Processing math: 73%
Research article

Existence and regularity results for critical (p,2)-Laplacian equation

  • In this paper, we study a class of (p,2)-Laplacian equation with Hartree-type nonlinearity and critical exponents. Under some general assumptions and based on variational tools, we establish the existence, regularity, and symmetry of nontrivial solutions for such a problem.

    Citation: Lixiong Wang, Ting Liu. Existence and regularity results for critical (p,2)-Laplacian equation[J]. AIMS Mathematics, 2024, 9(11): 30186-30213. doi: 10.3934/math.20241458

    Related Papers:

    [1] Hui Liang, Yueqiang Song, Baoling Yang . Some results for a supercritical Schrödinger-Poisson type system with (p,q)-Laplacian. AIMS Mathematics, 2024, 9(5): 13508-13521. doi: 10.3934/math.2024658
    [2] Yan Ning, Daowei Lu, Anmin Mao . Existence and subharmonicity of solutions for nonsmooth p-Laplacian systems. AIMS Mathematics, 2021, 6(10): 10947-10963. doi: 10.3934/math.2021636
    [3] Salim A. Messaoudi, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammed A. Al-Osta . A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior. AIMS Mathematics, 2023, 8(4): 7933-7966. doi: 10.3934/math.2023400
    [4] Zhiqiang Li . The finite time blow-up for Caputo-Hadamard fractional diffusion equation involving nonlinear memory. AIMS Mathematics, 2022, 7(7): 12913-12934. doi: 10.3934/math.2022715
    [5] Kun Cheng, Wentao Huang, Li Wang . Least energy sign-changing solution for a fractional p-Laplacian problem with exponential critical growth. AIMS Mathematics, 2022, 7(12): 20797-20822. doi: 10.3934/math.20221140
    [6] Mengyu Wang, Xinmin Qu, Huiqin Lu . Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity. AIMS Mathematics, 2021, 6(5): 5028-5039. doi: 10.3934/math.2021297
    [7] Paul Bracken . Applications of the lichnerowicz Laplacian to stress energy tensors. AIMS Mathematics, 2017, 2(3): 545-556. doi: 10.3934/Math.2017.2.545
    [8] Wangjin Yao . Variational approach to non-instantaneous impulsive differential equations with p-Laplacian operator. AIMS Mathematics, 2022, 7(9): 17269-17285. doi: 10.3934/math.2022951
    [9] Jinguo Zhang, Dengyun Yang, Yadong Wu . Existence results for a Kirchhoff-type equation involving fractional p(x)-Laplacian. AIMS Mathematics, 2021, 6(8): 8390-8403. doi: 10.3934/math.2021486
    [10] Ya-Lei Li, Da-Bin Wang, Jin-Long Zhang . Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity. AIMS Mathematics, 2020, 5(3): 2100-2112. doi: 10.3934/math.2020139
  • In this paper, we study a class of (p,2)-Laplacian equation with Hartree-type nonlinearity and critical exponents. Under some general assumptions and based on variational tools, we establish the existence, regularity, and symmetry of nontrivial solutions for such a problem.



    Let us consider the following critical (p,2)-Laplacian equation

    ΔpuΔu+u+|u|p2u=(IαF(u))f(u),  xRN, (1.1)

    where N3, 1<p<N, 0<α<N, and Δp is the p-Laplacian with Δp=(|u|p2u). Iα is the Riesz potential defined by

    Iα(x)=Γ(Nα2)2απN2Γ(N2)|x|Nα,  xRN{0}.

    Equation (1.1) is closely related to the following nonlocal quasilinear equation:

    Δpuμ(x)Δqu+|u|p2u+|u|q2u=(IαF(u))f(u),  xRN, (1.2)

    where 1<p,q<N and μ:RN[0,) is supposed to be Lipschitz continuous. The operator involved in (1.2) is the so-called double phase operator whose behavior switches between two different elliptic situations. The pioneering work to treat such operators comes from Zhikov [36,37], who introduced such classes to provide models of strongly anisotropic materials. For more details and recent works about double phase problems, we refer to [15,22].

    When N=3, p=q=2, μ=1, and F(u)=u2, then Eq (1.1) is the well-known Choquard equation:

    Δu+u=(Iα|u|2)u,  xR3. (1.3)

    Equation (1.3) appears in several physical models like the quantum theory of polarons [29], Hartree-Fock theory [18], and self-gravitating matter [30]. After the pioneer work of Lieb [18] and Lions [20], the existence of weak solutions for Choquard equations have been a fascinating topic in past decades. For more related work, we refer to [2,31] for the subcritical case, [8,13] for the upper critical case, [9,26] for the lower critical case, and [21,32] for the double critical case.

    When q=2p and μ=1, Eq (1.2) reduces to (1.1). It appears in many different disciplines of physics and has a wide range of applications, such as chemical reaction design [5], quantum field theory [4], biophysics [10], and plasma physics [33]. From a mathematical point of view, the main difficulty in (1.1) is the non-homogeneity of the operator ΔpΔ. For this reason, equations involving such operator or its variant have been received increasing attention from various authors. In particular, Gasiński-Papageorgiou [14] considered Eq (1.1) when the nonlinearity takes the following form:

    {ΔpuΔu=f(x,u),xΩ,u|Ω=0, (1.4)

    where p>2 and ΩRN is a bounded C2 domain. Under the assumption that f(x,u) exhibits asymmetric behaviour as u±, more precisely f(x,u) is superlinear in the positive direction (without satisfying the Ambrosetti-Rabinowitz condition) and sublinear resonant in the negative direction, the authors obtained the existence and multiplicity results of (1.4) via variational tools and Morse theory methods. Later, Papageorgiou-Rădulescu-Repovš [28] imposed certain assumptions on f(x,u) to make it double resonant at both ± and 0. By virtue of variational tools and critical groups, the authors obtained the existence and multiplicity results of (1.4).

    In [27], the authors considered the following Dirichlet problem:

    {ΔpuΔu=λ|u|p2u+f(x,u),xΩ,u|Ω=0, (1.5)

    where p>2, λ>0, ΩRN with a C2 boundary, and f(x,u) is a Carathéodory function. Based on critical point theory, together with suitable truncation and comparison techniques, Papageorgiou-Rădulescu-Repovš [27] obtained the existence and multiplicity results of (1.5) when λ is near the principal eigenvalue λ1(p)>0 of (Δp,W1,p0(Ω)). Subsequently, their work was extended by Bhattacharya-Emamizadeh-Farjudian [6] to the case of 1<p<2. By applying the fibering method and spectrum analysis, a priori bounds and regularity results of (1.5) were investigated. Moameni-Wong [24] studied the case of f(x,u) in (1.5) satisfying supercritical growth. By using a variational principle on convex subsets of a Banach space, the authors proved the existence of at least one nontrivial solution of (1.5). Equation (1.5) with Neumann boundary condition (uν=0) has been considered recently in Mihăilescu [23]. The authors showed that the eigenvalue set of this problem consists of 0 and an unbounded open interval from the first eigenvalue of ΔpΔ (p>2) to infinity. After that, Fărcăşeanu et al. [12] extended the results in [23] to 0<p<2 by means of the determination of a critical point on the Nehari manifold [3]. For more results related to the (p,2)-Laplacian equation, one can refer to [1,16]

    Recently, Moroz-Van Schaftingen [25] established the W2,qloc(RN) regularity (q>1) and Pohožaev identity of weak solutions for the following generalized Choquard equation:

    Δu+u=(IαF(u))f(u),  xRN, (1.6)

    where N3, α(0,N), and F satisfies the subcritical Berestycki-Lions type condition, namely:

    (H1) There exists t0R{0} such that F(t0)0, where F:tRt0f(ζ)dζ.

    (H2) There exists C>0 such that for every tR, |tf(t)|C(|t|N+αN+|t|N+αN2).

    (H3)

    limt0F(t)|t|N+αN=0  and  limtF(t)|t|N+αN2=0.

    Li-Ma [17] studied Eq (1.6) with a perturbation. By virtue of the subcritical approximation and the Pohožaev constraint method, they obtained the regularity and Pohožaev identity of weak solutions. Cassani-Du-Liu [7] studied Eq (1.6) with N=2 and Iα=ln1|x|. By using an asymptotic approximation approach, the existence of positive solutions of (1.6) is obtained.

    Up to our knowledge, no results have been reported regarding the existence and regularity of weak solutions for the (p,2)-Laplacian equation with critical Hartree-type nonlinearity. Inspired by the above cited results, the main objective of this paper is to fill this gap. The novelty of this paper lies in two aspects. On one hand, due to the existence of the (p,2)-Laplacian operator, problem (1.1) becomes non-homogeneous. Therefore, the method used in [25] is invalid. To overcome this difficulty, we introduce some new ideas and establish new estimates to improve the integrability of weak solutions of Eq (1.1). On the other hand, we are the first to consider a class of (p,2)-Laplacian equation with critical Hartree-type nonlinearity.

    Before we present our results, we suppose that f satisfies the following conditions:

    (F1) There exists C>0 such that for every tR, |tf(t)|C(|t|2α+|t|2α), where 2α=N+αN and 2α=N+αN2.

    (F2) F(u)=12α|u|2α+λ2α|u|2α.

    Now we can formulate our main results in this paper.

    Theorem 1.1. Let N3, 1<p<N, 0<α<N, and condition (F1) holds. If u is a nontrivial solution of Eq (1.1), then

    (i) uLq(RN) for any q[2,];

    (ii) the following Pohožaev identity holds:

    N22u2D1,2(RN)+N2u2L2(RN)+NppupD1,p(RN)+NpupLp(RN)=N+α2RN(IαF(u))F(u)dx.

    Theorem 1.2. Let N3, 1<p<N, 0<α<N, and condition (F2) hold. Then, there exists Λ>0 such that for any λ(0,Λ), Eq (1.1) possesses a nonnegative radially symmetric ground state solution, where

    Λ=2α(α+2)2α12(N2)12(N+α)N+αα(N2)S2α22α2α12[N(2α)2]2α12(2α1)S2α(2α1)2(2α1)1.

