Bivariate copulas play a central role in modeling the dependence structure between two random variables and serve as a fundamental tool in various applied fields. In this article, we develop a new theoretical framework aimed at constructing simple asymmetric bivariate copulas of the form $ C(u, v) = u v \left[\phi(v) + u (1-\phi(v))\right] $, $ (u, v)\in [0, 1]^2 $. This framework relies on a tuning univariate function to achieve the desired asymmetry. We study this pioneering scheme, emphasizing its theoretical foundations, and illustrating it with several examples. More precisely, we establish important properties of the proposed copulas and derive analytical expressions for concordance measures such as Spearman's rho, Kendall's tau, Gini's gamma, and Blomqvist's beta. In addition, we investigate the estimation procedure for the dependence parameter using the maximum likelihood approach. Finally, we conduct a simulation study to evaluate the performance of the proposed estimator. A real climatological dataset from the city of Abu Dhabi is used to demonstrate the applicability of the proposed copulas, with very convincing results.
Citation: Rachid Bentoumi, Farid El Ktaibi, Christophe Chesneau. A new scheme for simple asymmetric bivariate copulas and applications[J]. AIMS Mathematics, 2025, 10(10): 24602-24626. doi: 10.3934/math.20251091
Bivariate copulas play a central role in modeling the dependence structure between two random variables and serve as a fundamental tool in various applied fields. In this article, we develop a new theoretical framework aimed at constructing simple asymmetric bivariate copulas of the form $ C(u, v) = u v \left[\phi(v) + u (1-\phi(v))\right] $, $ (u, v)\in [0, 1]^2 $. This framework relies on a tuning univariate function to achieve the desired asymmetry. We study this pioneering scheme, emphasizing its theoretical foundations, and illustrating it with several examples. More precisely, we establish important properties of the proposed copulas and derive analytical expressions for concordance measures such as Spearman's rho, Kendall's tau, Gini's gamma, and Blomqvist's beta. In addition, we investigate the estimation procedure for the dependence parameter using the maximum likelihood approach. Finally, we conduct a simulation study to evaluate the performance of the proposed estimator. A real climatological dataset from the city of Abu Dhabi is used to demonstrate the applicability of the proposed copulas, with very convincing results.
| [1] | A. Sklar, Fonctions de repartition à $n$ dimensions et leurs marges, Paris: Publications de l'Institut de Statistique de l'Uni- versité de Paris, 1959,229–231. |
| [2] |
P. Capéraà, C. Genest, Spearman's $\rho$ is larger than Kendall's $\tau$ for positively dependent random variables, J. Nonparametr. Stat., 2 (1993), 183–194. https://doi.org/10.1080/10485259308832551 doi: 10.1080/10485259308832551
|
| [3] | E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist., 37 (1966), 1137–1153. https://doi.org/10.1214/aoms/1177699260 |
| [4] | R. B. Nelsen, An introduction to copulas, 2 Eds., New York: Springer, 2006. https://doi.org/10.1007/0-387-28678-0 |
| [5] |
L. Y. Cheng, A. AghaKouchak, E. Gilleland, R. W. Katz, Non-stationary extreme value analysis in a changing climate, Climatic Change, 127 (2014), 353–369. https://doi.org/10.1007/s10584-014-1254-5 doi: 10.1007/s10584-014-1254-5
|
| [6] |
F. El Ktaibi, R. Bentoumi, N. Sottocornola, M. Mesfioui, Bivariate copulas based on counter-monotonic shock method, Risk, 10 (2022), 202. https://doi.org/10.3390/risks10110202 doi: 10.3390/risks10110202
|
| [7] |
C. Genest, A.-C. Favre, J. Béliveau, C. Jacques, Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data, Water Resour. Res., 43 (2007), W09408. https://doi.org/10.1029/2006WR005275 doi: 10.1029/2006WR005275
|
| [8] | A. Khoudraji, Propriétés et constructions de certaines familles de lois multidimensionnelles ayant des copules données, PhD Thesis, University of Laval, 1995. |
| [9] |
E. Liebscher, Construction of asymmetric multivariate copulas, J. Multivariate Anal., 99 (2008), 2234–2250. https://doi.org/10.1016/j.jmva.2008.02.025 doi: 10.1016/j.jmva.2008.02.025
|
| [10] |
A. Alfonsi, D. Brigo, New families of copulas based on periodic functions, Commun. Stat.-Theor. M., 34 (2005), 1437–1447. https://doi.org/10.1081/STA-200063351 doi: 10.1081/STA-200063351
|
| [11] |
F. Durante, Construction of non-exchangeable bivariate distribution functions, Stat. Papers, 50 (2009), 383–391. https://doi.org/10.1007/s00362-007-0064-5 doi: 10.1007/s00362-007-0064-5
|
| [12] |
S. M. Wu, Construction of asymmetric copulas and its application in two-dimensional reliability modelling, Eur. J. Oper. Res., 238 (2014), 476–485. https://doi.org/10.1016/j.ejor.2014.03.016 doi: 10.1016/j.ejor.2014.03.016
|
| [13] |
G. A. Fredricks, R. B. Nelsen, On the relationship between Spearman's rho and Kendall's tau for pairs of continuous random variables, J. Stat. Plan. Infer., 137 (2007), 2143–2150. https://doi.org/10.1016/j.jspi.2006.06.045 doi: 10.1016/j.jspi.2006.06.045
|
| [14] |
C. W. Topp, F. C. Leone, A family of J-shaped frequency functions, J. Am. Stat. Assoc., 50 (1955), 209–219. https://doi.org/10.1080/01621459.1955.10501259 doi: 10.1080/01621459.1955.10501259
|
| [15] |
S. Nadarajah, S. Kotz, Moments of some J-shaped distributions, J. Appl. Stat., 30 (2003), 311–317. https://doi.org/10.1080/0266476022000030084 doi: 10.1080/0266476022000030084
|
| [16] |
M. Muhammad, H. M. Alshanbari, A. R. A. Alanzi, L. X. Liu, W. Sami, C. Chesneau, et al., A new generator of probability models: The exponentiated Sine-G family for lifetime studies, Entropy, 23 (2021), 1394. https://doi.org/10.3390/e23111394 doi: 10.3390/e23111394
|
| [17] | C. Chesneau, Study of a unit power-logarithmic distribution, Open J. Math. Sci., 5 (2021), 218–235. |
| [18] |
R. A. Yang, W. X. Chen, Maximum likelihood estimator of the shape parameter under simple random sampling and moving extremes ranked set sampling, Stat. Probabil. Lett., 226 (2025), 110465. https://doi.org/10.1016/j.spl.2025.110465 doi: 10.1016/j.spl.2025.110465
|
| [19] |
R. Bentoumi, F. El Ktaibi, C. Chesneau, Counterpart of Marshall-Olkin bivariate copula with negative dependence and its neutrosophic application in meteorology, International Journal of Neutrosophic Science, 25 (2024), 258–278. https://doi.org/10.54216/IJNS.250124 doi: 10.54216/IJNS.250124
|
| [20] |
F. El Ktaibi, R. Bentoumi, M. Mesfioui, On the ratio-type family of copulas, Mathematics, 12 (2024), 1743. https://doi.org/10.3390/math12111743 doi: 10.3390/math12111743
|
| [21] |
S. Ghosh, P. Bhuyan, M. Finkelstein, On a bivariate copula for modeling negative dependence: application to New York air quality data, Stat. Methods Appl., 31 (2022), 1329–1353. https://doi.org/10.1007/s10260-022-00636-3 doi: 10.1007/s10260-022-00636-3
|
| [22] | Meteostat, Weather data for Abu Dhabi, 2023. Available from: https://meteostat.net/en/place/ae/abu-dhabi?s = 41217 & t = 2023-01-01/2023-12-31. |
| [23] |
C. Genest, J.-F. Quessy, B. Rémillard, Goodness-of-fit procedures for copula models based on the probability integral transformation, Scand. J. Stat., 33 (2006), 337–366. https://doi.org/10.1111/j.1467-9469.2006.00470.x doi: 10.1111/j.1467-9469.2006.00470.x
|