, c \in B\right\}, \end{aligned}

    when a, b, c are not all zero and \|b-c\| \leqslant t\|a\| .To delve deeper into the geometric characteristics of Banach spaces, including properties like normal structure and uniform non-squareness, certain researchers have brought forth the concepts of the constants (see [2,18,19]). C_{-\infty}(B), C_{-\infty}(t, B) and C_{-\infty}^{(q)}(B) , when t \geqslant 0 and 1 \leqslant q < \infty . For further insights into these geometric constants:

    \begin{gathered} C_{-\infty}(B) = \sup \left\{\frac{\min \left\{\|a+b\|^2, \|a-b\|^2\right\}}{\|a\|^2+\|b\|^2}: a, b \in B, \|a\|+\|b\| > 0\right\} , \\ C_{-\infty}^{(q)}(B) = \sup \left\{\frac{\min \left\{\|a+b\|^{q}, \|a-b\|^{q}\right\}}{2^{q-2}\left(\|a\|^{q}+\|b\|^{q}\right)}: a, b \in B, (a, b) \neq (0, 0)\right\} , \\ C_{-\infty}(t, B) = \sup \left\{\frac{2 \min \left\{\|a+b\|^2, \|a-c\|^2\right\}}{2\|a\|^2+\|b\|^2+\|c\|^2}: a, b, c \in B\right\}, \end{gathered}

    when a, b, c are not all zero and \|b-c\| \leqslant t\|a\| .

    In the subsequent section, we provide several essential notations and definitions.

    Definition 1.1 ([3]). Let B be Banach spaces, if there exists \sigma > 0 , we have

    \min \{\|a+b\|, \|a-b\|\} < 2(1-\sigma),

    for any a, b \in V_{B} . Then Banach spaces B is uniformly non-square.

    Definition 1.2 ([6]). Banach spaces B is said to possess a (weak) normal structure, which implies that for any (weakly compact) closed bounded convex subset G in B that contains more than one point, there exists an element B_{0} \in G such that the following condition holds for

    \sup \left\{\left\|a_{0}-b\right\|: b \in G\right\} < \sup \{\|a-b\|: a, b \in G\},

    and then if there exists c \in(0, 1) such that the following condition holds for

    \sup \left\{\left\|a_{0}-b\right\|: b \in G\right\} < c \sup \{\|a-b\|: a, b \in G\}.

    Then B is characterized as having a uniform normal structure.

    For the purpose of the proofs in the later sections, primarily we present basic information about the ultrapower spaces in [20,21,22].

    When B is Banach spaces and \mathfrak{E} is a filter on \mathbb{N} . Relative to \mathfrak{E} , a sequence \left\{a_{n}\right\} in B converges on A , denoted \lim_{\mathfrak{E}} a_{n} = A , then for each neighborhood V of A , we have \left\{y \in: A_{y} \in V\right\} \in \mathfrak{E} . A filter \mathfrak{V} on \mathbb{N} is said to be an ultrafilter if it is the greatest element under the subset relation. An ultrafilter is said to be trivial if it is of the form \left\{Z \subset: y_{0} \in Z\right\} for a fixed subset y_{0} \in \mathbb{N} , if not, then it is said to be nontrivial. When L_{\infty}(B) denote the subspace of the product spaces \prod_{n \in \mathbb{N}} B , then we have \left\|\left(a_{n}\right)\right\|_{\infty} = \sup _{n \in \mathbb{N}}\left\|a_{n}\right\| < \infty.

    If \mathfrak{V} is an ultrafilter on \mathbb{N} , then we have

    N_{\mathfrak{V}}(B) = \left\{A = \left(a_{n}\right) \in L_{\infty}(B): \lim \limits_{\mathfrak{V}}\left\|a_{n}\right\| = 0\right\} .

    The ultrapower spaces \widetilde{B} of B is the quotient space \frac{L_{\infty}(B)}{N_{\mathfrak{V}}(B)} which is equipped with the quotient norm. Let \left(a_{n}\right)_{\mathfrak{V}} denote the elements of the ultrapower. It follows from the definition of the commercial specification that \left\|\left(a_{n}\right)_{\mathfrak{V}}\right\| = \lim _{\mathfrak{V}}\left\|a_{n}\right\|. So we can know that if \mathfrak{V} is nontrivial, then a can isometrically be mapped into \widetilde{B} . Moreover, an important result on ultrapower spaces is that if B is super-reflexive, i.e., \widetilde{B^{'}} = (\widetilde{B})^{'} , then \widetilde{B} has normal structure if and only if B has uniform normal structure (see [21]).