    At the end of this section, we outline our method. We introduce this into two parts.

    Regularity: First, by applying the Minty-Browder theorem [11] and the decomposition of Riesz potential, we improve the integrability of weak solutions to Eq (1.1). Then, under a different range of 2α, we use two different iteration approaches to establish an L(RN) estimate for weak solutions of Eq (1.1). As a result, the Pohožaev identity of Eq (1.1) is established.

    Existence: With delicate analysis and optimal range of λ, we give an exact estimate of the minimum on the Pohožaev manifold. Using this fact, one can show that the minimizing sequences in Pohožaev manifold are non-vanishing in L2(RN) and L2(RN). This, together with a compactness lemma (see Proposition 2.2), the existence of ground state solutions of Eq (1.1) is obtained. Finally, we prove these ground solutions are radially symmetric.

    This paper is organized as follows. In Section 2, we introduce some basic notations and technical lemmas. In Section 3, we study the regularity of weak solutions and Pohožaev identity of Eq (1.1). In Section 4, we study the existence and symmetry of ground state solutions of Eq (1.1).

    In this section, we give some definitions and results which will be used later. C, Ci(i=1,2,) denote positive constants which can be changed line by line. Let X be a Banach space, and use Xrad to denote the radial subspace of X.

    In this work, our working space can be defined by

    E=H1(RN)W1,p(RN)

    equipped with the norm

    uE=uH1(RN)+uW1,p(RN).

    Proposition 2.1. ([19]) Let s,t>1, and α(0,N) with 1s+1t=1+αN. Then, there exists C(N,α,s,t)>0 such that for any uLs(RN) and vLt(RN),

    |RNRNu(x)v(y)|xy|Nαdxdy|C(N,α,s,t)uLs(RN)vLt(RN).

    If s=t=2NN+α, then C(N,α,s,t)=CN,α=πNα2Γ(α2)Γ(N+α2)[Γ(N2)Γ(N)]αN.

    Proposition 2.2. ([34]) Let N3, and {un}E be any bounded sequence satisfying

    limnRN|un|2dx>0  and  limnRN|un|2dx>0.

    Then, the sequence {un} converges weakly and a.e. to u0 in L2loc(RN).

    The following inequalities can be viewed as a consequence of Proposition 2.1, which is useful in the following estimation:

    S1[RN(Iα|u|2α)|u|2αdx]12αu2L2(RN),  uL2(RN) (2.1)

    and

    S2[RN(Iα|u|2α)|u|2αdx]12αu2D1,2(RN),  uD1,2(RN), (2.2)

    where S1 and S2 are the embedding constants.

    Lemma 2.1. For any x,yRN, the following assertions are valid:

    (i) If 1<p<2, then

    |xy|2(|x|+|y|)2pC(|x|p2x|y|p2y)(xy);||x|p2x|y|p2y|C|xy|p1.

    (ii) If 2p<, then

    |xy|pC(|x|p2x|y|p2y)(xy);||x|p2x|y|p2y|C(|x|+|y|)p2|xy|.

    In this section, we study the regularity of weak solutions of Eq (1.1).

    Lemma 3.1. ([25]) Let q,r,w,t[1,) and ζ[0,2] such that

    1+αN1w1t=ζq+2ζr.

    If μ(0,2) satisfies

    min(q,r)(αN1w)<μ<max(q,r)(11w),min(q,r)(αN1t)<2μ<max(q,r)(11t),

    then for every HLw(RN), KLt(RN), and uLq(RN)Lr(RN),

    RN(Iα(H|u|μ))G|u|2μdxC(RN|H|wdx)1w(RN|G|tdx)1t(RN|u|qdx)ζq(RN|u|rdx)2ζr.

    Similar to the proof of [25, Lemma 3.2], we get the following lemma without proof.

    Lemma 3.2. Let N3, 0<α<N, and 0<θ<2. If H,GL2Nα(RN)+L2Nα+2(RN), and αN<θ<2, then for every ϵ>0 there exists Cϵ,θR such that, for every uE,

    RN[Iα(H|u|θ)]G|u|2θdxϵ2u2D1,2(RN)+Cϵ,θu2L2(RN).

    Proposition 3.1. ([11]) Let X be a reflexive Banach space. Let Φ be a (nonlinear) continuous mapping from X into its dual space X1 such that

    (i) ΦuΦv,uv>0,  u,vX,uv{;

    (ii) limuXΦu,uuX=+.

    Then, for every gX1, there exists a unique uX such that Φu=g.

    Lemma 3.3. Let

    Φu,v=RNuvdx+RN|u|p2uvdx+τRNuvdx+RN|u|p2uvdxRN(IαHu)Gvdx,  u,vE. (3.1)

    Then, Φ satisfies the following conditions:

    (i) ΦuΦv,uv>0,  u,vE,uv;

    (ii) limuEΦu,uuE=+.

    Proof. Under direct calculation, we can compute

    Φ(u)Φ(v),uv=uv2D1,2(RN)+τuv2L2(RN)+RN(|u|p2u|v|p2v)(uv)dx+RN(|u|p2u|v|p2v)(uv)dxRN[IαH(uv)]G(uv)dx.

    Now, we give the verifications of (i)(ii). By Lemma 2.1, we have that for 1<p<2,

    RN(|u|p2u|v|p2v)(uv)dx+RN(|u|p2u|v|p2v)(uv)dxC{[RN(|u|p2u|v|p2v)(uv)dx][RN(|u|p+|v|p)dx]2pp+[RN(|u|p2u|v|p2v)(uv)dx][RN(|u|p+|v|p)dx]2pp}C{[RN|(|u|p2u|v|p2v)(uv)|p2(|u|2p+|v|2p)p2dx]2p+[RN|(|u|p2u|v|p2v)(uv)|p2(|u|2p+|v|2p)p2dx]2p}C{[RN|(|u|p2u|v|p2v)(uv)|p2(u+v)p(2p)2dx]2p+[RN|(|u|p2u|v|p2v)(uv)|p2(u+v)p(2p)2dx]2p}C[(RN|(uv)|pdx)2p+(RN|uv|pdx)2p], (3.2)

    and for 2p<,

    RN(|u|p2u|v|p2v)(uv)dx+RN(|u|p2u|v|p2v)(uv)dxC(RN|(uv)|pdx+RN|uv|pdx). (3.3)

    Combining (3.2) and (3.3), for p(1,) there exists C>0 such that

    RN(|u|p2u|v|p2v)(uv)dx+RN(|u|p2u|v|p2v)(uv)dxC(RN|(uv)|pdx+RN|uv|pdx). (3.4)

    In view of Lemma 3.2 with θ=1, there exists τ>0 such that for each vE, we have

    RN(IαG|v|)H|v|dx12RN|v|2dx+τ2RN|v|2dx. (3.5)

    Taking this together with (3.4) and (3.5), we obtain

    ΦuΦφ,uφ12uφ2D1,2(RN)+τ2uφ2L2(RN)+C(uφpD1,p(RN)+uφpLp(RN))>0.

    So, condition (i) follows. By Lemma 3.2, it is easy to verify condition (ii). The proof is complete.

    Lemma 3.4. Suppose that H,GL2Nα(RN)+L2Nα+2(RN) and uE solve

    ΔpuΔu+u+|u|p2u=(IαHu)G. (3.6)

    Then, uLq(RN) for each q[2,2Nα].

    Proof. Using Lemma 3.2 with θ=1, there exists τ>0 such that, for every φE,

    RN(Iα|Hφ|)|Gφ|dx12φ2D1,2(RN)+τ2φ2L2(RN). (3.7)

    Let sequences {Hn},{Gn}L2Nα(RN) such that |Hn||H| and |Gn||G|, and HnH and GnG almost everywhere in RN. In what follows, we claim that there exists a unique solution unE satisfying

    ΔpunΔun+τun+|un|p2un=[Iα(Hnun)]Gn+(τ1)u, (3.8)

    where uE is the given solution of (3.6). The duality is given in this case by

    Ψu,φ=RNuφdx+RN|u|p2uφdx+τRNuφdx+RN|u|p2uφdxRN(IαHu)Gφdx,  u,φE. (3.9)

    In view of Lemma 3.3, it is easy to verify that Ψ satisfies all the conditions described in Proposition 3.1. Applying Proposition 3.1 with g(u)=(τ1)u, we get the desired results.

    Moreover, we also claim that the sequence {un} converges weakly to u in E as n. Multiplying both sides of (3.8) by un and integrating it over RN, then

    un2D1,2(RN)+τun2L2(RN)+unpD1,p(RN)+unpLp(RN)=RN[Iα(Hnun)]Gnundx+(τ1)RNunudx.

    Combining this with (3.7), the Hölder inequality, and the Young inequality, one has

    12un2D1,2(RN)+τ2un2L2(RN)+unpD1,p(RN)+unpLp(RN)(τ1)(RN|un|2dx)12(RN|u|2dx)12τ12(un2L2(RN)+u2L2(RN)).

    By this, we obtain

    un2H1(RN)+unpW1,p(RN)Cu2L2(RN), (3.10)

    which implies that {un} is bounded in E. Then, there exists ˜uE such that un˜u in E and un˜u almost everywhere in RN. By HnL2Nα+2(RN), it is easy to verify Hnun is bounded in L2NN+α(RN). Hence, we get HnunH˜u in L2NN+α(RN). Moreover, for any φC0(RN), by |Gn||G| and the Lebesgue dominated convergence theorem, we can deduce GnφGφ in L2NN+α(RN). Then, we have

    RN[Iα(Hnun)]GnφdxRN[Iα(H˜u)]Gφdx,  φC0(RN).

    Thus, ˜u is a weak solution of

    Δp˜uΔ˜u+τ˜u+|˜u|p2˜u=[Iα(H˜u)]G+(τ1)u. (3.11)

    By Proposition 3.1, we know that Eq (3.11) admits a unique solution. Then, u=˜u.

    For θ>0, we define the truncation un,θ:RNR by

    un,θ(x)={θ,unθ,un,θ<un<θ,θ,unθ.

    For any q>2, it is easy to check |un,θ|q2un,θE. Taking |un,θ|q2un,θE as a test function in Eq (3.8), we can see that

    RNun(|un,θ|q2un,θ)dx+τRN||un,θ|q2|2dxRNun(|un,θ|q2un,θ)dx+RN|un|p2un(|un,θ|q2un,θ)dx+τRN|un,θ|q2un,θundx+RN|un,θ|q2un,θ|un|p2undx=RN[Iα(Hnun)](Gn|un,θ|q2un,θ)dx+(τ1)RN|un,θ|q2un,θundx.

    Applying Lemma 3.2 with θ=2q, where q[2,2Nα), there then exists C>0 such that

    RN[Iα|Hnun,θ|](|Gn||un,θ|q2un,θ)dxRN[Iα(|H||un,θ|)](|G||un,θ|q1)dx2(q1)q2RN|(|un|q2)|2dx+CRN||un,θ|q2|2dx.

    Taking this together with the above two chain of inequalities and making use of the Hölder inequality and the Young inequality, we can infer

    RN|(|un|q2)|2dxCRN(|un|q+|u|q)dx+C{|un|>θ}[Iα(|Hnun|)](|Gn||un|q1)dx. (3.12)

    By q[2,2Nα) and Proposition 2.1, then

    {|un|>θ}[Iα(|Hnun|)](|Gn||un|q1)dxC(RN|Hnun|sdx)1s(RN||Gn||un|q1|tdx)1t,

    with 1s=N+α2N12+1q and 1t=N+α2N+121q.

    Using the fact that unLq(RN) and Hn,GnL2Nα(RN), we get |Hnun|Ls(RN) and |Gn||un|q1Lt(RN). By applying the Lebesgue dominated convergence theorem, we have

    limθ{|un|>θ}[Iα(|Hnun|)](|Gn||un|q1)dx=0.

    Inserting this into (3.12) and taking θ, by the Sobolev embedding theorem we can deduce

    (RN|un|qNN2dx)N2NCRN(|un|q+|u|q)dx. (3.13)

    Taking into account (3.10), (3.13), and the Fatou lemma, we get that

    (RN|u|qNN2dx)N2NCRN|u|qdx, (3.14)

    which means that uLq(RN) for any q[2,2Nα]. The proof is complete.

    Lemma 3.5. ([19]) Let 1s, gLt1(RN), and hLt2(RN). Then, there exists C>0 such that

    ghLs(RN)CgLt1(RN)hLt2(RN),

    where

    1t1+1t2=1+1s.

    Lemma 3.6. Suppose that all the conditions described in Theorem 1.1 are satisfied. Let uE be a nontrivial solution of Eq (1.1). Then,

    IαF(u)L(RN)C

    Proof. In view of Lemma 3.4, we obtain uLq(RN) for every q[2,2Nα]. By condition (F1), one can infer F(u)L˜p(RN) for every ˜p[2NN+α,2N2α(N+α)].

    Fixing ϵ(0,αN2N+α), Iα can be decomposed as

    Iα=I1α+I2α,

    where I1αLNϵNα(RN) and I2αLN+ϵNα(RN). Let s= in Lemma 3.5. It follows from I1αLNϵNα(RN) that

    I1αF(u)L(RN)CI1αLNϵNα(RN)F(u)LNϵαϵ(RN). (3.15)

    Similar to (3.15), by I2αLN+ϵNα(RN) we can infer that

    I2αF(u)L(RN)CI2αLN+ϵNα(RN)F(u)LN+ϵα+ϵ(RN). (3.16)

    In view of ϵ(0,αN2N+α), we derive

    2NN+α<N+ϵα+ϵ<Nϵαϵ<2N2α(N+α). (3.17)

    It follows from (3.15)–(3.17) that

    I1αF(u)L(RN)  and  I2αF(u)L(RN).

    The proof is completed.

    Lemma 3.7. Suppose that all the conditions described in Theorem 1.1 are satisfied. Let uE be a nontrivial solution of Eq (1.1). For each L>2, define

    uL(x)={L,u(x)<L;u(x),|u(x)|L;L,u(x)>L.

    For τ>1, we set ˜uL=uu2(τ1)L. Then, for any s[2,2], we have

    (RN|uuτ1L|sdx)2sCτ2(RNu2α2|uuτ1L|2dx+RNu2α2|uuτ1L|2dx).

    Proof. Multiplying both sides of Eq (1.1) by ˜uL and integrating, it follows that

    RNu˜uLdx+RNu˜uLdx+RN|u|p2u˜uLdx+RN|u|p2u˜uLdx=RN(IαF(u))f(u)˜uLdx.

    Combining the above relation with Lemma 3.6, this leads to

    (RN|uuτ1L|sdx)2sC[RN|(uuτ1L)|2dx+RNu˜uLdx]Cτ2(RNu2α2|uuτ1L|2dx+RNu2α2|uuτ1L|2dx).

    The proof is completed.

    We now are ready to establish Theorem 1.1.

    Proof of Theorem 1.1. (ⅰ) (L estimate) We consider the following two cases separately.

    Case 1. 2α2N4+α.

    In this case, we should keep in mind that τ=22.

    Step 1. Clearly, we have

    2<2α+2(τ1)<2α+2(τ1)<2Nα.

    In view of Lemma 3.4, we have uLq(RN) for any q[2,2Nα]. That is,

    RNu2α2|uuτ1L|2dx<  and  RNu2α2|uuτ1L|2dx<.

    For any 0<R<, we set

    Bτ=RNu2α2|uuτ1L|2dx={uR}u2α2|uuτ1L|2dx+{u>R}u2α2|uuτ1L|2dx=Bτ(R)+Bcτ(R)

    and

    ˜Bτ=RNu2α2|uuτ1L|2dx={uR}u2α2|uuτ1L|2dx+{u>R}u2α2|uuτ1L|2dx=˜Bτ(R)+˜Bcτ(R).

    Obviously, we have

    limRBτ(R)=Bτ,  limR0Bτ(R)=0

    and

    limR˜Bτ(R)=˜Bτ,  limR0˜Bτ(R)=0.

    Clearly, if it holds that Bτ=Bτ(R) or ˜Bτ=˜Bτ(R), then we have uL(RN). This completes our proof. To this end, we just need to consider the following case

    Bτ(R)<Bτ  and  ˜Bτ(R)<˜Bτ.

    Without loss of generality, we set R=1. Then, there exist 0<C1,˜C1< such that

    Bτ(1)=C1Bτ  and  ˜Bτ(1)=˜C1˜Bτ. (3.18)

    From 2α<2, we deduce

    Bcτ(1)={u>1}u2α2|uuτ1L|2dx{u>1}|uuτ1L|2dx.

    It follows from (3.18) that

    Bτ=Bτ(1)+Bcτ(1)=11C1Bcτ(1)11C1{u>1}|uuτ1L|2dx. (3.19)

    Similarly, one can infer

    ˜Bτ=˜Bτ(1)+˜Bcτ(1)=11˜C1˜Bcτ(1)11˜C1{u>1}|uuτ1L|2dx. (3.20)

    Combining (3.19), (3.20), and Lemma 3.7, we obtain

    (RN|uuτ1L|sdx)2s(C1C1+C1˜C1)RN|uuτ1L|2dx.

    Let L in the above expression. Then,

    (RN|u|sτdx)2s(C1C1+C1˜C1)RN|u|2τdx. (3.21)

    By τ=22, we have

    uL2s2(RN)(C1C1+C1˜C1)12uL2(RN)<.

    Since s[2,2], we get uLp1(RN), where p1[2,(2)22].

    Step 2. Obviously, we have

    2<2α+2(τ21)<2α+2(τ21)<(2)22

    and for Bτ and ˜Bτ, we have

    Bτ2<  and  ˜Bτ2<.

    Similar to Step 1, we just need to show the case

    Bτ2(1)<Bτ2  and  ˜Bτ2(1)<˜Bτ2.

    Moreover, we have

    Bτ(1)={u1}u2α2|uuτ1L|2dx{u1}u2α2|uuτ1L(uτ2τL)|2dx=Bτ2(1) (3.22)

    and

    Bcτ(1)={u>1}u2α2|uuτ1L|2dx{u>1}u2α2|uuτ1L(uτ2τL)|2dx=Bcτ2(1). (3.23)

    In view of (3.19), (3.20), (3.22), and (3.23), it follows that

    Bτ2(1)Bτ(1)=C11C1Bcτ(1)C11C1Bcτ2(1),

    which implies

    Bτ211C1{u>1}|uuτ21L|2dx.

    Similarly, we have

    ˜Bτ211˜C1{u>1}|uuτ21L|2dx.

    Taking L and making use of Lemma 3.7 again, we get

    uLs(22)2(RN)(C1C1+C1˜C1)12(22)2uL(2)22(RN)<,

    which implies uLp2(RN), where p2[2,2s(2s2)2].

    Step 3. Iterating the above procedure, for any nN we conclude

    uLs(22)n(RN)(C1C1+C1˜C1)12(22)nuL(2)n2n1(RN).

    Let s=2. Then,

    uL(2)n+12n(RN)(C1C1+C1˜C1)ni=112(22)iuL2(RN). (3.24)

    Obviously, we have

    limi2(22)i2(22)i+1=22<1.

    This means that the series ni=112(22)i converges absolutely.

    Let n in (3.24). Then, it holds that

    uL(RN)CuL2(RN)<.

    Case 2. 2α>2N<4+α.

    Step 1. Let τ1[1+22α2,1+2Nα2α2]. Then, we claim

    (1+RN|u|2ατ1dx)22α(τ11)<. (3.25)

    By the definition of uL, we obtain

    RN|u|2α2|uuτ11L|2dxRN|u|2α+2(τ11)dx.

    Let l>0 be chosen later. By the Hölder inequality, we have

    RNu2α2|uuτ11L|2dxl2α2α{ul}u2α2|uuτ11L|2dx+{u>l}u2α2|uuτ11L|2dxl2α2αRN|u|2α+2(τ11)dx+({u>l}|u|2αdx)2α22α(RN|uuτ11L|2αdx)22α.

    By 2α[2,2Nα], we can choose suitable l>0 such that

    ({u>l}|u|2αdx)2α22α12Cτ21.

    It follows from the inequalities and Lemma 3.7 that

    (RN|uuτ11L|2αdx)22α2Cτ21(RNu2α2|uuτ11L|2dx+l2α2αRN|u|2α+2(τ11)dx).

    Let L. The above inequality becomes

    (RN|u|2ατ1dx)22α2Cτ21(1+l2α2α)RN|u|2α+2(τ11)dx. (3.26)

    In view of 2α+2(τ11)[2,2Nα] and (3.26), we conclude (3.25).

    Step 2. Let τ2=1+2α2(τ11). We claim

    (1+RN|u|2ατ2dx)22α(τ21)(Cτ2)2τ21(1+RN|u|2ατ1dx)22α(τ11).

    We choose τ[τ1,τ2]. Then,

    22α+2(τ1)<2α+2(τ1)2ατ1.

    Combining (3.25) and Lemma 3.7, we obtain

    (RN|u|2ατdx)22αCτ2(RN|u|2α+2(τ1)dx+RN|u|2α+2(τ1)dx)<. (3.27)

    Let τ=τ2 in (3.27). Then,

    (RN|u|2ατ2dx)22αCτ22(RN|u|2α+2(τ21)dx+RN|u|2α+2(τ21)dx)<.

    Making use of the Young inequality, it holds that

    RN|u|2α+2(τ21)dx=RN|u|a|u|bdxa2αRN|u|2αdx+2αa2αRN|u|2α+2(τ21)dxC(1+RN|u|2α+2(τ21)dx),

    where a=2α(2α2α)2(τ21) and b=2α+2(τ21)2α(2α2α)2(τ21). Thus, we get

    (RN|u|2ατ2dx)22αCτ22(1+RN|u|2α+2(τ21)dx).

    Moreover, by 22α<1, it is easy to observe

    (x1+x2)22αx22α1+x22α2,  x1,x2>0.

    Then,

    (1+RN|u|2ατ2dx)22α1+(RN|u|2ατ2dx)22αCτ22(1+RN|u|2α+2(τ21)dx),

    which implies

    (1+RN|u|2ατ2dx)22α(τ21)(Cτ2)2τ21(1+RN|u|2ατ1dx)1τ21=(Cτ2)2τ21(1+RN|u|2ατ1dx)22α(τ11).

    Step 3. We iterate the above procedure and set

    τi+11=2α2(τi1),  i1  and  iN. (3.28)

    Then,

    (1+RN|u|2ατi+1dx)22α(τi+11)(Cτi+1)2τi+11(1+RN|u|2ατidx)22α(τi1),

    which further gives

    (RN|u|2ατn+1dx)22α(τn+11)(1+RN|u|2ατn+1dx)22α(τn+11)ni=1(Cτi+1)2τi+11(1+RN|u|2ατ1dx)22α(τ11).

    This yields that

    uL2ατn+1(RN)[ni=1(Cτi+1)2τi+11(1+RN|u|2ατ1dx)22α(τ11)]τn+112τn+1. (3.29)

    According to (3.28), we deduce

    τn+1=1+(2α2)n(τ11). (3.30)

    Taking into account (3.29) and (3.30), it follows that

    uL2ατn+1(RN)[ni=1(Cτi+1)2τi+11(1+RN|u|2ατ1dx)22α(τ11)](2α)n(τ11)2[2n+(2α)n(τ11)]. (3.31)

    By a straightforward calculation, we can infer

    limnni=1(Cτi+1)2τi+11=limne2ni=1(lnCτi+11+lnτi+1τi+11). (3.32)

    For the series i=1lnCτi+11, we have

    limiilnCτi+11=limii2ilnC(2α)i(τ11)=22α<1. (3.33)

    This means i=1lnCτi+11 converges absolutely.

    For the series i=1lnτi+1τi+11, it follows that

    limilnτi+2τi+21τi+11lnτi+1=22αlimiln[1+2α2(τi+11)]lnτi+122αlimiln[2α2+2α2(τi+11)]lnτi+1=22αlimi(ln2α2lnτi+1+lnτi+1lnτi+1)<1, (3.34)

    which implies i=1lnτi+1τi+11 converges absolutely.

    Together with (3.32)–(3.34), we conclude i=1(Cτi+1)2τi+11<. Letting n in (3.31), we obtain

    uL(RN)<.

    (ⅱ) (Pohožaev indentity) Observe that, by uL(RN), Lemma 3.6, and condition (F1), there exists C>0 such that

    ΔpuΔu=u|u|p2u+(IαF(u))f(u)C(|u|2α2u+|u|2α2u).

    Set l(u)=C(|u|2α2u+|u|2α2u). By a classical bootstrapping argument for subcritical local problems in [33], we infer that uW2,qloc(RN) for every q1, and hence we have uC1,βloc(RN) for any 0<β<1 by the Sobolev embedding theorem. Under the classical strategy used in [25, Theorem 3], one can show that

    N22u2D1,2(RN)+N2u2L2(RN)+NppupD1,p(RN)+NpupLp(RN)=N+α2RN(IαF(u))F(u)dx.

    This completes the proof of Theorem 1.1.

    In this section, we prove Theorem 1.2 by virtue of the Pohožaev manifold method and a generalized version of a Lions-type theorem.

    Under condition (F2), Eq (1.1) turns into a (p,2)-Laplacian equation as follows:

    ΔpuΔu+u+|u|p2u=[Iα(12α|u|2α+λ2α|u|2α)](|u|2α2u+λ|u|2α2u),  xRN. (D)

    Then, the corresponding energy functional of Eq (D) can be defined as

    J(u)=12u2D1,2(RN)+12u2L2(RN)+1pupD1,p(RN)+1pupLp(RN)12(2α)2RN(Iα|u|2α)|u|2αdxλ22(2α)2RN(Iα|u|2α)|u|2αdxλ2α2αRN(Iα|u|2α)|u|2αdx.

    It is easy to check JC1(E,R). Obviously, the critical points of J are weak solutions of Eq (D) and satisfy the following Pohožaev identity:

    P(u)=N22u2D1,2(RN)+N2u2L2(RN)+NppupD1,p(RN)+NpupLp(RN)N+α2(2α)2RN(Iα|u|2α)|u|2αdxλ2(N+α)2(2α)2RN(Iα|u|2α)|u|2αdxλ(N+α)2α2αRN(Iα|u|2α)|u|2αdx.

    We define the Pohožaev manifold and its minimum as follows:

    \begin{equation*} \begin{aligned} \mathcal{P} = \left\{u\in E\backslash\{0\}\big|P(u) = 0 \right\} \ \ \mathrm{and} \ \ m = \inf\limits_{u\in\mathcal{P}}J(u). \end{aligned} \end{equation*}

    Lemma 4.1. Assume that all conditions described in Theorem 1.2 are satisfied. Let C_{1}, C_{2}, C_{3} > 0 . Define a function k:\mathbb{R}^{+}\to\mathbb{R} as

    \begin{equation*} \begin{aligned} k(t) = C_{1}t^{N-2}+C_{2}t^{N}+C_{3}t^{N-p}-C_{4}t^{N+\alpha}. \end{aligned} \end{equation*}

    Then, k(t) has a unique critical point which corresponds to its maximum.

    Proof. By the definition of k(\cdot) , we have

    \begin{equation*} \begin{aligned} k'(t) = C_{1}(N-2)t^{N-3}+C_{2}Nt^{N-1}+C_{3}(N-p)t^{N-p-1}-C_{4}(N+\alpha)t^{N+\alpha-1}. \end{aligned} \end{equation*}

    From the above expression, it is easy to see that k'(t) > 0 for t > 0 small, and k'(t) < 0 for t > 0 large. This yields that k(t) possesses at least one maximum point. Next, we claim that the maximun point corresponding to k(t) is unique. Otherwise, we suppose that there exists t_{1}\not = t_{2} > 0 such that

    \begin{equation*} \begin{aligned} k'(t_{1}) = C_{1}(N-2)t_{1}^{N-3}+C_{2}Nt_{1}^{N-1}+C_{3}(N-p)t_{1}^{N-p-1}-C_{4}(N+\alpha)t_{1}^{N+\alpha-1} = 0 \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} k'(t_{2}) = C_{1}(N-2)t_{2}^{N-3}+C_{2}Nt_{2}^{N-1}+C_{3}(N-p)t_{2}^{N-p-1}-C_{4}(N+\alpha)t_{2}^{N+\alpha-1} = 0. \end{aligned} \end{equation*}

    Combining the above two equalities, it holds that

    \begin{equation*} \begin{aligned} C_{1}(N-2)(t_{1}^{-2}-t_{2}^{-2})+C_{3}(N-p)(t_{1}^{-p}-t_{2}^{-p}) = C_{4}(N+\alpha)(t_{1}^{\alpha}-t_{2}^{\alpha}), \end{aligned} \end{equation*}

    which further gives t_{1} = t_{2} . The proof is complete.

    Lemma 4.2. Assume that all conditions described in Theorem 1.2 are satisfied. Then, for every u\in E , there exists a unique t_{u} > 0 such that P(u_{t_{u}}) = 0 , where u_{t} = u\left(\frac{x}{t}\right) . Moreover, J(u_{t_{u}}) = \max\limits_{t\geqslant 0} J(u_{t}) .

    Proof. For every u\in E\backslash\{0\} , one has

    \begin{equation*} \begin{aligned} J(u_{t}) = & \frac{t^{N-2}}{2} \|u\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{t^{N}}{2} \|u\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{t^{N-p}}{p} \|u\|_{D^{1, p}(\mathbb{R}^{N})}^{2} + \frac{t^{N}}{p} \|u\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{t^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|u|^{2_{\alpha}^{\sharp}}\bigr) |u|^{2_{\alpha}^{\sharp}} \mathrm{d}x - \frac{\lambda^{2}t^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|u|^{2_{\alpha}^{*}}\bigr) |u|^{2_{\alpha}^{*}} \mathrm{d}x \\&- \frac{\lambda t^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|u|^{2_{\alpha}^{\sharp}}\bigr) |u|^{2_{\alpha}^{*}} \mathrm{d}x \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} P(u_{t}) = & \frac{(N-2)t^{N-2}}{2} \|u\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{Nt^{N}}{2} \|u\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{(N-p)t^{N-p}}{p} \|u\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{Nt^{N}}{p} \|u\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{(N+\alpha)t^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|u|^{2_{\alpha}^{\sharp}}\bigr) |u|^{2_{\alpha}^{\sharp}} \mathrm{d}x - \frac{\lambda^{2}(N+\alpha)t^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|u|^{2_{\alpha}^{*}}\bigr) |u|^{2_{\alpha}^{*}} \mathrm{d}x \\&- \frac{\lambda(N+\alpha)t^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|u|^{2_{\alpha}^{\sharp}}\bigr) |u|^{2_{\alpha}^{*}} \mathrm{d}x. \end{aligned} \end{equation*}

    Combining the above two formulas, it is easy to see that P(u_{t}) = tJ'(u_{t}) = 0 . By Lemma 4.1, we complete the proof.

    Lemma 4.3. Suppose that all conditions described in Theorem 1.2 are satisfied. Then, m > 0 .

    Proof. For every u\in\mathcal{P} , it follows from Proposition 2.1 that

    \begin{equation*} \begin{aligned} &\frac{N-2}{2} \|u\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{N}{2} \|u\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{N-p}{p} \|u\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{N}{p} \|u\|_{L^{p}(\mathbb{R}^{N})}^{p} \\ = & \frac{N+\alpha}{2\cdot(2_{\alpha}^{\sharp})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u|^{2_{\alpha}^{\sharp}} \bigr)|u|^{2_{\alpha}^{\sharp}} \mathrm{d}x + \frac{\lambda^{2}(N+\alpha)}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u|^{2_{\alpha}^{\sharp}} \bigr)|u|^{2_{\alpha}^{*}} \mathrm{d}x \\&+ \frac{\lambda(N+\alpha)}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u|^{2_{\alpha}^{*}} \bigr)|u|^{2_{\alpha}^{*}} \mathrm{d}x \\\leqslant& C\|u\|_{E}^{2\cdot 2_{\alpha}^{\sharp}} + C\|u\|_{E}^{2_{\alpha}^{\sharp}+2_{\alpha}^{*}} + C\|u\|_{E}^{2\cdot 2_{\alpha}^{*}}, \end{aligned} \end{equation*}

    which implies that \|u\|_{E}\geqslant C . Then, it holds that

    \begin{equation} \begin{aligned} &J(u)-\frac{1}{N+\alpha}P(u) \\ = & \frac{\alpha+2}{2(N+\alpha)} \|u\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{\alpha}{2(N+\alpha)} \|u\|_{L^{2}(\mathbb{R}^{N})}^{2} \\{+}& \frac{\alpha+p}{p(N+\alpha)} \|u\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{\alpha}{p(N+\alpha)} \|u\|_{L^{p}(\mathbb{R}^{N})}^{p} \\\geqslant& C\|u\|_{E}^{2} > 0. \end{aligned} \end{equation} (4.1)

    The proof is complete.

    Lemma 4.4. Assume that all conditions described in Theorem 1.2 are satisfied. Then, we have

    \begin{equation*} \begin{aligned} 0 < m < m^{*} = & \min\left\{ \frac{\alpha}{2(N+\alpha)} \left[ \frac{N\cdot(2_{\alpha}^{\sharp})^{2}}{N+\alpha} \right] ^{\frac{1}{2_{\alpha}^{\sharp}-1}} \mathcal{S}_{1}^{\frac{2_{\alpha}^{\sharp}}{2_{\alpha}^{\sharp}-1}} , \frac{\alpha+2}{2(N+\alpha)}\left[ \frac{(2_{\alpha}^{*})^{2}(N-2)}{\lambda^{2}(N+\alpha)} \right] ^{\frac{1}{2_{\alpha}^{*}-1}} \mathcal{S}_{2}^{\frac{2_{\alpha}^{*}}{2_{\alpha}^{*}-1}} \right\}. \end{aligned} \end{equation*}

    Proof. From \lambda < \Lambda , we can easily get

    \begin{equation*} \begin{aligned} \frac{\alpha}{2(N+\alpha)} \left[ \frac{N\cdot(2_{\alpha}^{\sharp})^{2}}{N+\alpha} \right] ^{\frac{1}{2_{\alpha}^{\sharp}-1}} \mathcal{S}_{1}^{\frac{2_{\alpha}^{\sharp}}{2_{\alpha}^{\sharp}-1}} < \frac{\alpha+2}{2(N+\alpha)}\left[ \frac{(2_{\alpha}^{*})^{2}(N-2)}{\lambda^{2}(N+\alpha)} \right] ^{\frac{1}{2_{\alpha}^{*}-1}} \mathcal{S}_{2}^{\frac{2_{\alpha}^{*}}{2_{\alpha}^{*}-1}}, \end{aligned} \end{equation*}

    where \Lambda is defined in Threorem 1.2.

    The extremal function of inequalities (2.1) can be defined as

    \begin{equation*} \begin{aligned} \mu_{\sigma} = \frac{C\sigma^{\frac{N}{2}}}{(\sigma^{2}+|x|^{2})^{\frac{N}{2}}}. \end{aligned} \end{equation*}

    Let t_{\sigma} > 0 satisfy

    \begin{equation*} \begin{aligned} J\bigl((\mu_{\sigma})_{t_{\sigma}}\bigr) = \max\limits_{t > 0}J\bigl((\mu_{\sigma})_{t}\bigr). \end{aligned} \end{equation*}

    By the definition of m , it is easy to see that

    \begin{equation*} \begin{aligned} 0 < m < J\bigl((\mu_{\sigma})_{t_{\sigma}}\bigr). \end{aligned} \end{equation*}

    A straightforward calculation shows that

    \begin{equation*} \begin{aligned} \|\mu_{\sigma}\|_{L^{2}(\mathbb{R}^{N})}^{2} = \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} = \int_{\mathbb{R}^{N}} \bigl(I_\alpha * |\mu_{1}|^{2_{\alpha}^{\sharp}}\bigr) |\mu_{1}|^{2_{\alpha}^{\sharp}} \mathrm{d}x = \int_{\mathbb{R}^{N}} \bigl(I_\alpha * |\mu_{\sigma}|^{2_{\alpha}^{\sharp}}\bigr) |\mu_{\sigma}|^{2_{\alpha}^{\sharp}} \mathrm{d}x = \mathcal{S}_{1}^{\frac{2_{\alpha}^{\sharp}}{2_{\alpha}^{\sharp}-1}}. \end{aligned} \end{equation*}

    Moreover, we can compute

    \begin{equation*} \begin{aligned} \int_{\mathbb{R}^{N}} |\nabla\mu_{\sigma}|^{2} \mathrm{d}x = \sigma^{-2} \int_{\mathbb{R}^{N}} |\nabla\mu_{1}|^{2} \mathrm{d}x, \ \ \int_{\mathbb{R}^{N}} |\nabla\mu_{\sigma}|^{p} \mathrm{d}x = \sigma^{\frac{(2-p)N}{2}-p} \int_{\mathbb{R}^{N}} |\nabla\mu_{1}|^{p} \mathrm{d}x \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} \int_{\mathbb{R}^{N}} |\mu_{\sigma}|^{p} \mathrm{d}x = \sigma^{\frac{(2-p)N}{2}} \int_{\mathbb{R}^{N}} |\mu_{1}|^{p} \mathrm{d}x \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|\mu_{\sigma}|^{2_{\alpha}^{*}}\bigr)|\mu_{\sigma}|^{2_{\alpha}^{*}} \mathrm{d}x = \sigma^{-2\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}}\bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|\mu_{\sigma}|^{2_{\alpha}^{\sharp}}\bigr)|\mu_{\sigma}|^{2_{\alpha}^{*}} \mathrm{d}x = \sigma^{-2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}}\bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x. \end{aligned} \end{equation*}

    It follows that

    \begin{equation} \begin{aligned} 0 = &P\bigl((\mu_{\sigma})_{t_{\sigma}}\bigr) \\ = & \frac{(N-2)\sigma^{-2}t_{\sigma}^{N-2}}{2} \|\mu_{1}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \left[ \frac{Nt_{\sigma}^{N}}{2} - \frac{(N+\alpha)t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \right] \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} \\&+ \frac{(N-p)\sigma^{\frac{(2-p)N}{2}-p}t_{\sigma}^{N-p}}{p} \|\mu_{1}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{N\sigma^{\frac{(2-p)N}{2}}t_{\sigma}^{N}}{p} \|\mu_{1}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{\lambda^{2}(N+\alpha)\sigma^{-2\cdot 2_{\alpha}^{*}}t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \\&- \frac{\lambda(N+\alpha)\sigma^{-2_{\alpha}^{*}}t_{\sigma}^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x. \end{aligned} \end{equation} (4.2)

    Taking the limit superior as \sigma\to\infty in (4.1), we further obtain

    \begin{equation} \begin{aligned} &\limsup\limits_{\sigma\to\infty} \left[ \frac{(N-2)\sigma^{-2}t_{\sigma}^{N-2}}{2} \|\mu_{1}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{Nt_{\sigma}^{N}}{2} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} \right.\\&+\left. \frac{(N-p)\sigma^{\frac{(2-p)N}{2}-p}t_{\sigma}^{N-p}}{p} \|\mu_{1}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{N\sigma^{\frac{(2-p)N}{2}}t_{\sigma}^{N}}{p} \|\mu_{1}\|_{L^{p}(\mathbb{R}^{N})}^{p} \right] \\ = & \limsup\limits_{\sigma\to\infty} \left[ \frac{(N+\alpha)t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{\lambda^{2}(N+\alpha)\sigma^{-2\cdot 2_{\alpha}^{*}}t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \right.\\&+\left. \frac{\lambda(N+\alpha)\sigma^{-2_{\alpha}^{*}}t_{\sigma}^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \right]. \end{aligned} \end{equation} (4.3)

    Let s_{\infty} = \limsup\limits_{\sigma\to\infty}t_{\sigma} . We can prove 0 < t_{\sigma} < \infty . Otherwise, we suppose t_{\sigma} = \infty . Then,

    \begin{equation*} \begin{aligned} &\limsup\limits_{\sigma\to\infty} \left[ \frac{(N-2)\sigma^{-2}t_{\sigma}^{N-2}}{2} \|\mu_{1}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{Nt_{\sigma}^{N}}{2} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} \right.\\&+\left. \frac{(N-p)\sigma^{\frac{(2-p)N}{2}-p}t_{\sigma}^{N-p}}{p} \|\mu_{1}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{N\sigma^{\frac{(2-p)N}{2}}t_{\sigma}^{N}}{p} \|\mu_{1}\|_{L^{p}(\mathbb{R}^{N})}^{p} \right] \\ < & \limsup\limits_{\sigma\to\infty} {t_{\sigma}}^{N} \left[ \frac{(N+\alpha)t_{\sigma}^{\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} \right] \\\leqslant& \limsup\limits_{\sigma\to\infty} \left[ \frac{(N+\alpha)t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{\lambda^{2}(N+\alpha)\sigma^{-2\cdot 2_{\alpha}^{*}}t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \right.\\&+\left. \frac{\lambda(N+\alpha)\sigma^{-2_{\alpha}^{*}}t_{\sigma}^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \right]. \end{aligned} \end{equation*}

    This yields a contradiction with (4.3).

    Now, we show s_{\infty} > 0 . Arguing by contradiction, we assume s_{\infty} = 0 . Therefore, there exists \hat{\sigma} > 0 large such that s_{\hat{\sigma}} > 0 small enough. Then,

    \begin{equation*} \begin{aligned} &\frac{(N-2)\hat{\sigma}^{-2}s_{\hat{\sigma}}^{N-2}}{2} \|\mu_{1}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{Ns_{\hat{\sigma}}^{N}}{2} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{(N-p)\hat{\sigma}^{\frac{(2-p)N}{2}-p}s_{\hat{\sigma}}^{N-p}}{p} \|\mu_{1}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} \\&+ \frac{N\hat{\sigma}^{\frac{(2-p)N}{2}}s_{\hat{\sigma}}^{N}}{p} \|\mu_{1}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\ > & \frac{Ns_{\hat{\sigma}}^{N}}{2} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} \\\geqslant& s_{\hat{\sigma}}^{N} \left[ \frac{(N+\alpha)s_{\hat{\sigma}}^{\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{\lambda^{2}(N+\alpha)\hat{\sigma}^{-2\cdot 2_{\alpha}^{*}}s_{\hat{\sigma}}^{\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \right.\\&+\left. \frac{\lambda(N+\alpha)\hat{\sigma}^{-2_{\alpha}^{*}}s_{\hat{\sigma}}^{\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \right] \\ = & \frac{(N+\alpha)s_{\hat{\sigma}}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{\lambda^{2}(N+\alpha)\hat{\sigma}^{-2\cdot 2_{\alpha}^{*}}s_{\hat{\sigma}}^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \\&+ \frac{\lambda(N+\alpha)\hat{\sigma}^{-2_{\alpha}^{*}}s_{\hat{\sigma}}^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x, \end{aligned} \end{equation*}

    which contradicts with (4.2). Hence, we get 0 < s_{\infty} < \infty .

    In view of 0 < s_{\infty} < \infty and taking the limit superior as \sigma\to\infty in (4.2) again, it holds that

    \begin{equation*} \begin{aligned} \limsup\limits_{\sigma\to\infty} \left[ \frac{Nt_{\sigma}^{N}}{2} - \frac{(N+\alpha)t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \right] \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} = 0. \end{aligned} \end{equation*}

    Then, we have

    \begin{equation*} \begin{aligned} s_{\infty} = \left[ \frac{N\cdot(2_{\alpha}^{\sharp})^{2}}{N+\alpha} \right] ^{\frac{1}{\alpha}}. \end{aligned} \end{equation*}

    Applying this for any \bar{\sigma} > 0 large, it follows that

    \begin{equation} \begin{aligned} J\bigl((\mu_{\bar{\sigma}})_{s_{\bar{\sigma}}}\bigr) = & \frac{\bar{\sigma}^{-2}s_{\bar{\sigma}}^{N-2}}{2} \|\mu_{1}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \left( \frac{s_{\bar{\sigma}}^{N}}{2} - \frac{s_{\bar{\sigma}}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \right) \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} \\&+ \frac{\bar{\sigma}^{\frac{(2-p)N}{2}-p}s_{\bar{\sigma}}^{N-p}}{p} \|\mu_{1}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{\bar{\sigma}^{\frac{(2-p)N}{2}}s_{\bar{\sigma}}^{N}}{p} \|\mu_{1}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{\lambda^{2}\bar{\sigma}^{-2\cdot 2_{\alpha}^{*}}s_{\bar{\sigma}}^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \\&- \frac{\lambda\bar{\sigma}^{-2_{\alpha}^{*}}s_{\bar{\sigma}}^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \\ < & \max\limits_{s > 0}\left[ \frac{s^{N}}{2} - \frac{s^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \right] \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2}. \end{aligned} \end{equation} (4.4)

    Set

    \begin{equation*} \begin{aligned} h(t) = \frac{t^{N}}{2} - \frac{t^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}}. \end{aligned} \end{equation*}

    Then, we know h'(s_{\infty}) = 0 and s_{\infty} is the unique maxium point of h(\cdot) . By (4.4), one has

    \begin{equation*} \begin{aligned} J\bigl((\mu_{\bar{\sigma}})_{s_{\bar{\sigma}}}\bigr) < \left[ \frac{s_{\infty}^{N}}{2} - \frac{s_{\infty}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \right] \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} = \frac{\alpha}{2(N+\alpha)} \left[ \frac{N\cdot(2_{\alpha}^{\sharp})^{2}}{N+\alpha} \right] ^{\frac{1}{2_{\alpha}^{\sharp}-1}} \mathcal{S}_{1}^{\frac{2_{\alpha}^{\sharp}}{2_{\alpha}^{\sharp}-1}}. \end{aligned} \end{equation*}

    The proof is completed.

    Lemma 4.5. Suppose that all conditions described in Theorem 1.2 hold. Let \{u_{n}\} be a bounded minimizing sequence of J satisfying

    \begin{equation*} \begin{aligned} J(u_{n})\to m \ \ and \ \ P(u_{n})\to 0, \ \ as\;n\to\infty. \end{aligned} \end{equation*}

    Then, we have

    \begin{equation*} \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} |u_{n}|^{2} \mathrm{d}x > 0 \ \ and \ \ \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} |u_{n}|^{2^{*}} \mathrm{d}x > 0. \end{equation*}

    Proof. First, we show \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} |u_{n}|^{2} \mathrm{d}x > 0 . Otherwise, we suppose

    \begin{equation} \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} |u_{n}|^{2} \mathrm{d}x = 0. \end{equation} (4.5)

    Combining Proposition 2.1 and (4.5), we have

    \begin{equation*} \begin{aligned} \lim\limits_{n\to\infty} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{\sharp}} \bigr) |u_{n}|^{2_{\alpha}^{\sharp}} \mathrm{d}x \leqslant \lim\limits_{n\to\infty} C_{N, \alpha} \left( \int_{\mathbb{R}^{N}} |u_{n}|^{2} \mathrm{d}x \right) ^{\frac{N+\alpha}{N}} = 0 \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} \lim\limits_{n\to\infty} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{\sharp}} \bigr) |u_{n}|^{2_{\alpha}^{*}} \mathrm{d}x \leqslant \lim\limits_{n\to\infty} C_{N, \alpha} \left( \int_{\mathbb{R}^{N}} |u_{n}|^{2} \mathrm{d}x \right) ^{\frac{N+\alpha}{2N}} \left( \int_{\mathbb{R}^{N}} |u_{n}|^{2^{*}} \mathrm{d}x \right) ^{\frac{N+\alpha}{2N}} = 0. \end{aligned} \end{equation*}

    Combining the above two inequalities, one has

    \begin{equation} \begin{aligned} m+o_{n}(1) = & \frac{1}{2} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{1}{2} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{1}{p} \|u_{n}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{1}{p} \|u_{n}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{\lambda^{2}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{*}} \bigr) |u_{n}|^{2_{\alpha}^{*}} \mathrm{d}x \end{aligned} \end{equation} (4.6)

    and

    \begin{equation} \begin{aligned} o_{n}(1) = & \frac{N-2}{2} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{N}{2} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{N-p}{p} \|u_{n}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{N}{p} \|u_{n}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{\lambda^{2}(N+\alpha)}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{*}} \bigr)|u_{n}|^{2_{\alpha}^{*}} \mathrm{d}x. \end{aligned} \end{equation} (4.7)

    Combining (4.6) and (4.7), it follows that

    \begin{equation} \begin{aligned} m+o_{n}(1) \geqslant& \frac{\alpha+2}{2(N+\alpha)} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{\alpha}{2(N+\alpha)} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{\alpha+p}{p(N+\alpha)} \|u_{n}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} \\&+ \frac{\alpha}{p(N+\alpha)} \|u_{n}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\\geqslant& \frac{\alpha+2}{2(N+\alpha)} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2}. \end{aligned} \end{equation} (4.8)

    It follows from (2.2) and (4.7) that

    \begin{equation*} \begin{aligned} (N-2) \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} \leqslant& \frac{\lambda^{2}(N+\alpha)}{(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{*}} \bigr) |u_{n}|^{2_{\alpha}^{*}} \mathrm{d}x \\\leqslant& \frac{\lambda^{2}(N+\alpha)}{(2_{\alpha}^{*})^{2}} \left( \frac{1}{\mathcal{S}_{2}} \right)^{2_{\alpha}^{*}} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2\cdot 2_{\alpha}^{*}}. \end{aligned} \end{equation*}

    This implies

    \begin{equation} \left[ \frac{(2_{\alpha}^{*})^{2}(N-2)}{\lambda^{2}(N+\alpha)} \right] ^{\frac{1}{2_{\alpha}^{*}-1}} \mathcal{S}_{2}^{\frac{2_{\alpha}^{*}}{2_{\alpha}^{*}-1}} \leqslant \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2}. \end{equation} (4.9)

    In view of (4.8) and (4.9), we can derive

    \begin{equation*} \begin{aligned} m+o_{n}(1) \geqslant& \frac{\alpha+2}{2(N+\alpha)}\left[ \frac{(2_{\alpha}^{*})^{2}(N-2)}{\lambda^{2}(N+\alpha)} \right] ^{\frac{1}{2_{\alpha}^{*}-1}} \mathcal{S}_{2}^{\frac{2_{\alpha}^{*}}{2_{\alpha}^{*}-1}}. \end{aligned} \end{equation*}

    This yields a contradiction with Lemma 4.4.

    Next, we show \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} |u_{n}|^{2^{*}} \mathrm{d}x > 0 . On the contrary, it suffices to show

    \begin{equation} \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} |u_{n}|^{2^{*}} \mathrm{d}x = 0. \end{equation} (4.10)

    From Proposition 2.1 and (4.10), we have

    \begin{equation*} \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{*}} \bigr) |u_{n}|^{2_{\alpha}^{*}} \mathrm{d}x \leqslant \lim\limits_{n\rightarrow \infty} C_{N, \alpha} \left( \int_{\mathbb{R}^{N}} |u_{n}|^{2^{*}} \mathrm{d}x \right) ^{\frac{N+\alpha}{N}} = 0 \end{equation*}

    and

    \begin{equation*} \begin{aligned} &\lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{\sharp}} \bigr) |u_{n}|^{2_{\alpha}^{*}} \mathrm{d}x \\\leqslant& \lim\limits_{n\rightarrow \infty} C_{N, \alpha} \left( \int_{\mathbb{R}^{N}} |u_{n}|^{2} \mathrm{d}x \right) ^{\frac{N+\alpha}{2N}} \left( \int_{\mathbb{R}^{N}} |u_{n}|^{2^{*}} \mathrm{d}x \right) ^{\frac{N+\alpha}{2N}} = 0. \end{aligned} \end{equation*}

    Together with the above two expressions, we get

    \begin{equation} \begin{aligned} m+o_{n}(1) = & \frac{1}{2} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{1}{2} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{1}{p} \|u_{n}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{1}{p} \|u_{n}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{\lambda^{2}}{2\cdot\bigl(2_{\alpha}^{\sharp}\bigr)^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{\sharp}} \bigr) |u_{n}|^{2_{\alpha}^{\sharp}} \mathrm{d}x \end{aligned} \end{equation} (4.11)

    and

    \begin{equation} \begin{aligned} o_{n}(1) = & \frac{N-2}{2} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{N}{2} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{N-p}{p} \|u_{n}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{N}{p} \|u_{n}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{\lambda^{2}(N+\alpha)}{2\cdot(2_{\alpha}^{\sharp})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{\sharp}} \bigr)|u_{n}|^{2_{\alpha}^{\sharp}} \mathrm{d}x. \end{aligned} \end{equation} (4.12)

    From (4.11) and (4.12), we get that

    \begin{equation} \begin{aligned} m+o_{n}(1) \geqslant \frac{\alpha}{2(N+\alpha)} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2}. \end{aligned} \end{equation} (4.13)

    Observe that, by (2.1) and (4.12), we have

    \begin{equation*} \begin{aligned} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2} \leqslant& \frac{\lambda^{2}(N+\alpha)}{N\cdot(2_{\alpha}^{\sharp})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{\sharp}} \bigr) |u_{n}|^{2_{\alpha}^{\sharp}} \mathrm{d}x \\\leqslant& \frac{\lambda^{2}(N+\alpha)}{N\cdot(2_{\alpha}^{\sharp})^{2}} \left( \frac{1}{\mathcal{S}_{1}} \right)^{2_{\alpha}^{\sharp}} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2\cdot 2_{\alpha}^{\sharp}}. \end{aligned} \end{equation*}

    This shows

    \begin{equation} \left[ \frac{N\cdot(2_{\alpha}^{\sharp})^{2}}{\lambda^{2}(N+\alpha)} \right] ^{\frac{1}{2_{\alpha}^{\sharp}-1}} \mathcal{S}_{1} ^{\frac{2_{\alpha}^{\sharp}}{2_{\alpha}^{\sharp}-1}} \leqslant \|u\|_{L^{2}(\mathbb{R}^{N})}^{2}. \end{equation} (4.14)

    Combining (4.13) and (4.14), we infer that

    \begin{equation*} \begin{aligned} m\geqslant \frac{\alpha}{2(N+\alpha)} \left[ \frac{N\cdot(2_{\alpha}^{\sharp})^{2}}{\lambda^{2}(N+\alpha)} \right] ^{\frac{1}{2_{\alpha}^{\sharp}-1}} \mathcal{S}_{1} ^{\frac{2_{\alpha}^{\sharp}}{2_{\alpha}^{\sharp}-1}}. \end{aligned} \end{equation*}

    This contradicts with Lemma 4.5, the proof is complete.

    We now can conclude the proof of Theorem 1.2.

    Proof of Theorem 1.2. Let \{u_{n}\} be a minimizing sequence of J satisfying

    \begin{equation*} \begin{aligned} J(u_{n})\to m \ \ and \ \ P(u_{n})\to 0, \ \ as\;n\to\infty. \end{aligned} \end{equation*}

    It is easy to verify \{u_{n}\} is bounded in E . Taking into account Lemmas 4.4 and 4.5 and Proposition 2.2, we deduce that \{u_{n}\} converges weakly and a.e. to u\not\equiv0 in L_{loc}^{2}(\mathbb{R}^{N}) . Using the Brézis-Lieb lemma [35], we obtain

    \begin{equation*} \begin{aligned} m\leqslant J(u) = J(u)- \frac{1}{N+\alpha} P(u) \leqslant \lim\limits_{n\rightarrow \infty} \left( J(u_{n}) - \frac{1}{N+\alpha} P(u_{n}) \right) = \lim\limits_{n\rightarrow \infty} J(u_{n}) = m, \end{aligned} \end{equation*}

    which implies J(u) = m . Moreover, we can choose u\geqslant0 . Therefore, u is a nonnegative ground state solution of Eq (\mathcal{D}).

    Let u be a nonnegative ground state solution of Eq (\mathcal{D}). In order to show u is radial, it suffices to prove m = m_{rad} , where

    \begin{equation*} \begin{aligned} \mathcal{P}_{rad} = \left\{ u\in E_{rad}\backslash\{0\}\Big| P(u) = 0 \right\} \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} m_{rad} = \inf\limits_{u\in \mathcal{P}_{rad}}J(u). \end{aligned} \end{equation*}

    On one hand, by E_{rad}\subset E , it follows that m\leqslant m_{rad} . On the other hand, for any v\in\mathcal{P} , by J being even, we know |v|\in\mathcal{P} . Let |v|^{*} be the decreasing rearrangement of |v| . In view of [19, Theorem 3.7], one has

    \begin{equation} \begin{aligned} \||v|^{*}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} \leqslant \||v|\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} \ \ \mathrm{and} \ \ \||v|^{*}\|_{L^{2}(\mathbb{R}^{N})}^{2} \leqslant \|v\|_{L^{2}(\mathbb{R}^{N})}^{2} \end{aligned} \end{equation} (4.15)

    and

    \begin{equation} \begin{aligned} \||v|^{*}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} \leqslant \||v|\|_{D^{1, p}(\mathbb{R}^{N})}^{p} \ \ \mathrm{and} \ \ \||v|^{*}\|_{L^{p}(\mathbb{R}^{N})}^{p} \leqslant \|v\|_{L^{p}(\mathbb{R}^{N})}^{p} \end{aligned} \end{equation} (4.16)

    and

    \begin{equation} \begin{aligned} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|v(x)|^{2_{\alpha}^{\sharp}}|v(y)|^{2_{\alpha}^{\sharp}}}{|x-y|^{N-\alpha}} \mathrm{d}x \mathrm{d}y \leqslant \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{||v(x)|^{*}|^{2_{\alpha}^{\sharp}}||v(y)|^{*}|^{2_{\alpha}^{\sharp}}}{|x-y|^{N-\alpha}} \mathrm{d}x \mathrm{d}y \end{aligned} \end{equation} (4.17)

    and

    \begin{equation} \begin{aligned} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|v(x)|^{2_{\alpha}^{\sharp}}|v(y)|^{2_{\alpha}^{*}}}{|x-y|^{N-\alpha}} \mathrm{d}x \mathrm{d}y \leqslant \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{||v(x)|^{*}|^{2_{\alpha}^{\sharp}}||v(y)|^{*}|^{2_{\alpha}^{*}}}{|x-y|^{N-\alpha}} \mathrm{d}x \mathrm{d}y \end{aligned} \end{equation} (4.18)

    and

    \begin{equation} \begin{aligned} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|v(x)|^{2_{\alpha}^{*}}|v(y)|^{2_{\alpha}^{*}}}{|x-y|^{N-\alpha}} \mathrm{d}x \mathrm{d}y \leqslant \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{||v(x)|^{*}|^{2_{\alpha}^{*}}||v(y)|^{*}|^{2_{\alpha}^{*}}}{|x-y|^{N-\alpha}} \mathrm{d}x \mathrm{d}y \end{aligned} \end{equation} (4.19)

    From (4.15)–(4.19), for any t > 0 , it follows that

    \begin{equation} \begin{aligned} J\bigl((|v|^{*})_{t}\bigr) \leqslant J\bigl((|v|_{t})\bigr). \end{aligned} \end{equation} (4.20)

    By Lemma 4.2, there exists t_{v} > 0 such that (|v|^{*})_{t_{v}}\in\mathcal{P} . We have

    \begin{equation*} \begin{aligned} &\frac{(N-2)t_{v}^{N-2}}{2} \||v|^{*}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{Nt_{v}^{N}}{2} \||v|^{*}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{(N-p)t_{v}^{N-p}}{p} \||v|^{*}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{Nt_{v}^{N}}{p} \||v|^{*}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\ = & \frac{(N+\alpha)t_{v}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*||v|^{*}|^{2_{\alpha}^{\sharp}} \bigr)||v|^{*}|^{2_{\alpha}^{\sharp}} \mathrm{d}x + \frac{\lambda(N+\alpha)t_{v}^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*||v|^{*}|^{2_{\alpha}^{\sharp}} \bigr)||v|^{*}|^{2_{\alpha}^{*}} \mathrm{d}x \\&+ \frac{\lambda^{2}(N+\alpha)t_{v}^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*||v|^{*}|^{2_{\alpha}^{*}} \bigr)||v|^{*}|^{2_{\alpha}^{*}} \mathrm{d}x. \end{aligned} \end{equation*}

    From the above and |v|\in\mathcal{P} , it is easy to observe t_{v}\in(0, 1] . In view of (4.20), one has

    \begin{equation*} \begin{aligned} m\leqslant J\bigl((|v^{*}|)_{t_{v}}\bigr) \leqslant J\bigl((|v|)_{t_{v}}\bigr) \leqslant \max\limits_{t\geqslant 0} J\bigl((|v|)_{t}\bigr) = J(|v|). \end{aligned} \end{equation*}

    Therefore, for any |v|\in\mathcal{P} , there exists t_{v} > 0 such that t_{v}|v|^{*}\in\mathcal{P} and

    \begin{equation*} \begin{aligned} J\bigl((|v|^{*})_{t_{v}}\bigr) \leqslant J(|v|). \end{aligned} \end{equation*}

    This implies m_{rad}\leqslant m . Hence, we have m_{rad} = m . This means u is a radially symmetric ground state solution of Eq (\mathcal{D}). The proof is complete.

    Lixiong Wang: Conceptualization, Methodology, Formal analysis, Writing-original draft preparation, Writing-reviewing and editing, Validation, Funding acquisition; Ting Liu: Writing-reviewing and editing, Visualization, Investigation, Supervision. All authors have read and approved the final version of the manuscript for publication.

    The author desires to convey gratitude to Hunan Institute of Science and Technology and the Outstanding Youth Project of the Education Department of Hunan Province for the financial assistance provided for this work.

    The authors declare there are no conflicts of interest.



    [1] J. Abreu, G. F. Madeira, Generalized eigenvalues of the (p, 2)-Laplacian under a parametric boundary condition, Proc. Edinb. Math. Soc., 63 (2020), 287–303. https://doi.org/10.1017/s0013091519000403 doi: 10.1017/s0013091519000403
    [2] C. O. Alves, A. B. Nóbrega, M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var., 55 (2016), 48. https://doi.org/10.1007/s00526-016-0984-9 doi: 10.1007/s00526-016-0984-9
    [3] M. Badiale, E. Serra, Semilinear elliptic equations for beginners, London: Springer, 2011. https://doi.org/10.1007/978-0-85729-227-8
    [4] V. Benci, P. D'Avenia, D. Fortunato, L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Rational Mech. Anal., 154 (2000), 297–324. https://doi.org/10.1007/s002050000101 doi: 10.1007/s002050000101
    [5] V. Benci, D. Fortunato, L. Pisani, Soliton like solutions of a Lorentz invariant equation in dimension 3, Rev. Math. Phys., 10 (1998), 315–344. https://doi.org/10.1142/S0129055X98000100 doi: 10.1142/S0129055X98000100
    [6] T. Bhattacharya, B. Emamizadeh, A. Farjudian, Existence of continuous eigenvalues for a class of parametric problems involving the (p, 2)-Laplacian operator, Acta Appl. Math., 165 (2020), 65–79. https://doi.org/10.1007/s10440-019-00241-9 doi: 10.1007/s10440-019-00241-9
    [7] D. Cassani, L. Du, Z. Liu, Positive solutions to the planar logarithmic Choquard equation with exponential nonlinearity, Nonlinear Anal., 241 (2024), 113479. https://doi.org/10.1016/j.na.2023.113479 doi: 10.1016/j.na.2023.113479
    [8] D. Cassani, J. Zhang, Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth, Adv. Nonlinear Anal., 8 (2019), 1184–1212. https://doi.org/10.1515/anona-2018-0019 doi: 10.1515/anona-2018-0019
    [9] D. Cassani, J. Van Schaftingen, J. Zhang, Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent, Proc. Roy. Soc. Edinb. A, 150 (2020), 1377–1400. https://doi.org/10.1017/prm.2018.135 doi: 10.1017/prm.2018.135
    [10] L. Cherfils, Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with p \& q-Laplacian, Commun. Pure Appl. Anal., 4 (2005), 9–22. https://doi.org/10.3934/cpaa.2005.4.9 doi: 10.3934/cpaa.2005.4.9
    [11] P. G. Ciarlet, Linear and nonlinear functional analysis with applications, Philadelphia, PA: SIAM, 2013.
    [12] M. Fărcăşeanu, M. Mihăilescu, D. Stancu-Dumitru, On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition, Nonlinear Anal.: Theor., 116 (2015), 19–25. https://doi.org/10.1016/j.na.2014.12.019 doi: 10.1016/j.na.2014.12.019
    [13] F. Gao, M. Yang, On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl., 448 (2017), 1006–1041. https://doi.org/10.1016/j.jmaa.2016.11.015 doi: 10.1016/j.jmaa.2016.11.015
    [14] L. Gasiński, N. S. Papageorgiou, Asymmetric (p, 2)-equations with double resonance, Calc. Var., 56 (2017), 88. https://doi.org/10.1007/s00526-017-1180-2 doi: 10.1007/s00526-017-1180-2
    [15] L. Gasiński, P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differ. Equations, 268 (2020), 4183–4193. https://doi.org/10.1016/j.jde.2019.10.022 doi: 10.1016/j.jde.2019.10.022
    [16] F. Li, T. Rong, Z. Liang, Multiple positive solutions for a class of (2, p)-Laplacian equation, J. Math. Phys., 59 (2018), 121506. https://doi.org/10.1063/1.5050030 doi: 10.1063/1.5050030
    [17] X. Li, S. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math., 22 (2020), 1950023. https://doi.org/10.1142/S0219199719500238 doi: 10.1142/S0219199719500238
    [18] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93–105. https://doi.org/10.1002/sapm197757293 doi: 10.1002/sapm197757293
    [19] E. H. Lieb, M. Loss, Analysis, 2 Eds., Providence, RI: American Mathematical Society, 1997.
    [20] P. L. Lions, The Choquard equation and related questions, Nonlinear Anal.: Theor., 4 (1980), 1063–1072. https://doi.org/10.1016/0362-546X(80)90016-4 doi: 10.1016/0362-546X(80)90016-4
    [21] S. Liu, J. Yang, Y. Su, Regularity for critical fractional Choquard equation with singular potential and its applications, Adv. Nonlinear Anal., 13 (2024), 20240001. https://doi.org/10.1515/anona-2024-0001 doi: 10.1515/anona-2024-0001
    [22] W. Liu, G. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equations, 265 (2018), 4311–4334. https://doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006
    [23] M. Mihăilescu, An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Commun. Pure Appl. Anal., 10 (2011), 701–708. https://doi.org/10.3934/cpaa.2011.10.701 doi: 10.3934/cpaa.2011.10.701
    [24] A. Moameni, K. L. Wong, Existence of solutions for supercritical (p, 2)-Laplace equations, Mediterr. J. Math., 20 (2023), 140. https://doi.org/10.1007/s00009-023-02336-y doi: 10.1007/s00009-023-02336-y
    [25] V. Moroz, J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557–6579. https://doi.org/10.1090/S0002-9947-2014-06289-2 doi: 10.1090/S0002-9947-2014-06289-2
    [26] V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005. https://doi.org/10.1142/S0219199715500054 doi: 10.1142/S0219199715500054
    [27] N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, On a class of parametric (p, 2)-equations, Appl. Math. Optim., 75 (2017), 193–228. https://doi.org/10.1007/s00245-016-9330-z doi: 10.1007/s00245-016-9330-z
    [28] N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, Existence and multiplicity of solutions for resonant (p, 2)-equations, Adv. Nonlinear Stud., 18 (2018), 105–129. https://doi.org/10.1515/ans-2017-0009 doi: 10.1515/ans-2017-0009
    [29] S. I. Pekar, Untersuchung ber die elektronentheorie der kristalle, Berlin: Akademie Verlag, 1954. https://doi.org/10.1515/9783112649305
    [30] R. Penrose, On gravity's role in quantum state reduction, Gen. Relat. Gravit., 28 (1996), 581–600. https://doi.org/10.1007/BF02105068 doi: 10.1007/BF02105068
    [31] D. Ruiz, J. Van Schaftingen, Odd symmetry of least energy nodal solutions for the Choquard equation, J. Differ. Equations, 264 (2018), 1231–1262. https://doi.org/10.1016/j.jde.2017.09.034 doi: 10.1016/j.jde.2017.09.034
    [32] J. Seok, Nonlinear Choquard equations: doubly critical case, Appl. Math. Lett., 76 (2018), 148–156. https://doi.org/10.1016/j.aml.2017.08.016 doi: 10.1016/j.aml.2017.08.016
    [33] M. Struwe, Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems, Berlin: Springer, 2008. https://doi.org/10.1007/978-3-540-74013-1
    [34] Y. Su, L. Wang, H. Chen, S. Liu, Multiplicity and concentration results for fractional Choquard equations: doubly critical case, Nonlinear Anal., 198 (2020), 111872. https://doi.org/10.1016/j.na.2020.111872 doi: 10.1016/j.na.2020.111872
    [35] M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1
    [36] V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 3 (1995), 249–269.
    [37] V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 5 (1997), 105–116.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(676) PDF downloads(62) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog