Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

A collocation procedure for the numerical treatment of FitzHugh–Nagumo equation using a kind of Chebyshev polynomials

  • This manuscript aims to provide numerical solutions for the FitzHugh–Nagumo (FH–N) problem. The suggested approximate solutions are spectral and may be achieved using the standard collocation technique. We introduce and utilize specific polynomials of the generalized Gegenbauer polynomials. These introduced polynomials have connections with Chebyshev polynomials. The polynomials' series representation, orthogonality property, and derivative expressions are among the new formulas developed for these polynomials. We transform these formulas to obtain their counterparts for the shifted polynomials, which serve as basis functions for the suggested approximate solutions. The convergence of the expansion is thoroughly examined. We provide several numerical tests and comparisons to confirm the applicability and accuracy of our proposed numerical algorithm.

    Citation: Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta. A collocation procedure for the numerical treatment of FitzHugh–Nagumo equation using a kind of Chebyshev polynomials[J]. AIMS Mathematics, 2025, 10(1): 1201-1223. doi: 10.3934/math.2025057

    Related Papers:

    [1] Manal Alqhtani, Khaled M. Saad . Numerical solutions of space-fractional diffusion equations via the exponential decay kernel. AIMS Mathematics, 2022, 7(4): 6535-6549. doi: 10.3934/math.2022364
    [2] Khalid K. Ali, Mohamed A. Abd El Salam, Mohamed S. Mohamed . Chebyshev fifth-kind series approximation for generalized space fractional partial differential equations. AIMS Mathematics, 2022, 7(5): 7759-7780. doi: 10.3934/math.2022436
    [3] Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048
    [4] Jin Li . Barycentric rational collocation method for semi-infinite domain problems. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439
    [5] K. Ali Khalid, Aiman Mukheimer, A. Younis Jihad, Mohamed A. Abd El Salam, Hassen Aydi . Spectral collocation approach with shifted Chebyshev sixth-kind series approximation for generalized space fractional partial differential equations. AIMS Mathematics, 2022, 7(5): 8622-8644. doi: 10.3934/math.2022482
    [6] Waleed Mohamed Abd-Elhameed, Youssri Hassan Youssri . Spectral tau solution of the linearized time-fractional KdV-Type equations. AIMS Mathematics, 2022, 7(8): 15138-15158. doi: 10.3934/math.2022830
    [7] Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kamele Nassiri Pirbazari, Stanford Shateyi . A pseudo-spectral approach for optimal control problems of variable-order fractional integro-differential equations. AIMS Mathematics, 2024, 9(9): 23692-23710. doi: 10.3934/math.20241151
    [8] Jiankang Wang, Zhefeng Xu, Minmin Jia . Distribution of values of Hardy sums over Chebyshev polynomials. AIMS Mathematics, 2024, 9(2): 3788-3797. doi: 10.3934/math.2024186
    [9] Hassanein Falah, Parviz Darania, Saeed Pishbin . Study of numerical treatment of functional first-kind Volterra integral equations. AIMS Mathematics, 2024, 9(7): 17414-17429. doi: 10.3934/math.2024846
    [10] Waleed Mohamed Abd-Elhameed, Hany Mostafa Ahmed . Spectral solutions for the time-fractional heat differential equation through a novel unified sequence of Chebyshev polynomials. AIMS Mathematics, 2024, 9(1): 2137-2166. doi: 10.3934/math.2024107
  • This manuscript aims to provide numerical solutions for the FitzHugh–Nagumo (FH–N) problem. The suggested approximate solutions are spectral and may be achieved using the standard collocation technique. We introduce and utilize specific polynomials of the generalized Gegenbauer polynomials. These introduced polynomials have connections with Chebyshev polynomials. The polynomials' series representation, orthogonality property, and derivative expressions are among the new formulas developed for these polynomials. We transform these formulas to obtain their counterparts for the shifted polynomials, which serve as basis functions for the suggested approximate solutions. The convergence of the expansion is thoroughly examined. We provide several numerical tests and comparisons to confirm the applicability and accuracy of our proposed numerical algorithm.



    Several branches of mathematics and engineering use Chebyshev polynomials (CPs), a famous class of orthogonal polynomials. In approximation theory, CPs are often used to represent and estimate functions precisely. They are ideal for giving highly accurate approximations because of their remarkable ability to minimize the greatest error. Filters with customized frequency responses are designed using CPs in signal processing. CPs also arise in other branches, such as mathematical physics, control theory, and mechanics; see [1,2]. In numerical analysis, the different kinds of CPs approximate solutions of different differential equations (DEs). Among the various kinds of CPs, four kinds are recognized as special Jacobi polynomials (see, for example, [3,4,5,6]). Various applications have introduced and utilized other types of CPs. Masjed-Jamei, in [7], introduced other CPs that differ from the first four kinds. This motivated him to call them the fifth and sixth kinds of CPs. In several applications, they were used; see, for example, [8,9,10]. Recently, the authors of [11] introduced other CPs and employed them to solve the nonlinear time-fractional generalized Kawahara equation.

    Spectral methods, which are numerical approaches, are frequently employed to address partial differential equations (PDEs). The core concept of these methods is based on choosing two groups of trial and test functions; see [12,13,14,15]. In the Galerkin method, the two sets coincide; see [16,17,18]. In tau and collocation methods, we have more freedom to choose basis functions, for example; see [19,20,21,22,23]. The collocation method is advantageous due to its easy implementation; see, for example, [24,25,26,27].

    Nonlinear equations are fundamental in many branches of mathematics, physics, and engineering because of the wide variety of phenomena they explain. The solutions to these equations are more difficult than the linear ones. Engineering encounters nonlinear equations in many areas, such as structural analysis, control systems, and electrical circuits. Since most nonlinear equations do not have known analytical solutions, numerical approaches are necessary. One of the most significant nonlinear equations is the FitzHugh–Nagumo (FH–N) equation, which predicts the propagation of nerve impulses. FitzHugh [28] and Nagumo [29] developed this equation. This equation has long piqued the attention of mathematicians and theoretical biologists; see [30]. Many numerical approaches have been followed to find analytical and numerical solutions to the FH–N problem. For instance, the authors of [31] used the cubic B-spline method with a finite one-step hybrid block approach to treat these equations. In addition, the authors of [32] also used a block method and a finite-difference scheme to treat them. The authors of [33] proposed analytical and numerical solutions to the FH–N equation. The authors of [34] found a few analytic solutions to the FH–N equation. The problem was solved using the Jacobi–Gauss–Lobatto collocation technique in [35]. In [36], a pseudospectral approach was used. In [37], a spline approach was followed. The finite difference method was used in [38]. A hybrid block method was used in [39].

    This article aims to introduce special polynomials derived from the generalized Gegenbauer polynomials. We can categorize these polynomials as CPs because they connect to the existing forms of CPs through simple linear combinations. We present the essential characteristics and some significant formulas of these polynomials. Moreover, we solve the FH–N problem using the collocation method. We utilize the introduced CPs as basis functions. These polynomials are used for the first time, to the best of our knowledge. This motivated us to introduce and utilize them. The significance of the paper can be listed in the following items:

    ● Introducing Chebsyhev polynomials that are related to the well-known ones;

    ● Establishing some fundamental formulas of these polynomials, such as their power form and inversion formulas;

    ● Developing the operational matrices for the shifted Chebyshev polynomials;

    ● Designing a numerical algorithm based on the collocation method to solve the FH–N equation.

    This article is structured with the following components: Section 2 discusses the generalized ultraspherical polynomials. In Section 3, new CPs are introduced alongside novel formulas for these polynomials. Section 4 analyzes a collocation method used to solve the FH–N problem. Error analysis is investigated in Section 5. Various examples to demonstrate the proposed scheme can be found in Section 6. Finally, conclusions are presented in Section 7.

    In this section, an account of the generalized Gegenbauer polynomials is given. Some useful formulas for these polynomials will also be presented.