    First, the new constant is defined as C_{Z}^{(q)}(t, B) , which takes the form

    C_{Z}^{(q)}(t, B) = \sup\left\{\frac{\|a+b\|^{\frac{q}{2}}\|a-c\|^{\frac{q}{2}}}{2^{q-2}(\|a\|^{q}+\|b\|^{q}+\|c\|^{q})}:a, b, c \in B, (a, b, c)\ne (0, 0, 0)\right\},

    for all 1 \leq q < \infty and t \ge 0 , where \|b-c\| \leq t\|a\| . Next, we are going to introduce some properties of this new constant.

    Remark 2.1. When B is Banach spaces and 1 \leq q < \infty , the following statements are all valid.

    (1) For t \ge 0 , we can know that C_{Z}^{(q)}(t, B) is a continuous and increasing function;

    (2) B is uniformly non-square if and only if C_{Z}^{(q)}(t, B) < \frac{4}{3} , then C_{Z}(B) < \frac{4}{3} ;

    (3) For any t \ge 0 , we can get C_{Z}^{(q)}(t, B) \leq C_{Z}(B) \leq \frac{4}{3} .

    Theorem 2.1. For the Banach spaces X , when 1 \leq q < \infty , we can obtain

    \frac{(t+2)^{q}}{2^{q-1}\left(2^{q-1}+t^{q}\right)} \leq C_{Z}^{(q)}(t, B) \leq \frac{4}{3}.

    Proof. According to Remark 2.1, for all t \ge 0 , we have C_{Z}^{(q)}(t, B) \leqslant \frac{4}{3} . When a \in V_B, b = -c = \frac{t}{2} a such that b-c = t a . Moreover,

    \begin{aligned} & \|a+b\| = \left\|a+\frac{t}{2} a\right\| = \frac{t+2}{2}, \\ & \|a-c\| = \left\|a+\frac{t}{2} a\right\| = \frac{t+2}{2} . \end{aligned}

    Then

    C_{Z}^{(q)}(t, B) \geqslant \frac{\|a+b\|^{\frac{q}{2}}\|a-c\|^{\frac{q}{2}}}{2^{q-2}(\|a\|^{q}+\|b\|^{q}+\|c\|^{q})} = \frac{\left(\frac{t+2}{2}\right)^{q}}{2^{q-2}(1+\frac{t^{q}}{2^{q-1}})} = \frac{(t+2)^q}{2^{q-1}\left(2^{q-1}+t^{q}\right)}.

    Example 2.1. Define B to be \mathbb{R}^2 with the metric induced by the l_1-l_{\infty} norm

    \left\|\left(a_1, a_2\right)\right\| = \begin{cases}\left\|\left(a_1, a_2\right)\right\|_1, & a_1 a_2 \geqslant 0, \\ \left\|\left(a_1, a_2\right)\right\|_{\infty}, & a_1 a_2 \leqslant 0 .\end{cases}

    Then C_{Z}^{(q)}(1, B) = \frac{4}{3} .

    Proof. From Theorem 2.1, we have C_{Z}^{(q)}(1, B) \leqslant \frac{4}{3} . If a = (1, -1), b = (1, 0), c = (0, 1) , we can obtain

    b-c = (1, -1) = a, \; \; \|a+b\| = \|(2, -1)\|_{\infty} = 2, \; \; \|a-c\| = \|(1, -2)\|_{\infty} = 2.

    From the definition of the C_{Z}^{(q)}(t, B) , we can obtain

    C_{Z}^{(q)}(1, B) \geqslant \frac{\|a+b\|^{\frac{q}{2}}\|a-c\|^{\frac{q}{2}}}{2^{q-2}(\|a\|^{q}+\|b\|^{q}+\|c\|^{q})} = \frac{2^q}{3 \cdot 2^{q-2}} = \frac{4}{3}.

    Hence, C_{Z}^{(q)}(1, B) = \frac{4}{3} .

    Example 2.2. Define B to be \mathbb{R}^2 with the metric induced by the l_1-l_2 norm

    \left\|\left(a_1, a_2\right)\right\| = \begin{cases}\left\|\left(a_1, a_2\right)\right\|_1, & a_1 a_2 \geqslant 0, \\ \left\|\left(a_1, a_2\right)\right\|_2, & a_1 a_2 \leqslant 0.\end{cases}

    Then C_{Z}^{(q)}(2, B) = \frac{4}{3} .

    Proof. From Theorem 2.1, we have C_{Z}^{(q)}(2, B) \leqslant \frac{4}{3} . Let a = \left(\frac{1}{2}, \frac{1}{2}\right), b = (0, 1), c = (-1, 0) . We have

    b-c = (1, 1) = 2\left(\frac{1}{2}, \frac{1}{2}\right) = 2 a, \; \; \|a+b\| = \left\|\left(\frac{1}{2}, \frac{3}{2}\right)\right\|_1 = 2, \; \; \|a-c\| = \left\|\left(\frac{3}{2}, \frac{1}{2}\right)\right\|_1 = 2.

    From the definition of the C_{Z}^{(q)}(t, B) , we have

    C_{Z}^{(q)}(1, B) \geqslant \frac{\|a+b\|^{\frac{q}{2}}\|a-c\|^{\frac{q}{2}}}{2^{q-2}(\|a\|^{q}+\|b\|^{q}+\|c\|^{q})} = \frac{2^q}{3 \cdot 2^{q-2}} = \frac{4}{3}.

    Then C_{Z}^{(q)}(2, B) = \frac{4}{3} .

    According to the definitions of the constants J(t, B) and C_{Z}^{(q)}(t, B) , we can effortlessly deduce the subsequent lemma.

    Lemma 2.1. If B is a Banach space and 1 < q < \infty . Then for all t \geqslant 0 , we have

    J(t, B) \leqslant \left(\sqrt[q]{3 \cdot 2^{q-2}}\right) \left(\sqrt[q]{C_{Z}^{(q)}(t, B)}\right).

    Proof. For 1 < q < \infty and t \geqslant 0 , we have

    \begin{aligned} C_{Z}^{(q)}(t, B) &\geq \frac{\|a+b\|^{\frac{q}{2}}\|a-c\|^{\frac{q}{2}}}{3 \cdot 2^{q-2}}\\ &\geq \frac{[\min\{\|a+b\|, \|a-c\|\}]^q}{3 \cdot 2^{q-2}}\\ &\geq \frac{[J(t, B)]^q}{3 \cdot 2^{q-2}}. \end{aligned}

    So we know that

    \begin{aligned} {[J(t,B)]}^q &\leq 3 \cdot 2^{q-2} C_{Z}^{(q)}(t,B),\\ J(t,B)&\leq \left(\sqrt[q]{3 \cdot 2^{q-2}}\right) \left(\sqrt[q]{C_{Z}^{(q)}(t,B)}\right). \end{aligned}

    Then we can obtain the result.

    Lemma 2.2. For Banach spaces B , when 1 \leqslant q < \infty . We have

    C_{Z}^{(q)}(t, B) = C_{Z}^{(q)}(t, \widetilde{B}).

    Proof. For 1 \leqslant q < \infty , we can obtain

    C_{Z}^{(q)}(t, B) \leqslant C_{Z}^{(q)}(t, \widetilde{B}) .

    Next, we prove that C_{Z}^{(q)}(t, B) \geqslant C_{Z}^{(q)}(t, \tilde{B}) . If \sigma > 0, \beta \in[0, t] . Assume that \widetilde{a}, \widetilde{b}, \widetilde{z} \in \widetilde{B} satisfy \|\widetilde{b}-\widetilde{c}\| = \beta\|\widetilde{a}\| . For \widetilde{a} = 0 , we have

    \frac{\|\widetilde{a}+\widetilde{b}\|^{\frac{q}{2}}\|\widetilde{a}-\widetilde{c}\|^{\frac{q}{2}}}{2^{q-2}(\|\widetilde{a}\|^{q}+\|\widetilde{b}\|^{q}+\|\widetilde{c}\|^{q})} = \frac{\|\widetilde{b}\|^{\frac{q}{2}}\|\widetilde{c}\|^{\frac{q}{2}}}{2^{q-2}(\|\widetilde{b}\|^{q}+\|\widetilde{c}\|^{q})} = 2^{1-q},

    thus 2^{1-q} \leqslant C_{Z}^{(q)}(t, B) . When \widetilde{a} \neq 0 , then for all \phi > 0 such that \phi < \sigma\|\widetilde{a}\| . We can get \|\widetilde{a}\| = \lim_{\mathfrak{u}}\|a_n\| and

    k = \frac{\|\widetilde{a}+\widetilde{b}\|^{\frac{q}{2}}\|\widetilde{a}-\widetilde{c}\|^{\frac{q}{2}}}{2^{q-2}(\|\widetilde{a}\|^{q}+\|\widetilde{b}\|^{q}+\|\widetilde{c}\|^{q})} = \lim \limits_{\mathfrak{u}} \frac{\left\|a_n+b_n\right\|^{\frac{q}{2}}\left\|a_n-c_n\right\|^{\frac{q}{2}}}{2^{q-2}(\|a_n\|^{q}+\|b_n\|^{q}+\|c_n\|^{q})} = \lim \limits_{\mathfrak{u}} k_n .

    Then, the set

    Q = \left\{n \in \mathbb{N}:\left|k_n-k\right| < \sigma, \left\|b_n-c_n\right\| \leqslant \beta\left\|a_n\right\|+\phi < (\beta+\sigma)\left\|a_n\right\|\right\}

    in the ultrafilter about \widetilde{B} . Specifically, for all n \in Q , notice that a_n \neq 0 , there exists n such that

    k < \frac{\|\widetilde{a}+\widetilde{b}\|^{\frac{q}{2}}\|\widetilde{a}-\widetilde{c}\|^{\frac{q}{2}}}{2^{q-2}(\|\widetilde{a}\|^{q}+\|\widetilde{b}\|^{q}+\|\widetilde{c}\|^{q})}+\sigma \leqslant C_{Z}^{(q)}(t+\sigma, B)+\sigma.

    Hence, according to the continuity of C_{Z}^{(q)}(\cdot, B) and the arbitrariness of \sigma , we have the inequality

    C_{Z}^{(q)}(t, \widetilde{B}) \leqslant C_{Z}^{(q)}(t, B).

    Lemma 2.3 ([23]). If super-reflexive Banach spaces B have no normal structure, for d \in(0, 1] , then we have \widetilde{a_1}, \widetilde{a_2}, \widetilde{a_3} \in V_{\widetilde{B}}, \widetilde{g}_1, \widetilde{g}_2, \widetilde{g}_3 \in V_{(\tilde{B})^*} such that

    (1) \left\|\widetilde{a}_i-\widetilde{a}_j\right\| = 1 and \widetilde{g}_i\left(\widetilde{a}_j\right) = 0 for all i \neq j, (i, j = (1, 2, 3)) ;

    (2) \widetilde{g}_i\left(\widetilde{a}_i\right) = 1 when i = 1, 2, 3 ;

    (3) \left\|\widetilde{a_3}-\left(\widetilde{a_2}+d \widetilde{a_1}\right)\right\| \geqslant\left\|\widetilde{a_2}+d \widetilde{a_1}\right\| .

    Theorem 2.2. For Banach spaces X , when t \in[0, 1] , then we have

    C_{Z}^{(q)}(t, B) < \frac{1}{3 \cdot 2^{q-2}}\left(1+t+\frac{1-t^2}{J(t, B)+2 t}\right)^{q},

    where 1 < q < \infty , then we can know that B has a normal structure.

    Proof. According to Lemma 2.1, we can obtain \left(J(t, B)\right)^{q} \leqslant 3 \cdot 2^{q-2} \cdot C_{Z}^{(q)}(t, B) . So B is a uniform non-square from the inequality in [1], therefore, B is also super-reflexive. If B has a normal structure and for any t \in[0, 1] , the inequality holds. Then, we have \widetilde{a}_1, \widetilde{a}_2, \widetilde{a}_3 \in V_{\widetilde{B}}, \widetilde{g}_1, \widetilde{g}_2, \widetilde{g}_3 \in V_{(\widetilde{B})^*} conforming all the specifications in Lemma 2.3.

    Let

    \left\{\begin{array}{l} \widetilde{a} = \widetilde{a_3}-\widetilde{a_1}, \\ \\ \widetilde{b} = t \widetilde{a_3}+(1-t) \frac{\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}}{\left\|\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}\right\|} , \\ \\ \tilde{c} = t \widetilde{a_1}+(1-t) \frac{\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}}{\left\|\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}\right\|}. \end{array}\right.

    Then \|\widetilde{a}\| = 1, \|\widetilde{b}\| \leqslant 1, \|\widetilde{c}\| \leqslant 1, \widetilde{b}-\widetilde{c} = t \widetilde{a} . Then, we can obtain

    \begin{aligned} \|\widetilde{a}+\widetilde{b}\|& = \left\|\widetilde{a_3}-\widetilde{a_1}+t \widetilde{a_3}+(1-t) \frac{\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}}{\left\|\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}\right\|}\right\| \\ & \geqslant \widetilde{g_3}\left(\widetilde{a_3}-\widetilde{a_1}+t \widetilde{a_3}+(1-t) \frac{\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}}{\left\|\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}\right\|}\right) \\ & = 1+t+\frac{1-t}{\left\|\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}\right\|}, \end{aligned}
    \begin{aligned} \|\widetilde{a}-\widetilde{c}\|& = \left\|\widetilde{a_3}-\widetilde{a_1}-t \widetilde{a_1}-(1-t) \frac{\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}}{\left\|\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}\right\|}\right\| \\ & \geqslant\left(-\widetilde{g_1}\right)\left(\widetilde{a_3}-\widetilde{a_1}+t \widetilde{a_1}+(1-t) \frac{\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}}{\left\|\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}\right\|}\right) \\ & = 1+t+\frac{1-t}{\left\|\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}\right\|}. \end{aligned}

    From Lemma 2.2, we can obtain

    \begin{aligned} C_{Z}^{(q)}(t, B) & = C_{Z}^{(q)}(t, \widetilde{B}) \\ & \geqslant \frac{\|\widetilde{a}+\widetilde{b}\|^{\frac{q}{2}}\|\widetilde{a}-\widetilde{c}\|^{\frac{q}{2}}}{2^{q-2}(\|\widetilde{a}\|^{q}+\|\widetilde{b}\|^{q}+\|\widetilde{c}\|^{q})} \\ & \geqslant \frac{1}{3 \cdot 2^{q-2}}\left(1+t+\frac{1-t}{\left\|\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}\right\|}\right)^{q}. \end{aligned}

    By taking

    \left\{\begin{array}{l} \widetilde{a} = \widetilde{a_2}-\widetilde{a_1}, \\ \\ \widetilde{b} = t \widetilde{a_2}+(1-t) \frac{-\widetilde{a_3}+\widetilde{a_2}+\widetilde{a_{1}}}{\left\|\widetilde{a_3}-\widetilde{a_2}-\widetilde{a_1}\right\|}, \\ \\ \widetilde{c} = t \widetilde{a_1}+(1-t) \frac{-\widetilde{a_3}+\widetilde{a_2}+\widetilde{a_1}}{\left\|\widetilde{a_3}-\widetilde{a_2}-\widetilde{a_1}\right\|}. \end{array}\right.

    Then \|\widetilde{a}\| = 1, \|\widetilde{b}\| \leqslant 1, \|\widetilde{c}\| \leqslant 1, \widetilde{b}-\widetilde{c} = t \widetilde{a} . Similarly, we have

    \begin{aligned} C_{Z}^{(q)}(t, B) & = C_{Z}^{(q)}(t, \widetilde{B}) \\ & \geqslant \frac{\|\widetilde{a}+\widetilde{b}\|^{\frac{q}{2}}\|\widetilde{a}-\widetilde{c}\|^{\frac{q}{2}}}{2^{q-2}(\|\widetilde{a}\|^{q}+\|\widetilde{b}\|^{q}+\|\widetilde{c}\|^{q})} \\ & \geqslant \frac{1}{3 \cdot 2^{q-2}}\left(1+t+\frac{1-t}{\left\|\widetilde{a_3}-\widetilde{a_2}-\widetilde{a_1}\right\|}\right)^{q}. \end{aligned}

    By taking

    \left\{\begin{array}{l} \widetilde{a} = \widetilde{a_3}-\widetilde{a_2}, \\ \widetilde{b} = t \widetilde{a_3}+(1-t) \widetilde{a_1}, \\ \widetilde{c} = t \widetilde{a_2}+(1-t) \widetilde{a_1}. \end{array}\right.

    When \|\widetilde{a}\| = 1, \|\widetilde{b}\| \leqslant 1, \|\widetilde{c}\| \leqslant 1, \widetilde{b}-\widetilde{c} = t \widetilde{a} . Hence,

    \begin{gathered} \|\widetilde{a}+\widetilde{b}\| = \left\|\widetilde{a_3}-\widetilde{a_2}+t\widetilde{a_3}+(1-t) \widetilde{a_1}\right\| \geqslant(1+t)\left\|\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}\right\|-t\left\|\widetilde{a_2}-2 \widetilde{a_1}\right\| , \\ \|\widetilde{a}-\widetilde{c}\| = \left\|\widetilde{a_3}-(1+t) \tilde{a_2}-(1-t) \widetilde{a_1}\right\| \geqslant(1+t)\left\|\widetilde{a_3}-\widetilde{a_2}-\widetilde{a_1}\right\|-t\left\|\widetilde{a_3}-2 \widetilde{a_1}\right\| , \\ \left\|\widetilde{a_2}-2 \widetilde{a_1}\right\| \leqslant \|\widetilde{a_2}-\widetilde{a_1}\|+\| \widetilde{a_1}\| = 2, \| \widetilde{a_3}-2 \widetilde{a_1} \| \leqslant 2. \end{gathered}

    From the definition of J(t, B) , we can obtain

    \begin{aligned} J(t, B) & = J(t, \widetilde{B}) \\ & \geqslant \min\{\|\widetilde{a}+\widetilde{b}\|, \|\widetilde{a}-\widetilde{c}\|\} \\ & \geqslant (1+t) \min \left\{\left\|\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}\right\|, \left\|\widetilde{a_3}-\widetilde{a_2}-\widetilde{a_1}\right\|\right\}-2 t . \end{aligned}

    Consequently,

    \frac{1}{\min \left\{\left\|\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}\right\|, \left\|\widetilde{a_3}-\widetilde{a_2}-\widetilde{a_1}\right\|\right\}} \geqslant \frac{1+t}{J(t, B)+2 t} .

    As a result, we obtain

    \begin{aligned} C_{Z}^{(q)}(t, B) & \geqslant \frac{1}{3 \cdot 2^{q-2}} (1+t+\frac{1-t}{\min \{\|\widetilde{a_3}-\widetilde{a_2}+\widetilde{a_1}\|, \| \widetilde{a_3}-\widetilde{a_2}-\widetilde{a_1}\|\}})^{q} \\ & \geqslant \frac{1}{3 \cdot 2^{q-2}}\left(1+t+\frac{1-t}{J(t, B)+2 t}\right)^{q}. \end{aligned}

    This contradicts the hypothesis. Therefore, we know that Banach spaces B have normal structure.

    Domínguez-Benavides introduce the constant D(t, B) in 1996 in [24], for t \geqslant 0 ,

    D(t, B) = \sup \left\{\liminf \limits_{n \rightarrow \infty}\left\{\left\|a_n+a\right\|\right\}\right\} ,

    when the supremum satisfies all a \in B with \|a\| \leqslant t . Then all weakly null sequences \left\{a_n\right\} in U_B satisfy

    D\left[\left(a_n\right)\right] = \limsup\limits_{n \rightarrow \infty}\limsup\limits_{m \rightarrow \infty}\|a_n-a_m\| \leqslant 1 .

    Particularly, when t = 1 , we have 1 \leqslant D(1, B) \leqslant 2 .

    Lemma 3.1 ([23]). A super-reflexive Banach space B has no normal structure; then we have \widetilde{a_1}, \widetilde{a_2} \in V_{\widetilde{B}}, \widetilde{g_1}, \tilde{g_2} \in V_{(\tilde{B})^{*}} such that

    (1) \left\|\widetilde{a_1}-\widetilde{a_2}\right\| = 1 and \widetilde{g_i}\left(\widetilde{a_j}\right) = 0 for i \neq j, (i, j = (1, 2)) ;

    (2) \widetilde{g_i}\left(\widetilde{a_i}\right) = 1 when i = 1, 2 ;

    (3) \left\|\widetilde{a_2}+\widetilde{a_1}\right\| \leqslant D(1, B) .

    Theorem 3.1. Banach spaces B , where there exists t \in[0, 1] , if

    C_{Z}^{(q)}(t, B) < \frac{1}{3\cdot 2^{q-2}}\left(1+t+\frac{1-t}{D(1, B)}\right)^{q},

    when 1 < q < \infty , then B has a normal structure.

    Proof. Suppose that 1 < q < \infty ; if t = 1 , we can know that B has a normal structure. When 0 \leqslant t < 1 and D(1, B) \geqslant 1 , we have C_{Z}^{(q)}(t, B) < \frac{4}{3} , then we can obtain B is a uniform non–square; therefore, B is super–reflexive.

    Assume that B has no normal structure. According to Lemma 3.1, we have \widetilde{a_1}, \widetilde{a_2} \in V_{\widetilde{B}}, \widetilde{g_1}, \widetilde{g_2} \in V_{(\widetilde{B})^*} conforming to all the conditions delineated in Lemma 3.1. By taking

    \left\{\begin{array}{l} \widetilde{a} = \widetilde{a_2}-\widetilde{a_1}, \\ \\ \widetilde{b} = t \widetilde{a_2}+(1-t) \frac{\widetilde{a_2}+\widetilde{a_1}}{\left\|\widetilde{a_2}+\widetilde{a_1}\right\|}, \\ \\ \widetilde{c} = t \widetilde{a_1}+(1-t) \frac{\widetilde{a_2}+\widetilde{a_1}}{\left\|\widetilde{a_2}+\widetilde{a_1}\right\|}. \end{array}\right.

    Then \|\widetilde{a}\| = 1, \|\widetilde{b}\| \leqslant 1, \|\widetilde{c}\| \leqslant 1 , and \left\|\widetilde{a_2}+\widetilde{a_1}\right\| \geqslant \widetilde{g_1}\left(\widetilde{a_2}+\widetilde{a_1}\right) = 1 . We can obtain

    \begin{aligned} \|\widetilde{a}+\widetilde{b}\|& = \left\|\widetilde{a_2}-\widetilde{a_1}+t \widetilde{a_2}+(1-t) \frac{\widetilde{a_2}+\widetilde{a_1}}{\left\|\widetilde{a_2}+\widetilde{a_1}\right\|}\right\| \\ & \geqslant \widetilde{g_2}\left(\widetilde{a_2}-\widetilde{a_1}+t \widetilde{a_2}+(1-t) \frac{\widetilde{a_2}+\widetilde{a_1}}{\left\|\widetilde{a_2}+\widetilde{a_1}\right\|}\right) \\ & = 1+t+\frac{1-t}{\left\|\widetilde{a_2}+\widetilde{a_1}\right\|}, \\ \|\widetilde{a}-\widetilde{c}\|& = \left\|\widetilde{a_2}-\widetilde{a_1}-t \widetilde{a_1}-(1-t) \frac{\widetilde{a_2}+\widetilde{a_1}}{\left\|\widetilde{a_2}+\widetilde{a_1}\right\|}\right\| \\ & \geqslant\left(-\widetilde{g_1}\right)\left(\widetilde{a_2}-\widetilde{a_1}-t \widetilde{a_1}-(1-t) \frac{\widetilde{a_2}+\widetilde{a_1}}{\left\|\widetilde{a_2}+\widetilde{a_1}\right\|}\right) \\ & = 1+t+\frac{1-t}{\left\|\widetilde{a_2}+\widetilde{a_1}\right\|} . \end{aligned}

    From the definition of the C_{Z}^{(q)}(t, B) , we can obtain

    \begin{aligned} C_{Z}^{(q)}(t, B) & = C_{Z}^{(q)}(t, \widetilde{B}) \\ & \geqslant \frac{\|\widetilde{a}+\widetilde{b}\|^{\frac{q}{2}}\|\widetilde{a}-\widetilde{c}\|^{\frac{q}{2}}}{2^{q-2}(\|\widetilde{a}\|^{q}+\|\widetilde{b}\|^{q}+\|\widetilde{c}\|^{q})} \\ & \geqslant \frac{1}{3 \cdot 2^{q-2}}\left(1+t+\frac{1-t}{\left\|\widetilde{a_2}+\widetilde{a_1}\right\|}\right)^{q}\\ & \geqslant \frac{1}{3 \cdot 2^{q-2}}\left(1+t+\frac{1-t}{D(1, B)}\right)^{q}. \end{aligned}

    This contradicts the hypothesis. Thus, this completes the proof.

    If t = 0 , we obtain the following corollary.

    Corollary 3.1. For Banach spaces X , when

    C_{Z}^{(q)}(B) < \frac{1}{3 \cdot 2^{q-2}}\left(1+\frac{1}{D(1, B)}\right)^{q},

    where 1 < q < \infty , we can get that B has a normal structure.

    We know that if

    C_{Z}^{(2)}(t, B) < \frac{2}{3}\left(1+(\frac{(1+t)}{\min\{D(1, B)+t, 2\}})^2\right),

    then B has a normal structure [18]. According to Theorem 3.1, it has

    C_{Z}^{(2)}(t, B) < \frac{1}{3} \left(1+t+\frac{1-t}{D(1, B)}\right)^2

    when q = 2 . Then, for t \in [0, 1], 1 \leqslant D(t, B) \leqslant 2 , we have

    \frac{1}{3} (1+t+\frac{1-t}{D(1, B)})^2 \in [\frac{3}{4}, \frac{4}{3}], \quad \frac{2}{3}\left(1+(\frac{(1+t)}{\min\{D(1, B)+t, 2\}})^2\right) \in [\frac{5}{6}, \frac{4}{3}].

    In particular, when q = 2 , according to Corollary 3.1, we have

    C_{Z}^{(2)}(t, B) < \frac{1}{3} (1+\frac{1}{D(1, B)})^2.

    Since

    \frac{1}{3} (1+\frac{1}{D(1, B)})^2 < \frac{2}{3}(1+\frac{1}{D(1, B)^2})

    holds, then we have improved the results.

    In this paper, we present a novel geometric constant C_{Z}^{(q)}(t, B) in Banach spaces, which bears a significant relationship to the Zb \check{a} ganu constant. At first, we introduce the definition and some properties of this new constant, and the focus of this paper is on the relationship between the normal structure and the constant C_{Z}^{(q)}(t, B) . Using ultrapower techniques, we establish the relationship between the Zb \check{a} ganu constant (Domínguez-Benavides coefficient) and C_{Z}^{(q)}(t, B) , which gives us a sufficient condition for the normal structure. Thus, we can improve on the results obtained in [18,23,25].

    Qian Li: Writing-original draft; Zhouping Yin: Supervision, Writing-review; Yuxin Wang: Writing-review; Qi Liu: Writing-review; Hongmei Zhang: Methodology. All authors have reviewed and consented to the publication of the final manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors state that there are no conflicts of interest.



    [1] S. Dhompongsa, A. Kaewkhao, S. Tasena, On a generalized James constant, J. Math. Anal. Appl., 285 (2003), 419–435. https://doi.org/10.1016/S0022-247X(03)00408-6 doi: 10.1016/S0022-247X(03)00408-6
    [2] Y. Takahashi, Some geometric constants of Banach spaces: a unified approach, In: M. Kato, L. Maligranda, Banach and function spaces II, Yokohama Publishers, 2007,191–220.
    [3] R. C. James, Uniformly non-square Banach spaces, Ann. Math., 80 (1964), 542–550. https://doi.org/10.2307/1970663 doi: 10.2307/1970663
    [4] D. H. Cho, Y. S. Choi, The Bishop-Phelps-Bollobás theorem on bounded closed convex sets, J. Lond. Math. Soc., 93 (2016), 502–518. https://doi.org/10.1112/jlms/jdw002 doi: 10.1112/jlms/jdw002
    [5] R. Tanaka, Tingley's problem on symmetric absolute normalized norms on \mathbb{R}^2, Acta Math. Sin.-English Ser., 30 (2014), 1324–1340. https://doi.org/10.1007/s10114-014-3491-y doi: 10.1007/s10114-014-3491-y
    [6] M. S. Brodskii, D. P. Milman, On the center of a convex set, Dokl. Akad. Nauk SSSR, 59 (1948), 837–840.
    [7] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Am. Math. Mon., 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345
    [8] X. Wang, C. Zhang, Y. Cui, Some sufficient conditions for fixed points of multivalued nonexpansive mappings in Banach spaces, J. Math. Inequal., 11 (2017), 113–120. https://doi.org/10.7153/jmi-11-10 doi: 10.7153/jmi-11-10
    [9] Z. Zuo, C. Tang, X. Chen, L. Wang, Jordan-von Neumann type constant and fixed points for multivalued nonexpansive mappings, J. Math. Inequal., 10 (2016), 649–657. https://doi.org/10.7153/jmi-10-52 doi: 10.7153/jmi-10-52
    [10] S. Reich, The fixed point property for non-expansive mappings, Am. Math. Mon., 83 (1976), 266–268. https://doi.org/10.1080/00029890.1976.11994096 doi: 10.1080/00029890.1976.11994096
    [11] S. Reich, The fixed point property for non-expansive mappings, II, Am. Math. Mon., 87 (1980), 292–294. https://doi.org/10.1080/00029890.1980.11995019 doi: 10.1080/00029890.1980.11995019
    [12] J. Gao, K. S. Lau, On two classes of Banach spaces with uniform normal structure, Stud Math., 99 (1991), 41–56.
    [13] P. Jordan, J. Neumann, On inner products in linear, metric spaces, Ann. Math., 36 (1935), 719–723. https://doi.org/10.2307/1968653 doi: 10.2307/1968653
    [14] E. Llorens-Fuster, E. M. Mazcuñán-Navarro, S. Reich, The Ptolemy and Zb\check{a}ganu constants of normed spaces, Nonlinear Anal., 72 (2010), 3984–3993. https://doi.org/10.1016/j.na.2010.01.030 doi: 10.1016/j.na.2010.01.030
    [15] S. Dhompongsa, P. Piraisangjun, S. Saejung, Generalised Jordan-von Neumann constants and uniform normal structure, Bull. Aust. Math. Soc., 67 (2003), 225–240. https://doi.org/10.1017/S0004972700033694 doi: 10.1017/S0004972700033694
    [16] Y. Cui, W. Huang, H. Hudzik, R. Kaczmarek, Generalized von Neumann-Jordan constant and its relationship to the fixed point property, Fixed Point Theory Appl., 2015 (2015), 40. https://doi.org/10.1186/s13663-015-0288-3 doi: 10.1186/s13663-015-0288-3
    [17] M. Dinarvand, On a generalized geometric constant and sufficient conditions for normal structure in Banach spaces, Acta Math. Sci., 37 (2017), 1209–1220. https://doi.org/10.1016/S0252-9602(17)30068-1 doi: 10.1016/S0252-9602(17)30068-1
    [18] Z. Zuo, Calculation and application of some geometric constants on Banach space, Ph.D. Thesis, Southwest University, 2018.
    [19] Z Zuo, The generalized von Neumann-Jordan type constant and fixed points for multivalued nonexpansive mappings, ScienceAsia, 45 (2019), 292–297. https://doi.org/10.2306/scienceasia1513-1874.2019.45.292 doi: 10.2306/scienceasia1513-1874.2019.45.292
    [20] M. A. Khamsi, Uniform smoothness implies super-normal structure property, Nonlinear Anal., 19 (1992), 1063–1069.
    [21] A. Wiśnicki, J. Wośko, Banach ultrapowers and multivalued nonexpansive mappings, J. Math. Anal. Appl., 326 (2007), 845–857. https://doi.org/10.1016/j.jmaa.2006.03.052 doi: 10.1016/j.jmaa.2006.03.052
    [22] M. Dinarvand, On some Banach space properties sufficient for normal structure, Filomat, 31 (2017), 1305–1315.
    [23] Z. Zuo, C. Tang, On James and Jordan-von Neumann type constants and normal structure in Banach spaces, Topol. Methods Nonlinear Anal., 49 (2017), 615–623. https://doi.org/10.12775/TMNA.2016.094 doi: 10.12775/TMNA.2016.094
    [24] T. D. Benavides, A geometrical coefficient implying the fixed point property and stability results, Houston J. Math., 22 (1996), 835–849.
    [25] L. Tang, D. Ji, X. Wang, On a generalized Jordan-von Neumann type constant and normal structure, Math. Inequal. Appl., 27 (2024), 347. https://doi.org/10.7153/mia-2024-27-25 doi: 10.7153/mia-2024-27-25
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(377) PDF downloads(34) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog