α | ρ | P11 | P12 | P13 |
3.1 | 5.4430 | [52.100121.679721.679741.4409] | [35.85674.97694.976918.5069] | [14.14687.62047.620417.0268] |
1.4 | 5.3122 | [33.6548−5.5096−5.509617.0706] | [30.5665−4.2398−4.239821.0895] | [30.1417−5.2802−5.280221.3094] |
This work addresses the issue of finding ellipsoidal bounds of reachable sets for neutral semi-Markovian jump systems with time-varying delay and bounded peak disturbances, for which the related result has been rarely proposed for neutral semi-Markovian jump systems. Based on the modified improved Lyapunov-Krasovskii functional, a boundary of the reachable set for neutral semi-Markovian jump systems was obtained with the aid of utilizing a novel integral inequality and combining with the time-delay segmentation technique. The numerical examples are supplied to verify the effectiveness of the obtained results.
Citation: Xipan Zhang, Changchun Shen, Dingju Xu. Reachable set estimation for neutral semi-Markovian jump systems with time-varying delay[J]. AIMS Mathematics, 2024, 9(4): 8043-8062. doi: 10.3934/math.2024391
[1] | Sheng-Ran Jia, Wen-Juan Lin . Adaptive event-triggered reachable set control for Markov jump cyber-physical systems with time-varying delays. AIMS Mathematics, 2024, 9(9): 25127-25144. doi: 10.3934/math.20241225 |
[2] | Yakufu Kasimu, Gulijiamali Maimaitiaili . Non-fragile H∞ filter design for uncertain neutral Markovian jump systems with time-varying delays. AIMS Mathematics, 2024, 9(6): 15559-15583. doi: 10.3934/math.2024752 |
[3] | Yonggwon Lee, Yeongjae Kim, Seunghoon Lee, Junmin Park, Ohmin Kwon . An improved reachable set estimation for time-delay linear systems with peak-bounded inputs and polytopic uncertainties via augmented zero equality approach. AIMS Mathematics, 2023, 8(3): 5816-5837. doi: 10.3934/math.2023293 |
[4] | Wentao Le, Yucai Ding, Wenqing Wu, Hui Liu . New stability criteria for semi-Markov jump linear systems with time-varying delays. AIMS Mathematics, 2021, 6(5): 4447-4462. doi: 10.3934/math.2021263 |
[5] | Zhengqi Zhang, Huaiqin Wu . Cluster synchronization in finite/fixed time for semi-Markovian switching T-S fuzzy complex dynamical networks with discontinuous dynamic nodes. AIMS Mathematics, 2022, 7(7): 11942-11971. doi: 10.3934/math.2022666 |
[6] | Beibei Su, Liang Zhao, Liang Du, Qun Gu . Research on the ellipsoidal boundary of reachable sets of neutral systems with bounded disturbances and discrete time delays. AIMS Mathematics, 2024, 9(6): 16586-16604. doi: 10.3934/math.2024804 |
[7] | Boonyachat Meesuptong, Peerapongpat Singkibud, Pantiwa Srisilp, Kanit Mukdasai . New delay-range-dependent exponential stability criterion and H∞ performance for neutral-type nonlinear system with mixed time-varying delays. AIMS Mathematics, 2023, 8(1): 691-712. doi: 10.3934/math.2023033 |
[8] | Wenlong Xue, Yufeng Tian, Zhenghong Jin . A novel nonzero functional method to extended dissipativity analysis for neural networks with Markovian jumps. AIMS Mathematics, 2024, 9(7): 19049-19067. doi: 10.3934/math.2024927 |
[9] | Huahai Qiu, Li Wan, Zhigang Zhou, Qunjiao Zhang, Qinghua Zhou . Global exponential periodicity of nonlinear neural networks with multiple time-varying delays. AIMS Mathematics, 2023, 8(5): 12472-12485. doi: 10.3934/math.2023626 |
[10] | Miao Zhang, Bole Li, Weiqiang Gong, Shuo Ma, Qiang Li . Matrix measure-based exponential stability and synchronization of Markovian jumping QVNNs with time-varying delays and delayed impulses. AIMS Mathematics, 2024, 9(12): 33930-33955. doi: 10.3934/math.20241618 |
This work addresses the issue of finding ellipsoidal bounds of reachable sets for neutral semi-Markovian jump systems with time-varying delay and bounded peak disturbances, for which the related result has been rarely proposed for neutral semi-Markovian jump systems. Based on the modified improved Lyapunov-Krasovskii functional, a boundary of the reachable set for neutral semi-Markovian jump systems was obtained with the aid of utilizing a novel integral inequality and combining with the time-delay segmentation technique. The numerical examples are supplied to verify the effectiveness of the obtained results.
The reachable set of a dynamic system is first mentioned in [1], which is defined as the set of all state trajectories that may be achieved from the origin. The reachable set is a particularly valuable direction for further research in the field of control theory, which is closely related to stability, and it is crucial to many practical systems, such as ensuring circuit safety, safety verification, and avoiding aircraft collision [2,3,4]. In addition, many control methods has been proposed to improve the performance of the systems [5,6,7]. Because the exact shape of the reachable set for the actual system is difficult to obtain, it also causes scholars to study the estimation of the reachable set. So far, the commonly used methods for estimating reachable sets include the ellipsoid method and the polyhedron method. However, in the application of practical systems, time-delay often leads to the deterioration of system performance and even instability, but this is an unavoidable phenomenon [8]. Therefore, theoretical research on time-delay systems has attracted the attention of multitudinous researchers[9,10,11,12,13,14,15], and many achievements have been made in switched systems[16,17,18,19,20].
As a class of special hybrid system, Markovian jump systems can describe this kind of situation with sudden change (i.e., state sudden change and signal to lag) well. It has been widely used in actual manufacturing processes, network transmission systems, power circuit systems, economic systems, and so on. The sojourn time of Markovian jump systems obeys the exponential distribution, and the transition rate is constant and memoryless, in other words, the transition probability is a random process independent of the past. As a matter of fact, the transition rate of many practical systems is not constant, and the application field of Markovian jump systems is limited to some extent. Thus, a semi-Markovian jump system with a time-varying transition rate is proposed, which can better describe the general system. The semi-Markovian jump system obeys non-exponential distributions, such as the Weber distribution [21] and the Gaussian distribution [22], which relaxes the limitation of probability distribution function and reduces the conservatism of the system. Therefore, it has a wider application value. To date, a lot of research work has been done on the stability of semi-Markovian jump systems [23,24,25,26,27,28,29,30], but the reachable set of such systems is still in the stage of continuous development [31,32,33,34]. The issues of reachable set estimation and reachable set control for semi-Markovian jump systems under bounded peak disturbance have been addressed in [32]. The problem of reachable set estimation for a class of singular semi-Markovian jump systems with time-varying delay under zero initial condition was considered in [33].
On the other hand, it is worth noting that a particularly distinctive feature of many dynamic processes of physics, chemistry, biology, and engineering is that they are not only affected by past and present states, but are also fully affected by the derivative of the delay. Therefore, in order to describe this feature, the neutral time delay can be introduced into dynamic systems, called neutral time-delay systems. Since neutral systems have time delay in both the state and the derivative of the state, most systems with time delay can be regarded as a special case of neutral systems, which is a kind of more general system with time-delay. In the last twenty years, time-delay systems have been deeply studied by many scholars [35,36,37]. The ellipsoidal bound of reachable sets for linear neutral systems with bounded peak disturbances has been investigated in [36]. The exponential stability in the mean square of neutral stochastic delayed systems with switching and distributed-delay dependent impulses was studied in [37].
Furthermore, a less conservative result can be obtained by using a matrix inequality to enlarge the derivative of the Lyapunov functional to different degrees. Jensen's inequality [38], the Wirtinger integral inequality [39], the reciprocally convex combination inequality [40], and some improved integral inequalities have been generally used to reduce derivatives of the Lyapunov functional [41,42,43,44,45]. In [44], the author has investigated the boundary of the reachable set for a class linear systems with mixed delays and state constraints by the Wirtinger-based integral inequality and extended reciprocally convex combination approach. In [45], a novel quadratic generalized multiple-integral inequality based on free matrices was proposed to make the stability criterion of the system less conservative.
At present, few scholars have applied advanced methods to the neutral semi-Markovian jump system. Moreover, it is well known that the triple integral form of the Lyapunov functional can effectively reduce the conservatism of the criterion. Based on [46], a new integral inequality is derived by using the integral inequality and time-delay segmentation technique. Inspired by existing results and combined with the semi-Markovian jumping system, this paper will study the reachable set boundary of the neutral semi-Markovian jump system by utilizing a novel integral equality.
Notations: The superscript 'AT' and 'A−1' represent the transpose and inverse matrix representing matrix A; Rn stands for the n-dimensional Euclidean space; Rp×q is the set all p×q real matrices; the symbol P>0 (P≥0) means that P is a positive definite (semi-positive definite) matrix, and similarly, P<0 (P≤0) denotes that P is a negative (semi-negative definite) definite matrix; diag{⋅} is a diagonal matrix; an asterisk (∗) in the symmetric block represents a symmetric term; E{⋅} denotes the expectation operator and L means the weak infinitesimal generator; Pr(⋅|⋅) is the conditional probability.
Consider the following neutral semi-Markovian jump system with disturbances:
{˙x(t)−C(t,rt)˙x(t−τ(t))=A(t,rt)x(t)+B(t,rt)x(t−h(t))+D(t,rt)ω(t),x(t0+θ)=0,∀θ∈[−ρ∗,0] | (2.1) |
where x(t)∈Rn is the state vector, τ(t) is the time-varying neutral delay, the time-varying delay h(t) is a time-varying function, and w(t)∈Rm is the system disturbance satisfying
τ(t)≤τM, ˙τ(t)≤τD<1, 0<h(t)≤h, hd≤˙h(t)≤hD<1,wT(t)w(t)≤w2m, | (2.2) |
ρ∗=max{τM,h}, {rt,t≥0} is a semi-Markovian process taking values on the probability space in a finite state ℘={1,2,3,...,N} with the following transition probability:
Pr(rt+Δ=j|rt=i)={λij(δ)Δ+o(Δ),i≠j,1+λii(δ)Δ+o(Δ),i=j, | (2.3) |
where δ>0 is the sojourn time between two jumps, Δ>0, and limΔ→0o(Δ)Δ=0. λij(δ) is the transition rate from i to j at time t for i≠j. In addition, λii(δ)=−∑j∈℘∖{i}λij(δ) for j=i. A(t,rt), B(t,rt), C(t,rt) and D(t,rt) are known constant matrices of the semi-Markovian process.
Remark 1. As described in [24], in the application of the actual system, λij(δ) is assumed as λ_ij⩽λij(δ)⩽ˉλij, where λ_ij and ˉλij are real constants. Then, we have λij(δ)=λij+Δλij, where λij=12(ˉλij+λ_ij) and |Δλij|⩽lij with lij=12(ˉλij−λ_ij).
Remark 2. The neutral systems are suitable for describing the turbojet control systems [47], ship dynamic positioning systems [48], etc. Neutral systems are a class of more general time-delay systems, where the change rate of the actual system's state is not only related to the current and past time states, but also to the rate of change of past states. When matrix C becomes a zero matrix, system (2.1) can be rewritten as a general time-delay system, thus almost all time-delay systems can be described as neutral systems.
For the sake of brevity, x(t) is used to represent the solution of the system under initial conditions x(t0+θ)=0, θ∈[−ρ∗,0], and its weak infinitesimal generator, acting on the function V(xt,t,i), is defined in [49].
LV(xt,t,i)=limΔ→01Δ[E(V(xt+Δ,t+Δ,rt+Δ)|(xt,rt=i))−V(xt,t,i)]. | (2.4) |
This paper aims to find a reachable set for neutral semi-Markovian jump system (2.1) based on the Lyapunov-Krasovskii functional approach. We denote the set of reachable states with w(t) that satisfies Eq (2.2) by
ℜxΔ={x(t)∈Rn|x(t),w(t) satisfy Eqs (2.1) and (2.2)}. | (2.5) |
We will bound ℜx by an ellipsoid of the form
ℑ(P,1)Δ={x(t)∈Rn:xT(t)Px(t)≤1,P>0}. | (2.6) |
For simplicity, there are the following representations:
Ai=A(t,rt),Bi=B(t,rt),Ci=C(t,rt),Di=D(t,rt),Pi=P(t,rt),∀i∈℘. |
In this paper, the following lemmas are needed.
Lemma 1. [50] For any positive-definite matrix Φ∈Rn×n, if there is a scalar γ>0 and a vector function ω:[0,γ]→Rn such that the integrations concerned are well defined, then
(∫γ0ω(s)ds)TΦ(∫γ0ω(s)ds)≤γ∫γ0ωT(s)Φω(s)ds. | (2.7) |
Lemma 2. Consider a scalar h>0 and any continuously differentiable function x(t)∈Rn. For any positive definite matrix Q, the following inequality holds:
−∫tt−h˙xT(s)Q˙x(s)ds≤1hηT(t)Ξη(t), | (2.8) |
where
Ξ=[−18Q6Q00−96Q0480Q∗−36Q6Q−96Q144Q480Q−480Q∗∗−18Q144Q0−480Q0∗∗∗−1536Q05760Q0∗∗∗∗−1536Q05760Q∗∗∗∗∗−2304Q0∗∗∗∗∗∗−2304Q], |
η(t)=[xT(t)xT(t−h2)xT(t−h)1h(∫t−h2t−hx(s)ds)T1h(∫tt−h2x(s)ds)T1h2(∫t−h2t−h∫t−h2ux(s)dsdu)T 1h2(∫tt−h2∫tux(s)dsdu)T]T.
Proof of Lemma 2. For any continuously differentiable function x(t)∈Rn and positive definite matrix Q, the following equality holds:
∫tt−h˙xT(s)Q˙x(s)ds=∫tt−h2˙xT(s)Q˙x(s)ds+∫t−h2t−h˙xT(s)Q˙x(s)ds. | (2.9) |
Based on Lemma 2 in [46], the following inequalities hold:
∫tt−h2˙xT(s)Q˙x(s)ds≥2h[x(t)−x(t−h2)]TQ[x(t)−x(t−h2)]+6h[x(t)+x(t−h2)−4h∫tt−h2x(s)ds]TQ[x(t)+x(t−h2)−4h∫tt−h2x(s)ds]+10h[x(t)−x(t−h2)+12h∫tt−h2x(s)ds−48h2∫tt−h2∫tux(s)ds]TQ[x(t)−x(t−h2)+12h∫tt−h2x(s)ds−48h2∫tt−h2∫tux(s)ds], | (2.10) |
∫t−h2t−h˙xT(s)Q˙x(s)ds≥2h[x(t−h2)−x(t−h)]TQ[x(t−h2)−x(t−h)]+6h[x(t−h2)+x(t−h)−4h∫t−h2t−hx(s)ds]TQ[x(t−h2)+x(t−h)−4h∫t−h2t−hx(s)ds]+10h[x(t−h2)−x(t−h)+12h∫t−h2t−hx(s)ds−48h2∫t−h2t−h∫t−h2ux(s)ds]TQ[x(t−h2)−x(t−h)+12h∫t−h2t−hx(s)ds−48h2∫t−h2t−h∫t−h2ux(s)ds]. | (2.11) |
Replacing Eq (2.10) and (2.11) into Eq (2.9) yields Eq (2.8). This completes the proof.
Lemma 3. [34] For system (2.1) with constraints (2.2), if there is a Lyapunov functional V(xt,rt) with V(x0,r0)=0 and a positive scalar α, such that
LV(xt,rt)+αV(xt,rt)−αw2mw(t)Tw(t)≤0, | (2.12) |
then V(xt,rt)≤1 for any t≥0.
Lemma 4. [32] Given any constant ϵ and square matrix P∈Rn×n, the inequality
ϵ(P+PT)⩽ϵ2T+PT−1PT, | (2.13) |
holds for any symmetric matrix T>0.
Lemma 5. [51] (Schur Complement) Given constant symmetric matrices Σ1, Σ2, and Σ3, where Σ1=ΣT1 and Σ2=ΣT2>0, then Σ1+ΣT3Σ−12Σ3<0 holds if and only if
[Σ1ΣT3Σ3−Σ2]<0,[−Σ2ΣT3Σ3Σ1]<0. | (2.14) |
Our aim is to find an ellipsoid set as small as possible to bound the reachable set defined in Eq (2.6). Based on the Lyapunov method and linear matrix inequality techniques, the following theorems are derived.
Theorem 1. Consider the time-delayed system (2.1) with constraints (2.2). If there exist real matrices P2i and P3i, symmetric matrices P1i>0 for each mode i∈℘, R1≥0, R2≥0, R3≥0, R4≥0, S1≥0, S2≥0, S3≥0, M1≥0, M2≥0, and Q≥0, and a scalar α>0 satisfying the following matrix inequalities:
Φi=[Φi1,1Φi1,2Φi1,3Φi1,4Φi1,50Φi1,70Φi1,9Φi1,10∗Φi2,20Φi2,4Φi2,50000Φi2,10∗∗Φi3,3Φi3,40Φi3,6Φi3,7Φi3,8Φi3,90∗∗∗Φi4,40Φi4,60Φi4,800∗∗∗∗Φi5,500000∗∗∗∗∗Φi6,60Φi6,800∗∗∗∗∗∗Φi7,70Φi7,90∗∗∗∗∗∗∗Φi8,800∗∗∗∗∗∗∗∗Φi9,90∗∗∗∗∗∗∗∗∗Φi10,10]≤0, | (3.1) |
where
Φi1,1=αP1i+PT2iAi+ATiP2i+R2+R3+h(S1+S22)+h28M2−18Qh+∑j∈℘λij(δ)P1j,
Φi1,2=P1i−PT2i+ATiP3i, Φi1,3=6Qh, Φi1,4=PT2iBi, Φi1,5=PT2iCi, Φi1,7=−96Qh, Φi1,9=480Qh,
Φi1,10=PT2iDi, Φi2,2=hQ+R4−PT3i−P3i, Φi2,4=PT3iBi, Φi2,5=PT3iCi, Φi2,10=PT3iDi,
Φi3,3=(1−hd2)e−αh2R1−e−αh2(1−hD2)R2+h2(1−hD2)e−αh2S3+h2e−αhd2M1−36Qh, Φi3,4=6Qh,
Φi3,6=−96Qh, Φi3,7=144Qh, Φi3,8=480Qh, Φi3,9=−480Qh, Φi4,4=−(1−hD)e−−αh2R1−(1−hD)e−αhR3−18Qh,
Φi4,6=144Qh, Φi4,8=−480Qh, Φi5,5=−(1−τD)e−ατMR4, Φi6,6=−2h(1−hD)e−αh[S1+S3]−1536Qh,
Φi6,8=5760Qh, Φi7,7=−2he−αh2[S1+S2]−1536Qh, Φi7,9=5760Qh, Φi8,8=−8(1−hD2)e−αhh2M1−2304Qh,
Φi9,9=−8(1−hD2)e−αhh2M2−2304Qh, Φi10,10=−αw2mI.
Then, the reachable sets of system (2.1) having constraints (2.2) is bounded by an ellipsoidal bound ⋂i∈℘ℑ(P1i,1) defined in Eq (2.6).
Proof of Theorem 1. Choose a new class of functional candidate for system (2.1) as follows:
V(xt,t,rt)=5∑k=1Vk(xt,t,rt), | (3.2) |
where
V1(xt,t,rt)=xT(t)P1rtx(t)=[xT(t)˙xT(t)][I000][P1rt0P2rtP3rt][x(t)˙x(t)],V2(xt,t,rt)=∫t−h(t)2t−h(t)eα(s−t)xT(s)R1x(s)ds+∫tt−h(t)2eα(s−t)xT(s)R2x(s)ds+∫tt−h(t)eα(s−t)xT(s)R3x(s)ds+∫tt−τ(t)eα(s−t)˙xT(s)R4˙x(s)ds,V3(xt,t,rt)=∫0−h∫tt+θeα(s−t)xT(s)S1x(s)dsdθ+∫0−h2∫tt+θeα(s−t)xT(s)S2x(s)dsdθ+∫−h(t)2−h(t)∫t−h(t)2t+θeα(s−t)xT(s)S3x(s)dsdθ,V4(xt,t,rt)=∫t−h(t)2t−h(t)∫t−h(t)2θ∫t−h(t)2ueα(s−t)xT(s)M1x(s)dsdudθ+∫tt−h(t)2∫tθ∫tueα(s−t)xT(s)M2x(s)dsdudθ,V5(xt,t,rt)=∫0−h∫tt+θeα(s−t)˙xT(s)Q˙x(s)dsdθ. |
Furthermore, P1rt>0, P2rt, P3rt, R1≥0, R2≥0, R3≥0, S1≥0, S2≥0, S3≥0, M1≥0, M2≥0, and Q≥0, and a scalar α>0 are solutions of Eq (3.1).
First, we show that V(xt,t,rt) in Eq (3.2) is a fine Lyapunov-Krasovskii functional candidate. From Eq (3.2), we have 5∑k=2Vk(xt,t,rt)≥0. Therefore, we get
{V(xt,t,rt)=5∑k=1Vk(xt,t,rt)≥V1(xt,t,rt)=xT(t)P1ix(t),V(xt,t,rt)=0,whenx(θ)=0,θ∈[t−ρ∗,t]. | (3.3) |
Next, the derivative of V(xt,t,rt) along the trajectory of system (2.1) is given by
LV(xt,t,rt)=5∑k=1LVk(xt,t,rt). | (3.4) |
From Eq (2.4), we have
LV1(xt,t,i)=limΔ→01Δ[∑j∈℘Pr{j∣i}xT(t+Δ)Pjx(t+Δ)−xT(t)Pix(t)]=limΔ→01Δ[∑j∈℘∖{i}Pr{j,i}Pr{i}xT(t+Δ)Pjx(t+Δ)+Pr{i,i}Pr{i}xT(t+Δ)⋅Pix(t+Δ)−xT(t)Pix(t)]=limΔ→01Δ[∑j∈℘∖{i}qij(Fi(δ+Δ)−Fi(δ)1−Fi(δ)xT(t+Δ)Pjx(t+Δ)+1−Fi(δ+Δ)1−Fi(δ)⋅xT(t+Δ)Pix(t+Δ)−xT(t)Pix(t)] | (3.5) |
where Fi(t) is the cumulative distribution function of the sojourn time δ in mode i, and qij is the probability density intensity of the system jump from mode i to mode j. When Δ is small, x(t+Δ)=x(t)+˙x(t)Δ+o(Δ) =(AiΔ+I)x(t)+BiΔx(t−h(t))+CiΔ˙x(t−τ(t))+DiΔw(t)+o(Δ). Then, Eq (3.5) becomes
LV1(xt,t,i)=limΔ→01Δ[∑j∈℘∖{i}qij(Fi(δ+Δ)−Fi(δ)1−Fi(δ)ξT1(t)GTiPjGiξ1(t)+1−Fi(δ+Δ)1−Fi(δ)⋅ξT1(t)GTiPiGiξ1(t)−xT(t)Pix(t)], | (3.6) |
where Gi=[AiΔBiΔCiΔDiΔ], ξ1(t)=[xT(t)xT(t−h(t))˙xT(t−τ(t))ωT(t)].
Furthermore, utilizing the same technique as in [28], it is obtained that
{limΔ→0Fi(δ+Δ)−Fi(δ)1−Fi(δ)=0,limΔ→01−Fi(δ+Δ)1−Fi(δ)=1,limΔ→0Fi(δ+Δ)−Fi(δ)(1−Fi(δ))Δ=λi(δ). | (3.7) |
Here, λi(δ) is the transition rate of the system jumping from mode i, and we define λij(δ)=λi(δ)qij for j≠i and λii(δ)=−∑j=1,j≠iλij(δ). Next, LV1(xt,t,i) can be rewritten as
LV1(xt,t,i)=2[xT(t)˙xT(t)][P1iPT2i0PT3i][˙x(t)0]+xT(t)[∑j∈℘λij(δ)P1j]x(t)=2[xT(t)˙xT(t)][P1iPT2i0PT3i][˙x(t)(−˙x(t)+Aix(t)+Bix(t−h(t))+Ci˙x(t−τ(t))+Diw(t))]+xT(t)[∑j∈℘λij(δ)P1j]x(t) |
=xT(t)[PT2iAi+ATiP2i]x(t)+2xT(t)[P1i−PT2i+ATiP3i]˙x(t)+2xT(t)PT2iBix(t−h(t))+2xT(t)PT2iC˙x(t−τ(t))+2xT(t)PT2iDiw(t)−˙xT(t)[PT3i+P3i]˙x(t)+2˙xT(t)PT3iBix(t−h(t))+2˙xT(t)PT3iCi˙x(t−τ(t))+2˙xT(t)PT3iDiw(t)+xT(t)[∑j∈℘λij(δ)P1j]x(t), | (3.8) |
LV2(xt,t,i)≤xT(t)[R2+R3]x(t)+(1−hd2)e−αh2xT(t−h(t)2)R1x(t−h(t)2)+˙xT(t)R4˙xT(t)−(1−hD)e−αh2xT(t−h(t))R1x(t−h(t))−(1−hD2)e−αh2xT(t−h(t)2)R2x(t−h(t)2)−(1−hD)e−αhxT(t−h(t))R3x(t−h(t))−(1−τD)e−ατM˙xT(t−τ(t))R4˙x(t−τ(t))−αV2, | (3.9) |
LV3(xt,t,i)≤hxT(t)[S1+S22]x(t)+h(t)2(1−˙h(t)2)e−αh(t)2xT(t−h(t)2)S3x(t−h(t)2)−∫tt−h(t)2eα(s−t)xT(s)[S1+S2]x(s)ds−∫t−h(t)2t−h(t)eα(s−t)xT(s)[S1+(1−˙h(t))S3]x(s)ds−αV3≤hxT(t)[S1+S22]x(t)+h2(1−hD2)e−αh2xT(t−h(t)2)S3x(t−h(t)2)−2he−αh2(1h∫tt−h(t)2x(s)ds)T⋅[S1+S2](1h∫tt−h(t)2x(s)ds)−2h(1−hD)e−αh2(1h∫t−h(t)2t−h(t)x(s)ds)T[S1+S3](1h∫t−h(t)2t−h(t)x(s)ds)−αV3, | (3.10) |
LV4(xt,t,i)=−(1−˙h(t))∫t−h(t)2t−h(t)∫t−h(t)2ueα(s−t)xT(s)M1x(s)dsdu+(1−˙h(t)2)⋅∫t−h(t)2t−h(t)∫t−h(t)2θe−αh(t)2xT(t−h(t)2)M1x(t−h(t)2)dsdu−(1−˙h(t)2)∫tt−h(t)2∫tueα(s−t)xT(s)M2x(s)dsdu+∫tt−h(t)2∫tuxT(t)M2x(t)ds−αV4≤h28e−αhd2xT(t−h(t)2)M1x(t−h(t)2)+h28xT(t)M2x(t)−8(1−hD2)e−αh2h2(∫t−h(t)2t−h(t)∫t−h(t)2ux(s)dsdu)T⋅M1(∫t−h(t)2t−h(t)∫t−h(t)2ux(s)dsdu)−8(1−hD2)h2(∫tt−h(t)2∫tux(s)dsdu)TM2(∫tt−h(t)2∫tux(s)dsdu)−αV4, | (3.11) |
LV5(xt,t,i)≤h˙xT(t)Q˙x(t)−∫tt−h(t)˙xT(s)Q˙x(s)ds−αV5. | (3.12) |
From Lemma 2, we have
−∫tt−h(t)˙xT(s)Q˙x(s)ds≤1hξT(t)Ξξ(t), | (3.13) |
where Ξ is the same as defined in Lemma 2, and ξ(t)=[xT(t)xT(t−h(t)2) xT(t−h(t))1h (∫t−h(t)2t−h(t)x(s)ds)T 1h(∫tt−h(t)2x(s)ds)T 1h2(∫t−h(t)2t−h(t)∫t−h(t)2ux(s)dsdu)T 1h2(∫tt−h(t)2∫tux(s)dsdu)T]T.
Finally, by combining Eqs (3.5)–(3.13), we further have
LV(xt,t,i)+αV(xt,t,i)−αw2mw(t)Tw(t)≤XT(t)ΦiX(t), | (3.14) |
where Φi is the same as that defined in Theorem 1 for any i∈℘, and X(t)=[xT(t)˙xT(t)xT(t−h(t)2) xT(t−h(t))˙xT(t−τ(t)) 1h(∫t−h(t)2t−h(t)x(s)ds)T 1h(∫tt−h(t)2x(s)ds)T 1h2(∫t−h(t)2t−h(t)∫t−h(t)2ux(s)dsdu)T1h2(∫tt−h(t)2∫tux(s)dsdu)TwT(t)]T.
$ Thus, from the matrix inequalities (3.1), we get
LV(xt,t,i)+αV(xt,t,i)−αw2mw(t)Tw(t)≤0, ∀i∈℘. | (3.15) |
which means, by Lemma 3, that V(xt,t,i)=V1(xt,t,i)+V2(xt,t,i)+V3(xt,t,i)+V4(xt,t,i)+V5(xt,t,i)≤1, and this results in V1(xt,t,i)=xT(t)P1ix(t)≤1 for any i∈℘, since V2(xt,t,i)+V3(xt,t,i)+V4(xt,t,i)+V5(xt,t,i)≥0. This completes the proof.
Remark 3. Since λij(δ) in Theorem 1 is time-varying and contains an infinite number of inequalities, it is impossible to solve by using the Linear Matrix Inequalities (LMIs). At this point, we will obtain the boundary of the reachable set according to the upper and lower bounded method in [32].
Corollary 1. Consider the time-delayed system (2.1) with constraints (2.2), and real matrices P2i and P3i, symmetric matrices P1i>0 for each mode i∈℘, Tij>0, R1≥0, R2≥0, R3≥0, R4≥0, S1≥0, S2≥0, S3≥0, M1≥0, M2≥0, and Q≥0, and a scalar α>0 satisfying the following matrix inequalities:
Φi=[ˆΦi1,1Φi1,2Φi1,3Φi1,4Φi1,50Φi1,70Φi1,9Φi1,10Φi1,11∗Φi2,20Φi2,4Φi2,50000Φi2,100∗∗Φi3,3Φi3,40Φi3,6Φi3,7Φi3,8Φi3,900∗∗∗Φi4,40Φi4,60Φi4,8000∗∗∗∗Φi5,5000000∗∗∗∗∗Φi6,60Φi6,8000∗∗∗∗∗∗Φi7,70Φi7,900∗∗∗∗∗∗∗Φi8,8000∗∗∗∗∗∗∗∗Φi9,900∗∗∗∗∗∗∗∗∗Φi10,100∗∗∗∗∗∗∗∗∗∗Φi11,11]≤0, | (3.16) |
where
Φi1,1=αP1i+PT2iAi+ATiP2i+R2+R3+h(S1+S22)+h28M2−18Qh++∑j∈℘λijP1j+∑j∈℘∖{i}l2ij4Tij,
Φi1,2=P1i−PT2i+ATiP3i, Φi1,3=6Qh, Φi1,4=PT2iBi, Φi1,5=PT2iCi, Φi1,7=−96Qh, Φi1,9=480Qh,
Φi1,10=PT2iDi, Φi2,2=hQ+R4−PT3i−P3i, Φi2,4=PT3iBi, Φi2,5=PT3iCi, Φi2,10=PT3iDi,
Φi3,3=(1−hd2)e−αh2R1−e−αh2(1−hD2)R2+h2(1−hD2)e−αh2S3+h2e−αhd2M1−36Qh, Φi3,4=6Qh,
Φi3,6=−96Qh, Φi3,7=144Qh, Φi3,8=480Qh, Φi3,9=−480Qh, Φi4,4=−(1−hD)e−−αh2R1−(1−hD)e−αhR3−18Qh,
Φi4,6=144Qh, Φi4,8=−480Qh, Φi5,5=−(1−τD)e−ατMR4, Φi6,6=−2h(1−hD)e−αh[S1+S3]−1536Qh,
Φi6,8=5760Qh, Φi7,7=−2he−αh2[S1+S2]−1536Qh, Φi7,9=5760Qh, Φi8,8=−8(1−hD2)e−αhh2M1−2304Qh,
Φi9,9=−8(1−hD2)e−αhh2M2−2304Qh, Φi10,10=−αw2mI,
Φi1,11=[P11−P1i,⋯,P1i−1−P1i,P1i+1−P1i,⋯,P1N−P1i],
Φi11,11=−diag{Ti1,⋯,Ti(i−1),Ti(i+1),⋯,TiN}.
Other unknown parameters are the same as those defined in Theorem 1. Then, the reachable sets of system (2.1) having constraints (2.2) are bounded by an ellipsoidal bound ⋂i∈℘ℑ(P1i,1) defined in Eq (2.6).
Proof of Corollary 1. According to Remark 1, the item ∑j∈℘λij(δ)P1j will be handled separately, and we can get that
∑j∈℘λij(δ)P1j=∑j∈℘(λij+Δλij)P1j=∑j∈℘λijP1j+∑j∈℘∖{i}Δλij(P1j−P1i)=∑j∈℘λijP1j+∑j∈℘∖{i}[12Δλij(P1j−P1i)+12Δλij(P1j−P1i)]. | (3.17) |
Meanwhile, by Lemma 4, there exist symmetric positive definite matrix Tij for any ∣Δλij∣≤lij, and we have
∑i∈℘λij(δ)P1j⩽∑j∈℘λijP1j+∑j∈℘∖{i}[l2ij4Tij+(P1j−P1i)T−1ij(P1j−P1i)]. | (3.18) |
Thus, by the Schur complement, inequality (3.1) can be written as inequality (3.16). The proof is complete.
Remark 4. Inspired by reference [52], the mathematical expectation method is used to solve the transfer rate λij(δ), Corollary 2 is derived from this approach, and the simulation result is worse than that of Corollary 1.
Corollary 2. Consider the time-delayed system (2.1) with constraints (2.2), and real matrices P2i and P3i, symmetric matrices P1i>0 for each mode i∈℘, R1≥0, R2≥0, R3≥0, R4≥0, S1≥0, S2≥0, S3≥0, M1≥0, M2≥0, and Q≥0, and a scalar α>0 satisfying the following matrix inequalities:
Φi=[˜Φi1,1Φi1,2Φi1,3Φi1,4Φi1,50Φi1,70Φi1,9Φi1,10∗Φi2,20Φi2,4Φi2,50000Φi2,10∗∗Φi3,3Φi3,40Φi3,6Φi3,7Φi3,8Φi3,90∗∗∗Φi4,40Φi4,60Φi4,800∗∗∗∗Φi5,500000∗∗∗∗∗Φi6,60Φi6,800∗∗∗∗∗∗Φi7,70Φi7,90∗∗∗∗∗∗∗Φi8,800∗∗∗∗∗∗∗∗Φi9,90∗∗∗∗∗∗∗∗∗Φi10,10]≤0, | (3.19) |
where
˜Φi1,1=αP1i+PT2iAi+ATiP2i+R2+R3+h(S1+S22)+h28M2−18Qh+∑j∈℘˜λijP1j, ˜λij=E[λij(δ)],
Φi1,2=P1i−PT2i+ATiP3i, Φi1,3=6Qh, Φi1,4=PT2iBi, Φi1,5=PT2iCi, Φi1,7=−96Qh, Φi1,9=480Qh,
Φi1,10=PT2iDi, Φi2,2=hQ+R4−PT3i−P3i, Φi2,4=PT3iBi, Φi2,5=PT3iCi, Φi2,10=PT3iDi,
Φi3,3=(1−hd2)e−αh2R1−e−αh2(1−hD2)R2+h2(1−hD2)e−αh2S3+h2e−αhd2M1−36Qh, Φi3,4=6Qh,
Φi3,6=−96Qh, Φi3,7=144Qh, Φi3,8=480Qh, Φi3,9=−480Qh, Φi4,4=−(1−hD)e−−αh2R1−(1−hD)e−αhR3−18Qh,
Φi4,6=144Qh, Φi4,8=−480Qh, Φi5,5=−(1−τD)e−ατMR4, Φi6,6=−2h(1−hD)e−αh[S1+S3]−1536Qh,
Φi6,8=5760Qh, Φi7,7=−2he−αh2[S1+S2]−1536Qh, Φi7,9=5760Qh, Φi8,8=−8(1−hD2)e−αhh2M1−2304Qh,
Φi9,9=−8(1−hD2)e−αhh2M2−2304Qh, Φi10,10=−αw2mI.
The other parameters are the same as those defined in Theorem 1. Then, the reachable sets of system (2.1) having constraints (2.2) are bounded by an ellipsoidal bound ⋂i∈℘ℑ(P1i,1) defined in Eq (2.6).
Proof of Corollary 2. λij(δ) is handled by the same method as in [52]. The ˜λij can be obtained through the probability density function fi(δ)=babδb−1e−(δ/a)b with respect to the sojourn time (δ>0). It is worth noting that a represents the scale parameter and b represents the shape parameter. Then, the expectation of λij is E[λij(δ)]=∫∞0λij(δ)fi(δ)dδ. After ˜λij is trivial to obtain, Corollary 2 can be proved based on Theorem 1.
Next, we consider the neutral semi-Markovian jump system with uncertainties as follows:
{˙x(t)−(Ci+ΔCi(t))˙x(t−τ(t))=(Ai+ΔAi(t))x(t)+(Bi+ΔBi(t))⋅x(t−h(t))+(Di+ΔDi(t))w(t),x(t0+θ)≡0,∀θ∈[−ρ∗,0], | (3.20) |
where the uncertainties of the form Ai, Bi, Ci, and Di are the known mode-dependent matrices with appropriate dimensions, and the uncertainties ΔAi(t), ΔBi(t), ΔCi(t), and ΔDi(t) are expressed as
[ΔAi(t)ΔBi(t)ΔCi(t)ΔDi(t)]=LiKi(t)[E1iE2iE3iE4i], |
where Ki(t)∈Rp×q is an unknown real and possibly time-varying matrix with Lebesgue measurable elements satisfying
KTi(t)Ki(t)≤I, |
and Li, E1i, E2i, E3i, and E4i are known real constant matrices which characterize how the uncertainty enters the nominal matrices Ai, Bi, Ci, and Di. Before proceeding further, system (3.20) can be written as:
{˙x(t)−Ci˙x(t−τ(t))=Aix(t)+Bix(t−h(t))+Diw(t)+Liui,zi(t)=E1ix(t)+E2ix(t−h(t)+E3i˙x(t−τ(t))+E4iw(t), | (3.21) |
with the constraint ui=Ki(t)zi(t). We further have
uTu≤[E1ix(t)+E2ix(t−h(t)+E3i˙x(t−τ(t))+E4iw(t)]T ⋅[E1ix(t)+E2ix(t−h(t)+E3i˙x(t−τ(t))+E4iw(t)]. | (3.22) |
Based on Theorem 1, we can obtain the reachable sets of uncertain neutral systems (3.21). The following Theorem 2 is a result for the no-ellipsoidal bound of a reachable set for an uncertain time-delayed system (3.21) having the constraints (2.2).
Theorem 2. Consider the uncertain time-delayed system (3.21) with constraints (2.2), and real matrices P2i and P3i, symmetric matrices P1i>0 for each mode i∈℘, R1≥0, R2≥0, R3≥0, R4≥0, S1≥0, S2≥0, S3≥0, M1≥0, M2≥0, and Q≥0, and scalars α>0, εi>0 satisfying the following matrix inequalities:
Ψi=[ΦiΨi1,2Ψi1,3∗−εiI0∗∗−εiI]≤0, | (3.23) |
where
Ψi1,2=[LTiP2iLTiP3i000000000]T, |
Ψi1,3=[εiE1i00εiE2iεiE3i00000εiE4i]T. |
The other parameters are the same as those defined in Theorem 1. Then, the reachable sets of system (3.21) having constraints (2.2) are bounded by an ellipsoidal bound ⋂i∈℘ℑ(P1i,1) defined in Eq (2.6).
Proof of Theorem 2. Applying a similar method to that in the proof of Theorem 1, we can obtain
LV(xt,t,i)+αV(xt,t,i)−αw2mw(t)Tw(t)≤XT(t)ΦiX(t)+2xT(t)PT2iLiui+2˙xT(t)PT3iLiui, | (3.24) |
where Φi is the same as defined in Theorem 1 for any i∈℘.
From inequalities (3.22), one can see that the following equation holds for any nonnegative scalar εi:
LV(xt,t,i)+αV(xt,t,i)−αw2mw(t)Tw(t)≤[XT(t)uTi][ΦiΨi1,2∗−εiI]⋅[X(t)ui]+εi{[E1ix(t)+E2ix(t−h(t)+E3i˙x(t−τ(t))+E4iw(t)]T[E1ix(t)+E2ix(t−h(t))+E3i˙x(t−τ(t))+E4iw(t)], | (3.25) |
where Φi and Ψi1,2 are the same as defined in Theorem 2. By using Lemma 5, the matrix inequalities (3.23) imply
LV(xt,t,i)+αV(xt,t,i)−αw2mw(t)Tw(t)≤0, ∀i∈℘ | (3.26) |
which means, by Lemma 3, that V(xt,t,i)=V1(xt,t,i)+V2(xt,t,i)+V3(xt,t,i)+V4(xt,t,i)+V5(xt,t,i)≤1, and this results in V1(xt,t,i)=xT(t)P1ix(t)≤1 for any i∈℘. This completes the proof.
Remark 5. When the reachable set is estimated by an ellipsoidal technique, the smaller the ellipsoidal boundary set is, the closer it is to the actual reachable set boundary. As in reference [53], that is, maximizing ρ subject to ρI≤P1i, is equivalent to the following optimization problem:
minimizeˉρ(ˉρ=1ρ)s.t.{(a)[ˉρIIIP1i]≥0,(b)Eqs (3.1), or (3.16), or (3.19), or (3.23). | (3.27) |
Remark 6. The matrix inequalities in Theorems 1 and 2 contain only one non-convex scalar α>0, and these become LMIs by fixing the scalar α. The feasibility check of a matrix inequality having only one non-convex scalar parameter is numerically tractable, and a local optimum value of α can be found by fminsearch.m.
In this section, the validity of the main results derived above is illustrated by the following three examples.
Example 1. Consider system (2.1) with time-varying delays as follows:
{˙x(t)−Ci˙x(t−τ(t))=Aix(t)+Bix(t−h(t))+Diw(t),x(t0+θ)≡0,∀θ∈[−ρ∗,0], | (4.1) |
where wT(t)w(t)≤1. The parameters of system (4.1) are introduced as follows: A1=[−2−10−2], A2=[−300−2], A3=[−10−1−2], B1=[−1.20−1−1], B2=[−20−1.5−0.5], B3=[−100−1], C1=[0.1000.1], C2=[0.2000.2], C3=[0.3000.3], D1=[−0.130.15], D2=[−0.120.35], D3=[−0.20.3], h=τM=0.2, hd=0.1, hD=τD=0.75, τ(t)=h(t)=0.1+0.1sin(t), w(t)=sin(t).
According to the same method in [32], parameters for the three modes are chosen as i=1, a=2, b=1.8, λ11(δ)=−1.04δ0.8, λ12(δ)=0.52δ0.8, λ13(δ)=0.52δ0.8; i=2, a=3, b=1.8, λ22(δ)=−0.5δ0.8, λ21(δ)=0.25δ0.8, λ23(δ)=0.25δ0.8; i=3, a=4.5, b=1.8, λ33(δ)=−0.24δ0.8, λ31(δ)=0.12δ0.8, λ32(δ)=0.12δ0.8. Then, λij and lij can be obtained as in Remark 1, and the bounds of λij(δ) are denoted by the following two matrices:
λ_ij=[−1.40.70.70.4−0.80.40.10.1−0.2],ˉλij=[−2.61.31.31−210.70.7−1.4]. |
Moreover, the ˜λij are obtained by the same method as in [52], the details of which are as follows:
˜λij=[−1.60380.80190.80190.5333−1.06660.53330.35400.3540−0.7080]. |
By solving the optimization problem (3.27), the maximum value of ρ in different methods and the corresponding feasible matrices are obtained in Table 1. Using the LMIs toolbox to solve the theoretical results of Corollaries 1 and 2, the computational time is 3.9930 seconds and 3.8212 seconds.
α | ρ | P11 | P12 | P13 |
3.1 | 5.4430 | [52.100121.679721.679741.4409] | [35.85674.97694.976918.5069] | [14.14687.62047.620417.0268] |
1.4 | 5.3122 | [33.6548−5.5096−5.509617.0706] | [30.5665−4.2398−4.239821.0895] | [30.1417−5.2802−5.280221.3094] |
Figures 1 and 2 show a possible mode evolution and the reachable state from the origin of the neutral semi-Markovian jump system respectively. Figure 3 manifests that Corollary 1 is less conservative than Corollary 2. Simulation results are shown in Table 1, and it is not difficult to see from Figure 1 that the reachable set is in the intersection of ellipsoidal bounds, and thus both methods are valid.
Example 2. Consider the following semi-Markovian jump system studied in [32]:
{˙x(t)=Aix(t)+Diw(t),x(t0+θ)≡0,∀θ∈[−ρ∗,0], | (4.2) |
where A1=[01−10.88−2], A2=[01−8−2], D1=D2=[01], ωT(t)ω(t)≤ω2m=1.
By using Corollary 2 and solving the optimization problem (3.27), we can obtain ρ=1.9 when α=1.1. The corresponding results are obtained in Table 2. Figure 4 indicates the ellipsoidal boundaries of system (4.2), and it is evident that the results of Corollary 2 get significant improvement over those in [32].
α | ρ | P1 | P2 | Method |
1.1 | 1.9 | [20.73471.02261.02261.9975] | [20.73451.02261.02261.9975] | Corollary 2 |
0.9147 | 1.7101 | [17.27620.84290.84291.7557] | [13.58581.00781.00781.7956] | [32] |
Example 3. Consider the following uncertain neutral semi-Markovian jump systems (see Figure 5):
{˙x(t)−(Ci+LiK(t)E1i)˙x(t−τ(t))=(Ai+LiK(t)E2i)x(t)+(Bi+LiK(t)E3i)⋅x(t−h(t))+(Di+LiK(t)E4i)w(t),x(t0+θ)≡0,∀θ∈[−ρ∗,0], | (4.3) |
where L1=L2=L3=[0.1000.1], E11=E12=E13=[1001], E21=E31=E22=E32=E23=E33=[0000], E41=E42=E43=[0.10.1], ε1=ε2=ε3=1, K(t)=sin(t). The other parameters are introduced in Example 1.
The transition rate problem is solved using the expected technique in order to seek a less conservative boundary of the reachable set for uncertain systems, and the maximum value of ρ and the corresponding feasible matrices are obtained by finding the local optimal value of α. When α=0.5, ρ=13.2, and the corresponding feasible matrices are P11=[43.654826.261526.261537.7218], P12=[25.71368.74098.740922.6792], and P13=[24.78437.43607.436025.0682].
In this paper, the reachable set problem of neutral semi-Markovian jump systems with time-varying delays and uncertain neutral semi-Markovian jump systems is investigated. First, a novel and appropriate Lyapunov functional is constructed. Furthermore, its derivative is reduced by the improved integral inequality, and the reachable set boundary of the neutral semi-Markovian jump system under zero initial conditions is given by an ellipsoid in terms of LMIs. Finally, a numerical example is given to verify the effectiveness of the obtained results. Comparing the upper and lower bound method and the mathematical expectation method for dealing with the transition rate, we get the bound of the reachable set less conservatively.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research was supported by Natural Science Foundation Project of Guizhou Minzu University (No. GZMUZK[2023]YB12), Guizhou Provincial Science and Technology Projects (No. ZK[2021]016). The Natural Science Research Project of Department of Education of Guizhou Province (No. QJJ[2022]015; No. QJJ[2022]047). Doctoral Fund Project of Guizhou Minzu University (No. 2013(006)).
The authors declare no conflict of interest.
[1] | S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnam, Linear matrix inequalities in systems and control theory, SIAM, Philadelphia, PA, 1994. |
[2] |
J. H. Gillula, G. M. Hoffmann, H. Huang, M. P. Vitus, C. J. Tomlin, Applications of hybrid reachability analysis to robotic aerial vehicles, Int. J. Robot. Res., 30 (2011), 335–354. https://doi.org/10.1177/0278364910387173 doi: 10.1177/0278364910387173
![]() |
[3] |
F. Parise, M. E. Valcher, J. Lygeros, Computing the projected reachable set of stochastic biochemical reaction networks modeled by switched affine systems, IEEE T. Automat. Contr., 63 (2018), 3719–3734. https://doi.org/10.1109/TAC.2018.2798800 doi: 10.1109/TAC.2018.2798800
![]() |
[4] |
W. Lin, Z. Yang, Z. Ding, Reachable set estimation and safety verification of nonlinear systems via iterative sums of squares programming, J. Syst. Sci. Complex., 35 (2022), 1154–1172. https://doi.org/10.1007/s11424-022-1121-9 doi: 10.1007/s11424-022-1121-9
![]() |
[5] |
J. Wang, C. Yang, J. Xia, Z. G. Wu, H. Shen, Observer-based sliding mode control for networked fuzzy singularly perturbed systems under weighted try-once-discard protocol, IEEE T. Fuzzy Syst., 30 (2022), 1889–1899. http://dx.doi.org/10.1109/TFUZZ.2021.3070125 doi: 10.1109/TFUZZ.2021.3070125
![]() |
[6] |
H. Zhang, W. Li, J. Zhang, Y. Wang, J. Sun, Fully distributed dynamic event-triggered bipartite formation tracking for multiagent systems with multiple nonautonomous leaders, IEEE T. Neur. Net. Lear., 34 (2023), 7453–7466. http://dx.doi.org/10.1109/TNNLS.2022.3143867 doi: 10.1109/TNNLS.2022.3143867
![]() |
[7] |
H. Zhang, J. Zhang, Y. Cai, S. X. Sun, J. Y. Sun, Leader-following consensus for a class of nonlinear multiagent systems under event-triggered and edge-event triggered mechanisms, IEEE T. Cybernetics, 52 (2022), 7643–7654. http://dx.doi.org/10.1109/TCYB.2020.3035907 doi: 10.1109/TCYB.2020.3035907
![]() |
[8] |
J. Tian, S. Zhong, Y Wang, Improved exponential stability criteria for neural networks with time-varying delays, Neurocomputing, 97 (2012), 164–173. https://doi.org/10.1016/j.neucom.2012.05.018 doi: 10.1016/j.neucom.2012.05.018
![]() |
[9] |
C. K. Zhang, Y. He, L. Jiang, M. Wu, Q. G. Wang, An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay, Automatica, 85 (2017), 481–485. http://dx.doi.org/10.1016/j.automatica.2017.07.056 doi: 10.1016/j.automatica.2017.07.056
![]() |
[10] |
T. Zhao, B. Zhou, W. Michiels, Stability analysis of linear time-varying time-delay systems by non-quadratic Lyapunov functions with indefinite derivatives, Syst. Control Lett., 122 (2018), 77–85. http://dx.doi.org/10.1016/j.sysconle.2018.09.012 doi: 10.1016/j.sysconle.2018.09.012
![]() |
[11] |
S. Mondie, A. V. Egorov, M. A. Gomez, Stability conditions for time delay systems in terms of the Lyapunov matrix, IFAC-PapersOnLine, 51 (2018), 136–141. http://dx.doi.org/10.1016/j.ifacol.2018.07.212 doi: 10.1016/j.ifacol.2018.07.212
![]() |
[12] |
S. Luo, F. Deng, A note on delay-dependent stability of Itô-type stochastic time-delay systems, Automatica, 105 (2019), 443–447. http://dx.doi.org/10.1016/j.automatica.2019.03.005 doi: 10.1016/j.automatica.2019.03.005
![]() |
[13] |
Z. Y. Li, S. Shang, J. Lam, On stability of neutral-type linear stochastic time-delay systems with three different delays, Appl. Math. Comput., 360 (2019), 147–166. http://dx.doi.org/10.1016/j.amc.2019.04.070 doi: 10.1016/j.amc.2019.04.070
![]() |
[14] |
A. Aleksandrov, D. Efimov, Stability analysis of switched homogeneous time-delay systems under synchronous and asynchronous commutation, Nonlinear Anal.-Hybri., 42 (2021), 101090. http://dx.doi.org/10.1016/j.nahs.2021.101090 doi: 10.1016/j.nahs.2021.101090
![]() |
[15] |
K. Cui, Z. Song, S. Zhang, Stability of neutral-type neural network with Lévy noise and mixed time-varying delays, Chaos Soliton. Fract., 159 (2022), 112146. http://dx.doi.org/10.1016/j.chaos.2022.112146 doi: 10.1016/j.chaos.2022.112146
![]() |
[16] |
Y. Chen, J. Lam, B. Zhang, Estimation and synthesis of reachable set for switched linear systems, Automatica, 63 (2016), 63122–63132. https://doi.org/10.1016/j.automatica.2015.10.033 doi: 10.1016/j.automatica.2015.10.033
![]() |
[17] |
W. Xiang, H. D. Tran, T. T. Johnson, Output reachable set estimation for switched linear systems and its application in safety verification, IEEE T. Automat. Contr., 62 (2017), 5380–5387. https://doi.org/10.1109/TAC.2017.2692100 doi: 10.1109/TAC.2017.2692100
![]() |
[18] |
S. Baldi, W. Xiang, Reachable set estimation for switched linear systems with dwell-time switching, Nonlinear Anal.-Hybri., 29 (2018), 2920–2933. https://doi.org/10.1016/j.nahs.2017.12.004 doi: 10.1016/j.nahs.2017.12.004
![]() |
[19] |
J. Li, J. Zhao, Reachable set estimation for switched linear systems with state-dependent switching and bumpless transfer based event-triggered control, ISA T., 139 (2023), 179–190. https://doi.org/10.1016/j.isatra.2023.04.031 doi: 10.1016/j.isatra.2023.04.031
![]() |
[20] |
S. Jin, Y. Pang, X. Zhou, A. Y. Yan, W. Wang, W. B. Hu, Robust finite-Time control and reachable set estimation for uncertain switched neutral systems with time delays and input constraints, Appl. Math. Comput., 407 (2021), 126321. https://doi.org/10.1016/j.amc.2021.126321 doi: 10.1016/j.amc.2021.126321
![]() |
[21] | J. Huang, Y. Shi, Stochastic stability of semi-Markov jump linear systems: An LMI approach, In: 2011 50th IEEE conference on decision and control and european control conference, 2011, 4668–4673. http://dx.doi.org/10.1109/CDC.2011.6161313 |
[22] |
Y. Wei, J. H. Park, J. Qiu, L. G. Wu, Sliding mode control for semi-Markovian jump systems via output feedback, Automatica, 81 (2017), 133–141. http://dx.doi.org/10.1016/j.automatica.2017.03.032 doi: 10.1016/j.automatica.2017.03.032
![]() |
[23] |
M. Zhang, J. Huang, Y. Zhang, Stochastic stability and stabilization for stochastic differential semi-Markov jump systems with incremental quadratic constraints, Int. J. Robust Nonlin., 31 (2021), 6788–6809. https://doi.org/10.1002/rnc.5643 doi: 10.1002/rnc.5643
![]() |
[24] |
F. Li, L. Wu, P. Shi, Stochastic stability of semi-Markovian jump systems with mode-dependent delays, Int. J. Robust Nonlin., 24 (2014), 3317–3330. https://doi.org/10.1002/rnc.3057 doi: 10.1002/rnc.3057
![]() |
[25] |
H. Xiao, Q. Zhu, H. R. Karimi, Stability analysis of semi-Markov switching stochastic mode-dependent delay systems with unstable subsystems, Chaos Soliton. Fract., 165 (2022), 112791. https://doi.org/10.1016/j.chaos.2022.112791 doi: 10.1016/j.chaos.2022.112791
![]() |
[26] |
B. Wang, Q, Zhu, Stability analysis of discrete-time semi-Markov jump linear systems, IEEE T. Automat. Contr., 65 (2020), 5415–5421. https://doi.org/10.1109/TAC.2020.2977939 doi: 10.1109/TAC.2020.2977939
![]() |
[27] |
J. Huang, Y. Shi, Stochastic stability and robust stabilization of semi-Markov jump linear systems, Int. J. Robust Nonlin., 23 (2013), 2028–2043. https://doi.org/10.1002/rnc.2862 doi: 10.1002/rnc.2862
![]() |
[28] |
M. Zhang, J. Huang, G. Zong, X. Zhao, Y. Zhang, Observer design for semi-Markov jump systems with incremental quadratic constraints, J. Franklin I., 358 (2021), 5599–5622. https://doi.org/10.1016/j.jfranklin.2021.05.001 doi: 10.1016/j.jfranklin.2021.05.001
![]() |
[29] |
H. Xiao, Q. Zhu, H. R. Karimi, Stability analysis of semi-Markov switching stochastic mode-dependent delay systems with unstable subsystems, Chaos Soliton. Fract., 165 (2022), 112791. https://doi.org/10.1016/j.chaos.2022.112791 doi: 10.1016/j.chaos.2022.112791
![]() |
[30] |
J. Wang, Z. Chen, H. Shen, J. D. Cao, Fuzzy H∞ control of semi-Markov jump singularly perturbed nonlinear systems with partial information and actuator saturation, IEEE T. Fuzzy Syst., 31 (2023), 4374–4384. https://doi.org/10.1109/TFUZZ.2023.3284609 doi: 10.1109/TFUZZ.2023.3284609
![]() |
[31] |
S. Sun, X. Dai, R. Xi, Y. L. Cai, X. P. Xie, C. H. Zhang, Reachable set estimation for Itô stochastic semi-Markovian jump systems against multiple time delays, Int. J. Control Autom., 20 (2022), 2857–2867. https://doi.org/10.1007/s12555-021-0679-7 doi: 10.1007/s12555-021-0679-7
![]() |
[32] |
X. Ma, Y. Zhang, J. Huang, Reachable set estimation and synthesis for semi-Markov jump systems, Inform. Sci., 609 (2022), 376–386. https://doi.org/10.1016/j.ins.2022.07.069 doi: 10.1016/j.ins.2022.07.069
![]() |
[33] |
L. Zhang, B. Niu, N. Zhao, X. D. Zhao, Reachable set estimation of singular semi-Markov jump systems, J. Franklin I., 360 (2023), 12535–12551. https://doi.org/10.1016/j.jfranklin.2021.07.053 doi: 10.1016/j.jfranklin.2021.07.053
![]() |
[34] |
L. Zhang, Y. Cao, Z. Feng, N. Zhao, Reachable set synthesis for singular systems with time-varying delay via the adaptive event-triggered scheme, J. Franklin I., 359 (2022), 1503–1521. https://doi.org/10.1016/j.jfranklin.2021.11.032 doi: 10.1016/j.jfranklin.2021.11.032
![]() |
[35] |
H. Zhang, H. Ren, Y. F. Mu, J. Han, Optimal consensus control design for multiagent systems with multiple time delay using adaptive dynamic programming, IEEE T. Cybernetics, 52 (2022), 12832–12842. https://doi.org/10.1109/TCYB.2021.3090067 doi: 10.1109/TCYB.2021.3090067
![]() |
[36] |
C. Shen, S. Zhong, The ellipsoidal bound of reachable sets for linear neutral systems with disturbances, J. Franklin I., 348 (2011), 2570–2585. https://doi.org/10.1016/j.jfranklin.2011.07.017 doi: 10.1016/j.jfranklin.2011.07.017
![]() |
[37] |
J. Li, Q. Zhu, Stability of neutral stochastic delayed systems with switching and distributed-delay dependent impulses, Nonlinear Anal.-Hybri., 47 (2023), 101279. https://doi.org/10.1016/j.nahs.2022.101279 doi: 10.1016/j.nahs.2022.101279
![]() |
[38] | K. Q. Gu, An integral inequality in the stability problem of time-delay systems, In: Proceedings of the 39th IEEE conference on decision and control (Cat. No. 00CH37187), Sydney, NSW, Australia, 3 (2000), 2805–2810. https://doi.org/10.1109/CDC.2000.914233 |
[39] |
A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
![]() |
[40] |
P. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varing delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
![]() |
[41] |
P. G. Park, W. I. Lee, S. Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Franklin I., 352 (2015), 1378–1396. https://doi.org/10.1016/j.jfranklin.2015.01.004 doi: 10.1016/j.jfranklin.2015.01.004
![]() |
[42] |
F. Yang, J. He, J. Wang, M. Wang, Auxiliary‐function‐based double integral inequality approach to stability analysis of load frequency control systems with interval time‐varying delay, IET Control Theory A., 12 (2018), 601–612. https://doi.org/10.1049/iet-cta.2017.1187 doi: 10.1049/iet-cta.2017.1187
![]() |
[43] |
R. Manivannan, R. Samidurai, J. Cao, A. Alsaedi, F. E. Alsaadi, Stability analysis of interval time-varying delayed neural networks including neutral time-delay and leakage delay, Chaos Soliton. Fract., 114 (2018), 433–445. https://doi.org/10.1016/j.chaos.2018.07.041 doi: 10.1016/j.chaos.2018.07.041
![]() |
[44] |
R. Chen, M. Guo, S. Zhu, Y. Q. Qi, M. Wang, J. H. Hu, Reachable set bounding for linear systems with mixed delays and state constraints, Appl. Math. Comput., 425 (2022), 127085. https://doi.org/10.1016/j.amc.2022.127085 doi: 10.1016/j.amc.2022.127085
![]() |
[45] |
J. H. Lee, J. H. Kim, P. G. Park, A generalized multiple-integral inequality based on free matrices: Application to stability analysis of time-varying delay systems, Appl. Math. Comput., 430 (2022), 127288. https://doi.org/10.1016/j.amc.2022.127288 doi: 10.1016/j.amc.2022.127288
![]() |
[46] |
J. Tian, Z. Ren, S. Zhong, A new integral inequality and application to stability of time-delay systems, Appl. Math. Lett., 101 (2020), 106058. https://doi.org/10.1016/j.aml.2019.106058 doi: 10.1016/j.aml.2019.106058
![]() |
[47] |
H. Ren, G. Zong, L. Hou, Y. Yang, Finite-time resilient decentralized control for interconnected impulsive switched systems with neutral delay, ISA T., 67 (2017), 19–29. https://doi.org/10.1016/j.isatra.2017.01.013 doi: 10.1016/j.isatra.2017.01.013
![]() |
[48] |
M. Zheng, Y. Zhou, S. Yang, L. N. Li, Robust H∞ control of neutral system for sampled-data dynamic positioning ships, IMA J. Math. Control I., 36 (2019), 1325–1345. https://doi.org/10.1093/imamci/dny029 doi: 10.1093/imamci/dny029
![]() |
[49] |
Z. Zuo, Y. Wang, New stability criterion for a class of linear systems with time-varying delay and nonlinear perturbations, IEE P.-Contr. Theor. Ap., 153 (2006), 623–626. https://doi.org/10.1049/ip-cta:20045258 doi: 10.1049/ip-cta:20045258
![]() |
[50] |
X. G. Liu, M. Wu, R. Martin, Delay-dependent stability analysis for uncertain neutral systems with time-varying delays, Math. Comput. Simulat., 75 (2007), 15–27. https://doi.org/10.1016/j.matcom.2006.08.006 doi: 10.1016/j.matcom.2006.08.006
![]() |
[51] |
J. K. Tian, L. L. Xiong, J. X. Liu, X. J. Xie, Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay, Chaos Soliton. Fractal., 40 (2009), 1858–1866. https://doi.org/10.1016/j.chaos.2007.09.068 doi: 10.1016/j.chaos.2007.09.068
![]() |
[52] |
H. Shen, M. Chen, Z. G. Wu, J. D. Cao, J. H. Park, Reliable event-triggered asynchronous extended passive control for semi-Markov jump fuzzy systems and its application, IEEE T. Fuzzy Syst., 28 (2019), 1708–1722. https://doi.org/10.1109/TFUZZ.2019.2921264 doi: 10.1109/TFUZZ.2019.2921264
![]() |
[53] |
Z. Feng, J. Lam, On reachable set estimation of singular systems, Automatica, 52 (2015), 146–153. https://doi.org/10.1016/j.automatica.2014.11.007 doi: 10.1016/j.automatica.2014.11.007
![]() |
1. | Dongmei Xia, Kaiyuan Chen, Lin Sun, Guojin Qin, Research on reachable set boundary of neutral system with various types of disturbances, 2025, 20, 1932-6203, e0317398, 10.1371/journal.pone.0317398 |
α | ρ | P11 | P12 | P13 |
3.1 | 5.4430 | [52.100121.679721.679741.4409] | [35.85674.97694.976918.5069] | [14.14687.62047.620417.0268] |
1.4 | 5.3122 | [33.6548−5.5096−5.509617.0706] | [30.5665−4.2398−4.239821.0895] | [30.1417−5.2802−5.280221.3094] |
α | ρ | P11 | P12 | P13 |
3.1 | 5.4430 | [52.100121.679721.679741.4409] | [35.85674.97694.976918.5069] | [14.14687.62047.620417.0268] |
1.4 | 5.3122 | [33.6548−5.5096−5.509617.0706] | [30.5665−4.2398−4.239821.0895] | [30.1417−5.2802−5.280221.3094] |
α | ρ | P1 | P2 | Method |
1.1 | 1.9 | [20.73471.02261.02261.9975] | [20.73451.02261.02261.9975] | Corollary 2 |
0.9147 | 1.7101 | [17.27620.84290.84291.7557] | [13.58581.00781.00781.7956] | [32] |