    The generalized Gegenbauer polynomials {G(ζ,θ)n(x)}n0 are orthogonal polynomials on [1,1] with respect to w(x)=(1x2)ζ12|x|2θ. These polynomials can be defined as [40,41]

    G(ζ,θ)n(x)={(ζ+θ)n2(θ+12)n2P(ζ12,θ12)n2(2x21),if n is even,(ζ+θ)n+12(θ+12)n+12xP(ζ12,θ+12)n12(2x21),if n is odd, (2.1)

    where (x)m=Γ(x+m)Γ(x) is the Pochhammer symbol and {P(ζ,θ)n(x)}n0 are the classical Jacobi polynomials. On [1,1], the polynomials G(ζ,θ)n(x) are orthogonal according to [41]. We have

    11w(x)G(ζ,θ)n(x)G(ζ,θ)m(x)dx={hζ,θn,nm,0,n=m, (2.2)

    where hζ,θn is given by

    hζ,θn=(Γ(θ+12))2(n+ζ+θ)(Γ(ζ+θ))2{Γ(ζ+n+12)Γ(n2+ζ+θ)(n2)!Γ(1+n2+θ),n even,Γ(n2+ζ)Γ(n2+ζ+θ+12)(n12)!Γ(n2+θ+1),n odd. (2.3)

    Remark 2.1. The standard Gegenbauer (ultraspherical) polynomials can be deduced from the generalized Gegenbauer polynomials. More definitely, we have

    C(ζ)n(x)=G(ζ,0)n(x),

    where {C(ζ)n(x)}n0 are the Gegenbauer polynomials.

    Remark 2.2. It is worth noting that many important classes of G(ζ,θ)n(x), were previously investigated. More definitely, the fifth, sixth, seventh, and eighth kinds of CPs, denoted, respectively, by Xn(x),Yn(x),Cn(x) and Zn(x), are given as

    Xn(x)=G(0,1)n(x),Yn(x)=G(1,1)n(x),Cn(x)=G(0,2)n(x),Zn(x)=G(1,2)n(x).

    Now we will introduce a certain kind of CPs, Nk(x), k0, which is considered a special case of G(ζ,θ)n(x) after putting ζ=2,θ=1. Therefore, from (2.1), these polynomials can be defined as:

    Nk(x)={(3)k2(32)k2P(32,12)k2(2x21),if k is even;x(3)k+12(32)k+12P(32,32)k12(2x21),if k is odd. (3.1)

    Remark 3.1. We comment on our choices for the parameters ζ=2,θ=1 for the following reasons:

    The generalized polynomials G(ζ,θ)n(x) depend on two parameters, requiring extensive research to derive theoretical formulas for their application in solving different differential equations. The specific choice of parameters helps simplify the computations for some formulas.

    Previous studies have considered specific values of the two parameters of G(ζ,θ)n(x). For instance, in [7], the author introduced the fifth and sixth kinds of CPs by selecting specific parameters. In this paper, we investigate the practical and theoretical implications of choosing ζ=2 and θ=1.

    To our knowledge, this specific choice has not been investigated, making it a new contribution to the literature.

    The choice of ζ=2 and θ=1, also enables us to investigate the analysis of the errors resulting from the approximation.

    We anticipate that additional theoretical formulas for these polynomials, such as their linearization formulas, will be helpful in other applications.

    The first few instances of Nk(x) are as follows:

    N0(x)=1,N1(x)=2x,N2(x)=8x23,N3(x)=16x38x.

    From (2.2), it is easy to see that the orthogonality relation of Nk(x) takes the following form:

    11x2(1x2)3/2Nn(x)Nm(x)dx=hn, (3.2)

    where

    hn=π128{(n+2)(n+4),if n=m,n even,(n+1)(n+5),if n=m,n odd,0,if nm. (3.3)

    Lemma 3.1. Let j be a positive integer. The polynomials Nj(x) can be expressed as

    Nj(x)=j2r=0(1)r(3)jrr!(j2r)!(32)r+1+j2xj2r. (3.4)

    Proof. Formula (3.4) can be split into the following two formulas:

    N2(x)=m=0(1)m(3)2m(m)!m!(32)mx22m, (3.5)
    N2+1(x)=m=0(1)m(3)2m+1(m)!m!(32)m+1x22m+1. (3.6)

    Thus, we show (3.5) and (3.6). If we note the following expression for the Jacobi polynomials [42]:

    P(μ,ν)m(y)=(1)m(ν+1)mm! 2F1(m,m+μ+ν+1ν+1|1+y2), (3.7)

    then, the form in (3.1) implies that N2(x) and N2+1(x) can be, respectively, expressed as

    N2(x)=(3)(32)P(32,12)(2x21), (3.8)
    N2+1(x)=(3)+1(32)+1xP(32,32)(2x21), (3.9)

    which yield the following two hypergeometric expressions:

    N2(x)=12(1)(+1)(+2)2F1(,+332|x2), (3.10)
    N2+1(x)=13(1)(+1)3x 2F1(,+452|x2). (3.11)

    By expanding the two hypergeometric functions 2F1(z) in (3.10) and (3.11) as two finite series and performing some computations, formulas (3.5), and (3.6) can be obtained.

    Lemma 3.2. Let j be a positive integer. The inversion formula of Nj(x) is given as follows:

    xj=j2r=0(j2r+3)j2!(32)j+12r!(3)jr+1Nj2r(x). (3.12)

    Proof. The inversion formula (3.12) can be split into

    x2j=j!(32)jjr=03+2j2rr!(3)2jr+1N2j2r(x), (3.13)
    x2j+1=2j!(32)j+1jr=02+jrr!(3)2jr+2N2j2r+1(x), (3.14)

    which can be proved following similar procedures to those given for the fifth kind of CPs in [43].

    Theorem 3.1. The k-th derivative: dkNs(x)dxk may be expanded as

    dkNs(x)dxk=sk2L=0GkL,sNsk2L(x), sk, (3.15)

    where

    GkL,s=2k× {(1+sk)(3+s2Lk)(s+2)!(s+1)!L!(sLk+3)! 4F3(L,12s2,12s2+k2,3s+L+k2s,12s2,12s2+k2|1),s even,k even,(1s+k)(3s+2L+k)(s+1)!L!(sLk+3)! 4F3(L,1s2,12s2+k2,3s+L+k2s,s2,12s2+k2|1),s odd,k odd,(2s+k)(3s+2L+k)(s+1)!L!(sLk+3)! 4F3(L,1s2,s2+k2,3s+L+k2s,s2,1s2+k2|1),s odd,k even,(2+sk)(3+s2Lk)(s+2)!(1+s)L!(sLk+3)! 4F3(L,12s2,s2+k2,3s+L+k2s,12s2,1s2+k2|1),s even,k odd. (3.16)

    Proof. Formula (3.15) may be divided into the following four equations:

    D2kN2s(x)=4k(1+2s2k)(2s+2)!2s+1skL=03+2s2L2kL!(2sL2k+3)!× 4F3(L,12s,12s+k,32s+L+2k22s,12s,12s+k|1)N2s2L2k(x), (3.17)
    D2k+1N2s+1(x)=21+2k(2s+2)!skL=0(12s+2k)(32s+2L+2k)L!(2sL2k+3)!×4F3(L,32s,12s+k,32s+L+2k32s,12s,12s+k|1)N2s2L2k(x), (3.18)
    D2kN2s+1(x)=21+2k(32s+2k)(2s+2)!skL=02s+L+kL!(2sL2k+4)!×4F3(L,32s,12s+k,42s+L+2k32s,12s,32s+k|1)N2s2L2k+1(x), (3.19)
    D2k+1N2s(x)=41+k(12s+2k)(2s+2)!1+2sskL=01s+L+kL!(2sL2k+2)!×4F3(L,12s,12s+k,22s+L+2k22s,12s,12s+k|1)N2s2L2k1(x). (3.20)

    The above four formulae have analogous proofs. We prove (3.18). Using formula (3.6), we can write

    D2k+1N2s+1(x)=sr=0(1)r22(sr)(2sr+3)!(3+2s2r)r!(2s2k2r)!x2s2r2k.

    The utilization of (3.13) converts the last formula into

    D2k+1N2s+1(x)=sr=0(1)1+r4k(3+2sr)!(32s+2r)(2s2k2r)!r!×srkL=0(3+2s2L2k2r)(2s2k2r+1)!L!(3)1+2sL2k2rN2s2L2k2r(x), (3.21)

    which can be rewritten as

    D2k+1N2s+1(x)=4kskL=0(3+2s2L2k)×Lp=0(1)p+1(12s+2p+2k)(2sp+3)!(32+sp)p!(Lp)!(2sLp2k+3)!N2s2L2k(x). (3.22)

    That last formula can be written as in (3.18).

    Remark 3.2. It is now more beneficial for us to reformulate Theorem 3.1 as follows:

    Theorem 3.2. The k-th derivative: dkNs(x)dxk may be expanded as

    dkNs(x)dxk=sk2L=0ϑL,s,kBkL,sNL(x), sk, (3.23)

    where

    ϑL,s,k={1,(skL), even,0,otherwise,

    and

    BkL,s=GkskL2,s, (3.24)

    and GkL,s is as given in (3.16).

    Now we define the shifted CPs Nk(x) on [0,1], which are given by

    Nk(x)=Nk(2x1). (3.25)

    From (3.2), and (3.3), it can be shown that {Nk(x)}n0 are orthogonal on [0,1] such that

    10Nn(x)Nm(x)w(x)dx=116hn, (3.26)

    where w(x)=(12x)2(x(1x))3/2 and hn is given in (3.3).

    Theorem 3.3. The kth-derivative of Nj(x) may be written as

    dkNj(x)dxk=jk2L=0˜BkL,jNL(x),jk, (3.27)

    with

    ˜BkL,j=2kBkL,j,

    where BkL,j is given in (3.24).

    Proof. Substituting (2x1) for x in Theorem 3.2 results in (3.27).

    Within this section, we will examine the following FH–N equation [37]:

    zt=zxxz(az)(1z),0<a1, (4.1)

    which is constrained by the following initial and boundary conditions:

    z(x,0)=a0(x),0<x1,z(0,t)=a1(t),z(1,t)=a2(t),0<t1, (4.2)

    where a0(x),a1(t) and a2(t) are given functions. Define

    (Ω)=span{Ni(x)Nj(t):i,j=0,1,,M}, (4.3)

    where Ω=(0,1]2. Then, any function zM(x,t)(Ω) may be written as

    zM(x,t)=Mi=0Mj=0cijNi(x)Nj(t)=N(x)CNT(t), (4.4)

    where N(x)=[N0(x),N1(x),,NM(x)] and C=(cij)0i,jM is the matrix of unknowns with the order (M+1)2.

    Now we analyze a collocation algorithm for solving (4.1) governed by (4.2). This algorithm utilizes the operational matrices of the derivatives of Nk(x). These two formulas follow directly from Theorem 3.3.

    Corollary 4.1. Consider the vector N(x)=[N0(x),N1(x),,NM(x)]. Theorem 3.3 enables us to write the first and second derivatives of Ns(x) in matrix form as

    dN(x)dx=QN(x)T,d2N(x)dx2=MN(x)T, (4.5)

    where Q=(˜B1L,s) and M=(˜B2L,s) are the operational matrices of derivatives given by

    Q=(0000˜B11,0000˜B12,0˜B12,100˜B1M,0˜B1M,1˜B1M,M10),
    M=(0000000000B22,00000˜B23,0˜B23,1000˜B2M,0˜B2M,1˜B2M,M200).

    Now, by using Eq (4.4), we can represent the residual R(x,t) of Eq (4.1) as

    R(x,t)=zMt(x,t)zMxx(x,t)+azM(x,t)+(zM(x,t))3(a+1)(zM(x,t))2. (4.6)

    Applying Corollary 4.1 enables us to represent the residual R(x,t) in (4.6) in the following matrix form:

    R(x,t)=N(x)C(QNT(t))TMNT(x)CNT(t)+aN(x)CNT(t)+(N(x)CNT(t))3(a+1)(N(x)CNT(t))2. (4.7)

    Remark 4.1. Nr(0) and Nr(1) can be deduced to give the following relations:

    Nr(0)={18(1)r/2(r+2)(r+4),ifriseven,0,ifrisodd,Nr(1)=124{(r+2)(r+3)(r+4),ifriseven,(r+1)(r+3)(r+5),ifrisodd. (4.8)

    By using the spectral collocation approach and causing the residual R(x,t) to be zero at certain collocation points (xi,tj), we may get the expansion coefficients cij.

    R(xr,ts)=0,r=1,2,3,,M1,s=1,2,3,,M. (4.9)

    Moreover, the conditions in (4.2) lead to

    N(xr)CNT(0)=a0(xr),r=1,2,3,,M+1,N(0)CNT(ts)=a1(ts),s=1,2,3,,M,N(1)CNT(ts)=a2(ts),s=1,2,3,,M, (4.10)

    where {(xr,ts):r,s=1,2,3,,M+1} are the first distinct roots of Nr(x), and Ns(t), respectively. Hence, Newton's iterative approach may be used to solve the (M+1)2 nonlinear system in (4.9)-(4.10).

    Here, we comprehensively examine the suggested polynomial expansion's error analysis corresponding to the one-dimensional (1-D), and two-dimensional (2-D) CP-weighted Sobolev spaces. Four theorems will be formulated and shown.

    ● For the truncation error variable t, the first theorem provides error estimation for the kth-derivative in 1-D CP-weighted Sobolev space.

    ● For the truncation error variable x, the second theorem provides error estimation for the pth-derivative in two-dimensional (2-D) CP-weighted Sobolev space.

    ● For the truncation error variable t, the third theorem provides error estimation for the qth- derivative in 2-D CP-weighted Sobolev space.

    ● The last theorem shows that RM(x,t)L2ω(x,t), for a sufficiently large M, will be small enough.

    Assume that the following CPs-weighted Sobolev space:

    Hmw(t)(I)={u:DktuL2w(t)(I),0km}, (5.1)

    where I=(0,1] with the inner product, norm, and semi-norm, which are, respectively,

    (u,v)Hmw(t)=mk=0(Dktu,Dktv)L2w(t),||u||2Hmw(t)=(u,u)Hmw(t),|u|Hmw(t)=||Dmtu||L2w(t), (5.2)

    where mN.

    Lemma 5.1. As in [44], for n1, n+r>1, and n+s>1, where r,s, are any constants, we have

    Γ(n+r)Γ(n+s)or,snnrs, (5.3)

    where

    or,sn=exp(rs2(n+s1)+112(n+r1)+(rs)2n). (5.4)

    Theorem 5.1. Let ˉχ(t)=Mj=0ˆχjNj(t) be the approximate solution of χ(t)Hα,mw(t)(I). Then for 0kmM+1, we get

    ||Dkt(χ(t)ˆχ(t))||L2w(t)M14(mk)|χ(t)|2Hmw(t), (5.5)

    where AB indicates the existence of a constant ν such that AνB.

    Proof. The definitions of χ(t) and ˆχ(t) allow us to have

    ||Dkt(χ(t)ˆχ(t))||2L2w(t)=n=M+1|ˆχn|2||DktNn(t)||2L2w(t)=n=M+1|ˆχn|2||DktNn(t)||2L2w(t)||DmtNn(t)||2L2w(t)||DmtNn(t)||2L2w(t)||DktNM+1(t)||2L2w(t)||DmtNM+1(t)||2L2w(t)|χ(t)|2Hmw(t). (5.6)

    To estimate the factor ||DktNM+1(t)||2L2w(t)||DmtNM+1(t)||2L2w(t), we first find ||DktNM+1(t)||2L2w(t) as follows:

    ||DktNM+1(t)||2L2w(t)=10DktNM+1(t)DktNM+1(t)w(t)dt. (5.7)

    If we make use of Eq (3.4), and the relation: (2t1)j=jk=0(1)jk(jk)(2t)k, followed by expanding, rearranging, and collecting the similar terms, then the following formula can be obtained:

    Nj(t)=jr=0λr,jtr, (5.8)

    where

    λr,j=jm=02r(1)2r3m+j2aj+m(mr)(3)j+m2jm2!(32)mj2+j+12Γ(12(j+m+2)+j2), (5.9)

    and

    aj={1,if  j  is even,0,otherwise. (5.10)

    By applying Dkt to Eq (5.8), one gets

    DktNM+1(t)=M+1r=kλr,M+1r!(rk)!trk. (5.11)

    Accordingly, we have

    ||DktNM+1(t)||2L2w(t)=M+1r=kλ2r,M+1(r!)2((rk)!)210(2t1)2t32+2r2k(1t)32dt=M+1r=kλ2r,M+1(r!)2((rk)!)210(t2k+2r+324t2k+2r+52+4t2k+2r+72)(1t)32dt=M+1r=k3πλ2r,M+14(Γ(r+1)Γ(rk+1))2(Γ(2k+2r+52)Γ(2k+2r+5)4Γ(2k+2r+72)Γ(2k+2r+6)+4Γ(2k+2r+92)Γ(2k+2r+7)). (5.12)

    The application of the Stirling formula enables one to obtain the following inequalities:

    Γ(r+1)Γ(rk+1)rk,Γ(2k+2r+52)Γ(2k+2r+5)(rk)52,4Γ(2k+2r+72)Γ(2k+2r+6)(rk)52,4Γ(2k+2r+92)Γ(2k+2r+7)(rk)52. (5.13)

    By virtue of the Stirling formula and Lemma 5.1, ||DktNM+1(t)||2L2w(t) can be written as

    ||DktNM+1(t)||2L2w(t)λ(M+1)2k(Mk+1)52M+1r=k1=λ(Γ(M+2)Γ(M+1))2k(Mk+1)52(Mk+2)λM2k(Γ(Mk+2)Γ(Mk+1))52(Γ(Mk+3)Γ(Mk+2))M2k(Mk)32, (5.14)

    where λ=max.

    Similarly, we can get

    \begin{equation} ||D_{t}^{m}\,\mathcal{N}^*_{\mathcal{M}+1}(t)||^{2}_{L^{2}_{w^\mathcal{*}(t)}}\lesssim \mathcal{M}^{2\,m}\,(\mathcal{M}-m)^{\frac{-3}{2}}. \end{equation} (5.15)

    Accordingly, we have

    \begin{equation} \begin{split} \frac{||D_{t}^{k}\,\mathcal{N}^*_{\mathcal{M}+1}(t)||^{2}_{L^{2}_{w^\mathcal{*}(t)}}}{||D_{t}^{m}\,\mathcal{N}^*_{\mathcal{M}+1}(t)||^{2}_{L^{2}_{w^\mathcal{*}(t)}}} &\lesssim \mathcal{M}^{2\,(k-m)}\,\left(\frac{\mathcal{M}-k}{\mathcal{M}-m}\right)^{\frac{-3}{2}}\\& < \mathcal{M}^{2\,(k-m)}\,\left(\frac{\Gamma(\mathcal{M}-m+1)}{\Gamma(\mathcal{M}-k+1)}\right)^{\frac{-3}{2}}\\& \lesssim \mathcal{M}^{\frac{-1}{2}(m-k)}. \end{split} \end{equation} (5.16)

    By inserting Eq (5.16) into Eq (5.6), one has

    \begin{equation} ||D_{t}^{k}\,(\chi(t)-\hat{\chi}(t))||^{2}_{L^{2}_{w^\mathcal{s}(t)}}\lesssim \mathcal{M}^{\frac{-1}{2}(m-k)}\,|\chi(t)|^{2}_{\mathbf{H}^{m}_{w^\mathcal{*}(t)}}. \end{equation} (5.17)

    Therefore, we get the desired result. Now, assume the following 2-D CP-weighted Sobolev space:

    \begin{equation} \mathbf{H}^{r,s}_{\omega(x,t)}(I\times I) = \{u:\frac{\partial^{p+q}\,u}{\partial\,x^{p}\,\partial\,t^{q}}\in{L^{2}_{\omega(x,t)}}(I\times I),\, r\geq p\geq 0,\,s\geq q\geq 0 \}, \end{equation} (5.18)

    equipped with the following norm and semi-norm:

    \begin{equation} ||u||_{\mathbf{H}^{r,s}_{\omega(x,t)}} = \left(\sum\limits_{p = 0}^{r}\sum\limits_{q = 0}^{s}\left|\left|\frac{\partial^{p+q}\,u}{\partial\,x^{p}\,\partial\,t^{q}}\right|\right|^{2}_{L^{2}_{\omega(x,t)}}\right)^{\frac{1}{2}}, \quad |u|_{\mathbf{H}^{r,s}_{\omega(x,t)}} = \left|\left|\frac{\partial^{r+s}\,u}{\partial\,x^{r}\,\partial\,t^{s}}\right|\right|_{L^{2}_{\omega(x,t)}}, \end{equation} (5.19)

    where \omega(x, t) = w^\mathcal{*}(x)\, w^\mathcal{*}(t) and r, s\in \mathbb{N}.

    Theorem 5.2. Given the assumptions 0\leq p\leq r\leq \mathcal{M}+1, the approximation to \mathrm{z}(x, t)\in{\mathbf{H}^{r, s}_{\omega(x, t)}}(I\times I) is \mathrm{z}_{\mathcal{M}}(x, t) . As a result, the estimation that follows is applicable:

    \begin{equation} \left|\left|\frac{\partial^{p}}{\partial\,x^{p}}\,(\mathrm{z}(x,t) -\mathrm{z}_{\mathcal{M}}(x,t))\right|\right|_{L^{2}_{\omega(x,t)}}\lesssim \mathcal{M}^{\frac{-1}{4}\,(r-p)}\,|\mathrm{z}(x,t)|_{\mathbf{H}^{r,0}_{\omega(x,t)}}. \end{equation} (5.20)

    Proof. According to the definitions of \mathrm{z}(x, t) and \mathrm{z}_{\mathcal{M}}(x, t), one has

    \begin{equation} \begin{split} \mathrm{z}(x,t) -\mathrm{z}_{\mathcal{M}}(x,t)& = \sum\limits_{i = 0}^{\mathcal{M}}\sum\limits_{j = \mathcal{M}+1}^{\infty}c_{ij}\,\mathcal{N}^*_{i}(x)\,\mathcal{N}^*_{j}(t)+\sum\limits_{i = \mathcal{M}+1}^{\infty}\sum\limits_{j = 0}^{\infty}c_{ij}\,\mathcal{N}^*_{i}(x)\,\mathcal{N}^*_{j}(t)\\& \leq\sum\limits_{i = 0}^{\mathcal{M}}\sum\limits_{j = 0}^{\infty}c_{ij}\,\mathcal{N}^*_{i}(x)\,\mathcal{N}^*_{j}(t)+\sum\limits_{i = \mathcal{M}+1}^{\infty}\sum\limits_{j = 0}^{\infty}c_{ij}\,\mathcal{N}^*_{i}(x)\,\mathcal{N}^*_{j}(t). \end{split} \end{equation} (5.21)

    Now, by applying the same procedures as in Theorem 5.1, we obtain

    \begin{equation} \left|\left|\frac{\partial^{p}}{\partial\,x^{p}}\,(\mathrm{z}(x,t) -\mathrm{z}_{\mathcal{M}}(x,t))\right|\right|_{L^{2}_{\omega(x,t)}}\lesssim \mathcal{M}^{\frac{-1}{4}\,(r-p)}\,|\mathrm{z}(x,t)|_{\mathbf{H}^{r,0}_{\omega(x,t)}}. \end{equation} (5.22)

    Theorem 5.3. Given the assumptions 0\leq q\leq s\leq \mathcal{M}+1, the approximation to \mathrm{z}(x, t)\in{\mathbf{H}^{r, s}_{\omega(x, t)}}(I\times I) is \mathrm{z}_{\mathcal{M}}(x, t) . As a result, the estimation that follows is applicable:

    \begin{equation} \left|\left|\frac{\partial^{q}}{\partial\,t^{q}}\,(\mathrm{z}(x,t) -\mathrm{z}_{\mathcal{M}}(x,t))\right|\right|_{L^{2}_{\omega(x,t)}}\lesssim \mathcal{M}^{\frac{-1}{4}\,(s-q)}\,|\mathrm{z}(x,t)|_{\mathbf{H}^{0,s}_{\omega(x,t)}}. \end{equation} (5.23)

    Proof. The proof of this theorem is similar to the proof of Theorems 5.1 and 5.2.

    Theorem 5.4. Let \mathbf{\mathcal{R}}_{\mathcal{M}}(x, t) be the residual of Eq (4.1). In that case, {\|\mathbf{\mathcal{R}}_{\mathcal{M}}(x, t)\|}_{L^{2}_{\omega(x, t)}} will be sufficiently small for sufficiently large values of \mathcal{M} .

    Proof. \mathbf{\mathcal{R}}_{\mathcal{M}}(x, t) of Eq (4.1) can be written as

    \begin{equation} \mathbf{\mathcal{R}}_{\mathcal{M}}(x,t) = \frac{\partial\,\mathrm{z}_{\mathcal{M}}}{\partial\,t}-\frac{\partial^2\,\mathrm{z}_{\mathcal{M}}}{\partial\,x^2}+{\mathrm{z}_{\mathcal{M}}}\,(a-{\mathrm{z}_{\mathcal{M}}})\,(1-{\mathrm{z}_{\mathcal{M}}}). \end{equation} (5.24)

    Subtracting Eq (5.24) from Eq (4.1) leads to the following equation:

    \begin{equation} \begin{split} \mathbf{\mathcal{R}}_{\mathcal{M}}(x,t) = &\frac{\partial}{\partial\,t}(\mathrm{z}(x,t) -\mathrm{z}_{\mathcal{M}}(x,t))-\frac{\partial^2}{\partial\,x^2}(\mathrm{z}(x,t) -\mathrm{z}_{\mathcal{M}}(x,t))+a\,(\mathrm{z}(x,t) -\mathrm{z}_{\mathcal{M}}(x,t))\\& +(\mathrm{z}(x,t) -\mathrm{z}_{\mathcal{M}}(x,t))^3-(a+1)\,(\mathrm{z}(x,t) -\mathrm{z}_{\mathcal{M}}(x,t))^2. \end{split} \end{equation} (5.25)

    If we consider L^2 -norm, then, with the aid of Theorems 5.2 and 5.3, we get

    \begin{equation} \begin{split} {\|\mathbf{\mathcal{R}}_{\mathcal{M}}(x,t)\|}_{L^{2}_{\omega(x,t)}}&\lesssim \mathcal{M}^{\frac{-\,s}{4}}\,|\mathrm{z}(x,t)|_{\mathbf{H}^{0,s}_{\omega(x,t)}}+\mathcal{M}^{\frac{-1}{4}\,(r-2)}\,|\mathrm{z}(x,t)|_{\mathbf{H}^{r,0}_{\omega(x,t)}} +a\,\mathcal{M}^{\frac{-\,r}{4}}\,|\mathrm{z}(x,t)|_{\mathbf{H}^{r,0}_{\omega(x,t)}}\\&+\left( \mathcal{M}^{\frac{-\,r}{4}}\,|\mathrm{z}(x,t)|_{\mathbf{H}^{r,0}_{\omega(x,t)}} \right)^3+ (a+1)\,\left( \mathcal{M}^{\frac{-\,r}{4}}\,|\mathrm{z}(x,t)|_{\mathbf{H}^{r,0}_{\omega(x,t)}} \right)^2. \end{split} \end{equation} (5.26)

    It is clear from Eq (5.26) that for sufficiently high values of \mathcal{M} , {\|\mathbf{\mathcal{R}}_{\mathcal{M}}(x, t)\|}_{L^{2}_{\omega(x, t)}} will be small enough. Thus, the proof of this theorem is finished.

    In this section, we present test examples to show the applicability of our proposed method and compare it with other methods.

    Example 6.1. The authors of [37] considered the FH–N equation of the form

    \begin{equation} \mathrm{z}_t = \mathrm{z}_{xx}-\mathrm{z}\,(a-\mathrm{z})\,(1-\mathrm{z}), \quad 0 < a\leq1, \end{equation} (6.1)

    governed by the following initial and boundary conditions:

    \begin{equation} \begin{split} &\mathrm{z}(x,0) = \frac{a e^{\frac{a x}{\sqrt{2}}}+e^{\frac{x}{\sqrt{2}}}}{e^{\frac{a x}{\sqrt{2}}}+e^{\frac{x}{\sqrt{2}}}+1}, \quad 0 < x\leq 1,\\& \mathrm{z}(0,t) = \frac{a e^{\frac{a^2 t}{2}}+e^{t/2}}{e^{\frac{a^2 t}{2}}+e^{a t}+e^{t/2}}, \quad 0 < t\leq 1,\\& \mathrm{z}(1,t) = \frac{a e^{\frac{1}{2} a \left(a t+\sqrt{2}\right)}+e^{\frac{1}{2} \left(t+\sqrt{2}\right)}}{e^{a t}+e^{\frac{1}{2} a \left(a t+\sqrt{2}\right)}+e^{\frac{1}{2} \left(t+\sqrt{2}\right)}}, \quad 0 < t\leq 1, \end{split} \end{equation} (6.2)

    where the exact solution to this problem is given by

    \mathrm{z}(x,t) = \frac{a\, e^{\left(\frac{a}{2}-1\right) a t+\frac{a x}{\sqrt{2}}}+e^{\left(\frac{1}{2}-a\right) t+\frac{x}{\sqrt{2}}}}{e^{\left(\frac{1}{2}-a\right) t+\frac{x}{\sqrt{2}}}+e^{\left(\frac{a}{2}-1\right) a t+\frac{a x}{\sqrt{2}}}+1}.

    Table 1 gives a comparison of the maximum absolute error (MAE) between our method and the method in [37] at t = 1 . Figure 1 shows the exact and the approximate solutions at a = 0.5 and \mathcal{M} = 12 . Figure 2 shows the MAE at a = 1 and \mathcal{M} = 12 . Table 2 presents the absolute error (AE) at a = 0.9 and \mathcal{M} = 12 . Figure 3 shows the AE (left) and the approximate solution (right) at a = 0.1 and \mathcal{M} = 12 .

    Table 1.  Comparison of the MAE of Example 6.1 at t = 1 .
    Our method at \mathcal{M}=12
    x a=0.2 a=0.5 a=0.7 Method in [37]
    0.1 4.38538 \times10^{-15} 5.10703 \times10^{-15} 3.66374 \times10^{-15} 1.41366 \times10^{-6}
    0.2 1.66533 \times10^{-15} 1.88738 \times10^{-15} 2.9976 \times10^{-15} 1.39287 \times10^{-6}
    0.3 4.77396 \times10^{-15} 1.22125 \times10^{-15} 1.88738 \times10^{-15} 1.18067 \times10^{-6}
    0.4 4.996 \times10^{-15} 2.9976 \times10^{-15} 1.11022 \times10^{-15} 1.16488 \times10^{-6}
    0.5 6.99441 \times10^{-15} 5.88418 \times10^{-15} 5.77316 \times10^{-15} 8.85464 \times10^{-7}
    0.6 1.49887 \times10^{-14} 7.77156 \times10^{-16} 7.54952 \times10^{-15} 9.60502 \times10^{-7}
    0.7 1.82077 \times10^{-14} 6.77236 \times10^{-15} 1.39888 \times10^{-14} 5.91894 \times10^{-7}
    0.8 4.4964 \times10^{-14} 4.36318 \times10^{-14} 4.77396 \times10^{-15} 7.75841 \times10^{-7}
    0.9 8.03801 \times10^{-14} 1.42886 \times10^{-13} 8.55982 \times10^{-14} 3.12309 \times10^{-7}

     | Show Table
    DownLoad: CSV
    Figure 1.  The exact and the approximate solutions for Example 6.1 at a = 0.5, and \mathcal{M} = 12 .
    Figure 2.  The MAE of Example 6.1 at a = 1 .
    Table 2.  The AE of Example 6.1 at a = 0.9 .
    x t=0.3 t=0.5 t=0.7 t=0.9
    0.1 1.22125 \times10^{-15 } 2.10942 \times10^{-15 } 2.10942 \times10^{-15 } 1.88738 \times10^{-15 }
    0.2 2.77556 \times10^{-15 } 4.21885 \times10^{-15 } 4.21885 \times10^{-15} 3.66374 \times10^{-15 }
    0.3 3.88578 \times10^{-15 } 6.10623 \times10^{-15 } 6.21725 \times10^{-15 } 5.55112 \times10^{-15 }
    0.4 5.55112 \times10^{-15 } 8.21565 \times10^{-15 } 8.88178 \times10^{-15 } 6.99441 \times10^{-15 }
    0.5 7.21645 \times10^{-15 } 1.04361 \times10^{-14 } 1.09912 \times10^{-14 } 7.54952 \times10^{-15}
    0.6 9.21485 \times10^{-15} 1.26565 \times10^{-14 } 1.28786 \times10^{-14 } 6.55032 \times10^{-15 }
    0.7 1.08802\times10^{-14 } 1.54321 \times10^{-14 } 1.5099 \times10^{-14} 5.77316 \times10^{-15 }
    0.8 1.34337\times10^{-14 } 1.77636 \times10^{-14 } 1.82077\times10^{-14} 8.21565 \times10^{-15 }
    0.9 1.59872 \times10^{-14} 2.13163 \times10^{-14 } 2.17604\times10^{-14} 1.67644\times10^{-14 }

     | Show Table
    DownLoad: CSV
    Figure 3.  The AE (left) and the approximate solution (right) for Example 6.1 at a = 0.1 , and \mathcal{M} = 12 .

    Example 6.2. The authors of [45] considered the FH–N equation of the form

    \begin{equation} \mathrm{z}_t = \mathrm{z}_{xx}-\mathrm{z}\,(a-\mathrm{z})\,(1-\mathrm{z}), \quad 0 < a\leq1, \end{equation} (6.3)

    governed by the following initial and boundary conditions:

    \begin{equation} \begin{split} &\mathrm{z}(x,0) = \frac{2}{e^{-\frac{x}{\sqrt{2}}}+2}, \quad 0 < x\leq 1,\\& \mathrm{z}(0,t) = \frac{2}{e^{\frac{t}{2}}+2}, \quad 0 < t\leq 1,\\& \mathrm{z}(1,t) = \frac{2}{e^{\frac{t}{2}-\frac{1}{\sqrt{2}}}+2}, \quad 0 < t\leq 1, \end{split} \end{equation} (6.4)

    where the exact solution of this problem when a = 1, is

    \mathrm{z}(x,t) = \frac{2}{2+e^{\frac{t}{2}-\frac{x}{\sqrt{2}}}}.

    Table 3 gives a comparison of AE at t = 0.001 between our method and the method in [45]. Figure 4 shows the absolute error (AE) (left) and the approximate solution (right) at \mathcal{M} = 12 . Table 4 presents the MAE and the CPU time (in seconds) used at different values of \mathcal{M} .

    Table 3.  Comparison of the AE of Example 6.2 at t = 0.001 .
    x Method in [45] Our method at \mathcal{M}=12
    0.00 9.260091360374645 \times10^{-9} 4.44089 \times10^{-16}
    0.001 9.266945988350983 \times10^{-9} 1.11022 \times10^{-16}
    0.002 9.273449896873842 \times10^{-9} 1.11022 \times10^{-16}
    0.003 9.279814694451716 \times10^{-9} 0
    0.004 9.286474367264930 \times10^{-9} 2.22045 \times10^{-16}
    0.005 9.292864144860857 \times10^{-9} 2.22045 \times10^{-16}
    0.006 9.299528924699985 \times10^{-9} 1.11022 \times10^{-16}

     | Show Table
    DownLoad: CSV
    Figure 4.  The AE (left) and the approximate solution (right) for Example 6.2 at \mathcal{M} = 12 .
    Table 4.  the MAE for Example 6.2.
    \mathcal{M} 2 4 6 8 10 12
    Error 1.73803\times10^{-3} 4.14311\times10^{-5} 9.11356\times10^{-7} 9.69633\times10^{-9} 4.76566\times10^{-11} 6.78901\times10^{-14}
    CPU time 1.157 1.813 3.344 6.11 11.374 23.248

     | Show Table
    DownLoad: CSV

    Example 6.3. The authors of [35] considered the FH–N equation of the form

    \begin{equation} \mathrm{z}_t = \mathrm{z}_{xx}-\mathrm{z}\,(a-\mathrm{z})\,(1-\mathrm{z}), \quad 0 < a\leq1, \end{equation} (6.5)

    subject to the following initial and boundary conditions:

    \begin{equation} \begin{split} &\mathrm{z}(x,0) = \frac{1}{2} \tanh \left(\frac{x}{2 \sqrt{2}}\right)+\frac{1}{2}, \quad 0 < x\leq 1,\\& \mathrm{z}(0,t) = \frac{1}{2}-\frac{1}{2} \tanh \left(\frac{1}{4} (2 a-1) t\right), \quad 0 < t\leq 1,\\& \mathrm{z}(1,t) = \frac{1}{2} \tanh \left(\frac{1-\frac{(2 a-1) t}{\sqrt{2}}}{2 \sqrt{2}}\right)+\frac{1}{2}, \quad 0 < t\leq 1, \end{split} \end{equation} (6.6)

    where \mathrm{z}(x, t) = \frac{1}{2} \tanh \left(\frac{x-\frac{(2 a-1) t}{\sqrt{2}}}{2 \sqrt{2}}\right)+\frac{1}{2} is the exact solution of this problem.

    Table 5 presents the MAE and the CPU time used (in seconds) when a = 0.1 and a = 0.5 at different values of \mathcal{M} . Figure 5 shows the AE (left) and the approximate solution (right) at a = 1 and \mathcal{M} = 12 . Table 6 shows the AE at different values of a when \mathcal{M} = 12 .

    Table 5.  the MAE for Example 6.3.
    \mathcal{M} 2 4 6 8 10 12
    a=0.1 6.13615\times10^{-3} 9.12786\times10^{-5} 1.14583\times10^{-6} 9.32286\times10^{-9} 4.61591\times10^{-11} 1.27232\times10^{-13}
    CPU time 1.376 2.264 3.594 7.204 14.812 32.282
    a=0.5 5.21245\times10^{-3} 7.19718\times10^{-5} 9.21914\times10^{-7} 7.23042\times10^{-9} 3.28784\times10^{-11} 5.61773\times10^{-14}
    CPU time 1.173 1.797 3.406 7.156 14.721 32.236

     | Show Table
    DownLoad: CSV
    Figure 5.  The AE (left) and the approximate solution (right) for Example 6.3 at a = 1 , and \mathcal{M} = 12 .
    Table 6.  AE of Example 6.3 at \mathcal{M} = 12 .
    (x, t) a=0.3 a=0.6 a=0.8
    (0.1, 0.1) 3.33067 \times10^{-16} 3.33067 \times10^{-16} 0
    (0.2, 0.2) 5.55112 \times10^{-16} 1.88738 \times10^{-15} 2.44249 \times10^{-15}
    (0.3, 0.3) 4.44089 \times10^{-16} 3.9968 \times10^{-15} 6.88338 \times10^{-15}
    (0.4, 0.4) 2.66454 \times10^{-15} 6.66134 \times10^{-15} 1.34337 \times10^{-14}
    (0.5, 0.5) 6.55032 \times10^{-15} 1.04361 \times10^{-14} 2.16493 \times10^{-14}
    (0.6, 0.6) 1.17684 \times10^{-14} 1.48771 \times10^{-14} 3.14193 \times10^{-14}
    (0.7, 0.7) 1.77636 \times10^{-14} 2.00951 \times10^{-14} 4.22995 \times10^{-14}
    (0.8, 0.8) 2.53131 \times10^{-14} 2.50912 \times10^{-14} 5.34017 \times10^{-14}
    (0.9, 0.9) 3.27516 \times10^{-14} 3.24185 \times10^{-14} 6.45041 \times10^{-14}

     | Show Table
    DownLoad: CSV

    Example 6.4. Consider the FH–N equation of the form

    \begin{equation} \mathrm{z}_t = \mathrm{z}_{xx}-\mathrm{z}\,(a-\mathrm{z})\,(1-\mathrm{z}), \quad 0 < a\leq1, \end{equation} (6.7)

    subject to the following initial and boundary conditions:

    \begin{equation} \begin{split} &\mathrm{z}(x,0) = 0, \quad 0 < x\leq 1,\\& \mathrm{z}(0,t) = \mathrm{z}(1,t) = 0, \quad 0 < t\leq 1. \end{split} \end{equation} (6.8)

    Since the exact solution is not available, we define the following absolute residual error norm:

    \begin{equation} RE = {\max\limits_{(x,t)\in(0,1]^{2}}}\left|\mathrm{z}^{\mathcal{M}}_{t}(x,t)-\mathrm{z}^{\mathcal{M}}_{xx}(x,t)+a\,\mathrm{z}^{\mathcal{M}}(x,t)+(\mathrm{z}^{\mathcal{M}}(x,t))^3-(a+1)\,(\mathrm{z}^{\mathcal{M}}(x,t))^2\right|, \end{equation} (6.9)

    and apply the presented method at \mathcal{M} = 10 to get Figure 6, which illustrates the RE at different values of a .

    Figure 6.  The RE of Example 6.4.

    This article has provided numerical solutions for the FH–N equation. The celebrated collocation method was applied to obtain the proposed approximate solutions. New basis functions were considered. These basis functions are special cases of the generalized Gegenbauer orthogonal polynomials. They are related to CPs. New derivative expressions for these polynomials were developed. Hence, new operational matrices of the derivatives were introduced. These matrices and the application of the collocation algorithm helped transform the FH–N equation into nonlinear systems of equations that can be treated using a suitable solver. To our knowledge, these polynomials have not been used before in approximating solutions to differential equations. We hope to use them to approximate other differential equations. All codes were written and debugged by Mathematica 11 on an HP Z420 workstation, (processor: Intel(R) Xeon(R) CPU E5-1620 v2 at 3.70 GHz, 16 GB RAM DDR3, and 512 GB storage).

    Waleed Mohamed Abd-Elhameed: Conceptualization, methodology, validation, formal analysis, investigation, supervision, project administration, writing—original draft, writing—review & editing; Omar Mazen Alqubori: Methodology, validation, investigation, writing—review & editing, funding acquisition; Ahmed Gamal Atta: Conceptualization, methodology, software, validation, formal analysis, investigation, writing—original draft, writing—review & editing, visualization. All authors have read and approved the final version of the manuscript for publication.

    The authors declare that they have not used artificial intelligence tools in the creation of this article.

    The authors declare that they have no competing interests.



    [1] J. C. Mason, D. C. Handscomb, Chebyshev polynomials, CRC Press, 2002.
    [2] T. J Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, Courier Dover Publications, 2020.
    [3] E. H. Doha, W. M. Abd-Elhameed, M. A. Bassuony, On the coefficients of differentiated expansions and derivatives of Chebyshev polynomials of the third and fourth kinds, Acta Math. Sci., 35 (2015), 326–338. https://doi.org/10.1016/S0252-9602(15)60004-2 doi: 10.1016/S0252-9602(15)60004-2
    [4] W. M. Abd-Elhameed, H. M. Ahmed, Tau and Galerkin operational matrices of derivatives for treating singular and Emden-Fowler third-order-type equations, Int. J. Modern Phys. C, 33 (2022), 2250061. https://doi.org/10.1142/S0129183122500619 doi: 10.1142/S0129183122500619
    [5] I. Terghini, A. Hasseine, D. Caccavo, H. J. Bart, Solution of the population balance equation for wet granulation using second-kind Chebyshev polynomials, Chem. Eng. Res. Des., 189 (2023), 262–271. https://doi.org/10.1016/j.cherd.2022.11.028 doi: 10.1016/j.cherd.2022.11.028
    [6] H. M. Srivastava, M. Izadi, Generalized shifted airfoil polynomials of the second kind to solve a class of singular electrohydrodynamic fluid model of fractional order, Fractal Fract., 7 (2023), 94. https://doi.org/10.3390/fractalfract7010094 doi: 10.3390/fractalfract7010094
    [7] M. Masjed-Jamei, Some new classes of orthogonal polynomials and special functions: A symmetric generalization of Sturm-Liouville problems and its consequences, PhD thesis, University of Kassel, Kassel, Germany, 2006.
    [8] M. M. Khader, M. M. Babatin, Evaluating the impacts of thermal conductivity on casson fluid flow near a slippery sheet: numerical simulation using sixth-kind Chebyshev polynomials, J. Nonlinear Math. Phys., 30 (2023), 1834–1853. https://doi.org/10.1007/s44198-023-00146-0 doi: 10.1007/s44198-023-00146-0
    [9] A. Babaei, H. Jafari, S. Banihashemi, Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method, J. Comput. Appl. Math., 377 (2020), 112908. https://doi.org/10.1016/j.cam.2020.112908 doi: 10.1016/j.cam.2020.112908
    [10] K. Sadri, H. Aminikhah, A new efficient algorithm based on fifth-kind Chebyshev polynomials for solving multi-term variable-order time-fractional diffusion-wave equation, Int. J. Comput. Math., 99 (2022), 966–992. https://doi.org/10.1080/00207160.2021.1940977 doi: 10.1080/00207160.2021.1940977
    [11] W. M. Abd-Elhameed, Y. H. Youssri, A. K. Amin, A. G. Atta, Eighth-kind Chebyshev polynomials collocation algorithm for the nonlinear time-fractional generalized Kawahara equation, Fractal Fract., 7 (2023), 652. https://doi.org/10.3390/fractalfract7090652 doi: 10.3390/fractalfract7090652
    [12] M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, Galerkin operational approach for multi-dimensions fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106608. https://doi.org/10.1016/j.cnsns.2022.106608 doi: 10.1016/j.cnsns.2022.106608
    [13] W. Weera, R. S. Varun Kumar, G. Sowmya, U. Khan, B. C. Prasannakumara, E. E. Mahmoud, et al., Convective-radiative thermal investigation of a porous dovetail fin using spectral collocation method, Ain Shams Eng. J., 14 (2023), 101811. https://doi.org/10.1016/j.asej.2022.101811 doi: 10.1016/j.asej.2022.101811
    [14] M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, B. I. Bayoumi, D. Baleanu, Modified Galerkin algorithm for solving multitype fractional differential equations, Math. Methods Appl. Sci., 42 (2019), 1389–1412. https://doi.org/10.1002/mma.5431 doi: 10.1002/mma.5431
    [15] P. B. Vasconcelos, J. E. Roman, J. M. A. Matos, Solving differential eigenproblems via the spectral Tau method, Numer. Algorithms, 92 (2023), 1789–1811. https://doi.org/10.1007/s11075-022-01366-z doi: 10.1007/s11075-022-01366-z
    [16] M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, I. K. Youssef, Spectral Galerkin schemes for a class of multi-order fractional pantograph equations, J. Comput. Appl. Math., 384 (2021), 113157. https://doi.org/10.1016/j.cam.2020.113157 doi: 10.1016/j.cam.2020.113157
    [17] J. Wang, R. Wu, The extended Galerkin method for approximate solutions of nonlinear vibration equations, Appl. Sci., 12 (2022), 2979. https://doi.org/10.3390/app12062979 doi: 10.3390/app12062979
    [18] W. M. Abd-Elhameed, A. M. Al-Sady, O. M. Alqubori, A. G. Atta, Numerical treatment of the fractional Rayleigh-Stokes problem using some orthogonal combinations of Chebyshev polynomials, AIMS Math., 9 (2024), 25457–25481. https://doi.org/10.3934/math.20241243 doi: 10.3934/math.20241243
    [19] A. A. Abd Elaziz, S. Boulaaras, N. H. Sweilam, Numerical solution of the fractional-order logistic equation via the first-kind Dickson polynomials and spectral tau method, Math. Meth. Appl. Sci., 46 (2023), 8004–8017. https://doi.org/10.1002/mma.7345 doi: 10.1002/mma.7345
    [20] A. G. Atta, W. M. Abd-Elhameed, G. M. Moatimid, Y. H. Youssri, Modal shifted fifth-kind Chebyshev tau integral approach for solving heat conduction equation, Fractal Fract., 6 (2022), 619. https://doi.org/10.3390/fractalfract6110619 doi: 10.3390/fractalfract6110619
    [21] X. Yang, L. Wu, H. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192
    [22] K. Sadri, D. Amilo, K. Hosseini, E. Hinçal, A. R. Seadawy, A tau-Gegenbauer spectral approach for systems of fractional integrodifferential equations with the error analysis, AIMS Math., 9 (2024), 3850–3880. https://doi.org/10.3934/math.2024190 doi: 10.3934/math.2024190
    [23] W. M. Abd-Elhameed, A. F. Abu Sunayh, M. H. Alharbi, A. G. Atta, Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation, AIMS Math., 9 (2024), 34567–34587. https://doi.org/10.3934/math.20241646 doi: 10.3934/math.20241646
    [24] A. Napoli, W. M. Abd-Elhameed, An innovative harmonic numbers operational matrix method for solving initial value problems, Calcolo, 54 (2017), 57–76. https://doi.org/10.1007/s10092-016-0176-1 doi: 10.1007/s10092-016-0176-1
    [25] M. M. Khader, A. Eid, M. Adel, Implementing the Vieta–Lucas collocation optimization method for MHD Casson and Williamson model under the effects of heat generation and viscous dissipation, J. Math., 2022 (2022), 1–13. https://doi.org/10.1155/2022/3257808 doi: 10.1155/2022/3257808
    [26] A. G. Atta, W. M. Abd-Elhameed, G. M. Moatimid, Y. H. Youssri, Novel spectral schemes to fractional problems with nonsmooth solutions, Math. Meth. Appl. Sci., 46 (2023), 14745–14764. https://doi.org/10.1002/mma.9343 doi: 10.1002/mma.9343
    [27] M. Ahsan, M. Bohner, A. Ullah, A. A. Khan, S. Ahmad, A Haar wavelet multi-resolution collocation method for singularly perturbed differential equations with integral boundary conditions, Math. Comput. Simul., 204 (2023), 166–180. https://doi.org/10.1016/j.matcom.2022.08.004 doi: 10.1016/j.matcom.2022.08.004
    [28] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445–466.
    [29] J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061–2070. https://doi.org/10.1109/JRPROC.1962.288235 doi: 10.1109/JRPROC.1962.288235
    [30] D. G. Aronson, H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33–76. https://doi.org/10.1016/0001-8708(78)90130-5 doi: 10.1016/0001-8708(78)90130-5
    [31] H. Ramos, A. Kaur, V. Kanwar, Using a cubic B-spline method in conjunction with a one-step optimized hybrid block approach to solve nonlinear partial differential equations, Comput. Appl. Math., 41 (2022), 34. https://doi.org/10.1007/s40314-021-01729-7 doi: 10.1007/s40314-021-01729-7
    [32] A. Mehta, G. Singh, H. Ramos, Numerical solution of time dependent nonlinear partial differential equations using a novel block method coupled with compact finite difference schemes, Comput. Appl. Math., 42 (2023), 201. https://doi.org/10.1007/s40314-023-02345-3 doi: 10.1007/s40314-023-02345-3
    [33] B. Inan, K. K. Ali, A. Saha, T. Ak, Analytical and numerical solutions of the Fitzhugh–Nagumo equation and their multistability behavior, Numer. Methods Partial Differ. Equ., 37 (2021), 7–23. https://doi.org/10.1002/num.22516 doi: 10.1002/num.22516
    [34] T. Kawahara, M. Tanaka, Interactions of traveling fronts: an exact solution of a nonlinear diffusion equation, Phys. Lett. A, 97 (1983), 311–314. https://doi.org/10.1016/0375-9601(83)90648-5 doi: 10.1016/0375-9601(83)90648-5
    [35] A. H. Bhrawy, A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients, Appl. Math. Comput., 222 (2013), 255–264. https://doi.org/10.1016/j.amc.2013.07.056 doi: 10.1016/j.amc.2013.07.056
    [36] D. Olmos, B. D. Shizgal, Pseudospectral method of solution of the Fitzhugh–Nagumo equation, Math. Comput. Simulat., 79 (2009), 2258–2278. https://doi.org/10.1016/j.matcom.2009.01.001 doi: 10.1016/j.matcom.2009.01.001
    [37] H. S. Shekarabi, M. Aqamohamadi, J. Rashidinia, Tension spline method for the solution of Fitzhugh–Nagumo equation, Trans. A. Razmadze Math. Inst., 172 (2018), 571–581. https://doi.org/10.1016/j.trmi.2018.02.001 doi: 10.1016/j.trmi.2018.02.001
    [38] M. Namjoo, S. Zibaei, Numerical solutions of Fitzhugh–Nagumo equation by exact finite-difference and NSFD schemes, Comput. Appl. Math., 37 (2018), 1395–1411. https://doi.org/10.1007/s40314-016-0406-9 doi: 10.1007/s40314-016-0406-9
    [39] M. A. Rufai, A. A. Kosti, Z. A. Anastassi, B. Carpentieri, A new two-step hybrid block method for the FitzHugh–Nagumo model equation, Mathematics, 12 (2023), 51. https://doi.org/10.3390/math12010051 doi: 10.3390/math12010051
    [40] Y. Xu, An integral formula for generalized Gegenbauer polynomials and Jacobi polynomials, Adv. Appl. Math., 29 (2002), 328–343. https://doi.org/10.1016/S0196-8858(02)00017-9 doi: 10.1016/S0196-8858(02)00017-9
    [41] A. Draux, M. Sadik, B. Moalla, Markov–Bernstein inequalities for generalized Gegenbauer weight, Appl. Numer. Math., 61 (2011), 1301–1321. https://doi.org/10.1016/j.apnum.2011.09.003 doi: 10.1016/j.apnum.2011.09.003
    [42] G. E. Andrews, R. Askey, R. Roy, Special functions, Volume 71, Cambridge University Press, Cambridge, UK, 1999.
    [43] W. M. Abd-Elhameed, S. O. Alkhamisi, New results of the fifthkind orthogonal Chebyshev polynomials, Symmetry, 13 (2021), 2407. https://doi.org/10.3390/sym13122407 doi: 10.3390/sym13122407
    [44] X. Zhao, L. L. Wang, Z. Xie, Sharp error bounds for Jacobi expansions and Gegenbauer–Gauss quadrature of analytic functions, SIAM J. Numer. Anal., 51 (2013), 1443–1469. https://doi.org/10.1137/12089421X doi: 10.1137/12089421X
    [45] A. Yokus, On the exact and numerical solutions to the Fitzhugh–Nagumo equation, Int. J. Mod. Phys. B, 34 (2020), 2050149. https://doi.org/10.1142/S0217979220501490 doi: 10.1142/S0217979220501490
  • This article has been cited by:

    1. Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Naher Mohammed A. Alsafri, Amr Kamel Amin, Ahmed Gamal Atta, A Matrix Approach by Convolved Fermat Polynomials for Solving the Fractional Burgers’ Equation, 2025, 13, 2227-7390, 1135, 10.3390/math13071135
    2. Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Amr Kamel Amin, Ahmed Gamal Atta, Numerical Solutions for Nonlinear Ordinary and Fractional Duffing Equations Using Combined Fibonacci–Lucas Polynomials, 2025, 14, 2075-1680, 314, 10.3390/axioms14040314
    3. H. M. Ahmed, A New Shifted Chebyshev Galerkin Operational Matrix of Derivatives: Highly Accurate Method for a Nonlinear Singularly Perturbed Problem with an Integral Boundary Condition, 2025, 32, 1776-0852, 10.1007/s44198-025-00295-4
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(558) PDF downloads(54) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog