In this paper, we study a class of (p,2)-Laplacian equation with Hartree-type nonlinearity and critical exponents. Under some general assumptions and based on variational tools, we establish the existence, regularity, and symmetry of nontrivial solutions for such a problem.
Citation: Lixiong Wang, Ting Liu. Existence and regularity results for critical (p,2)-Laplacian equation[J]. AIMS Mathematics, 2024, 9(11): 30186-30213. doi: 10.3934/math.20241458
[1] | Hui Liang, Yueqiang Song, Baoling Yang . Some results for a supercritical Schrödinger-Poisson type system with (p,q)-Laplacian. AIMS Mathematics, 2024, 9(5): 13508-13521. doi: 10.3934/math.2024658 |
[2] | Yan Ning, Daowei Lu, Anmin Mao . Existence and subharmonicity of solutions for nonsmooth p-Laplacian systems. AIMS Mathematics, 2021, 6(10): 10947-10963. doi: 10.3934/math.2021636 |
[3] | Salim A. Messaoudi, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammed A. Al-Osta . A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior. AIMS Mathematics, 2023, 8(4): 7933-7966. doi: 10.3934/math.2023400 |
[4] | Zhiqiang Li . The finite time blow-up for Caputo-Hadamard fractional diffusion equation involving nonlinear memory. AIMS Mathematics, 2022, 7(7): 12913-12934. doi: 10.3934/math.2022715 |
[5] | Kun Cheng, Wentao Huang, Li Wang . Least energy sign-changing solution for a fractional p-Laplacian problem with exponential critical growth. AIMS Mathematics, 2022, 7(12): 20797-20822. doi: 10.3934/math.20221140 |
[6] | Mengyu Wang, Xinmin Qu, Huiqin Lu . Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity. AIMS Mathematics, 2021, 6(5): 5028-5039. doi: 10.3934/math.2021297 |
[7] | Paul Bracken . Applications of the lichnerowicz Laplacian to stress energy tensors. AIMS Mathematics, 2017, 2(3): 545-556. doi: 10.3934/Math.2017.2.545 |
[8] | Wangjin Yao . Variational approach to non-instantaneous impulsive differential equations with p-Laplacian operator. AIMS Mathematics, 2022, 7(9): 17269-17285. doi: 10.3934/math.2022951 |
[9] | Jinguo Zhang, Dengyun Yang, Yadong Wu . Existence results for a Kirchhoff-type equation involving fractional p(x)-Laplacian. AIMS Mathematics, 2021, 6(8): 8390-8403. doi: 10.3934/math.2021486 |
[10] | Ya-Lei Li, Da-Bin Wang, Jin-Long Zhang . Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity. AIMS Mathematics, 2020, 5(3): 2100-2112. doi: 10.3934/math.2020139 |
In this paper, we study a class of (p,2)-Laplacian equation with Hartree-type nonlinearity and critical exponents. Under some general assumptions and based on variational tools, we establish the existence, regularity, and symmetry of nontrivial solutions for such a problem.
Let us consider the following critical (p,2)-Laplacian equation
−Δpu−Δu+u+|u|p−2u=(Iα∗F(u))f(u), x∈RN, | (1.1) |
where N⩾3, 1<p<N, 0<α<N, and Δp is the p-Laplacian with Δp=∇(|∇u|p−2∇u). Iα is the Riesz potential defined by
Iα(x)=Γ(N−α2)2απN2Γ(N2)|x|N−α, x∈RN∖{0}. |
Equation (1.1) is closely related to the following nonlocal quasilinear equation:
−Δpu−μ(x)Δqu+|u|p−2u+|u|q−2u=(Iα∗F(u))f(u), x∈RN, | (1.2) |
where 1<p,q<N and μ:RN↦[0,∞) is supposed to be Lipschitz continuous. The operator involved in (1.2) is the so-called double phase operator whose behavior switches between two different elliptic situations. The pioneering work to treat such operators comes from Zhikov [36,37], who introduced such classes to provide models of strongly anisotropic materials. For more details and recent works about double phase problems, we refer to [15,22].
When N=3, p=q=2, μ=1, and F(u)=u2, then Eq (1.1) is the well-known Choquard equation:
−Δu+u=(Iα∗|u|2)u, x∈R3. | (1.3) |
Equation (1.3) appears in several physical models like the quantum theory of polarons [29], Hartree-Fock theory [18], and self-gravitating matter [30]. After the pioneer work of Lieb [18] and Lions [20], the existence of weak solutions for Choquard equations have been a fascinating topic in past decades. For more related work, we refer to [2,31] for the subcritical case, [8,13] for the upper critical case, [9,26] for the lower critical case, and [21,32] for the double critical case.
When q=2≠p and μ=1, Eq (1.2) reduces to (1.1). It appears in many different disciplines of physics and has a wide range of applications, such as chemical reaction design [5], quantum field theory [4], biophysics [10], and plasma physics [33]. From a mathematical point of view, the main difficulty in (1.1) is the non-homogeneity of the operator −Δp−Δ. For this reason, equations involving such operator or its variant have been received increasing attention from various authors. In particular, Gasiński-Papageorgiou [14] considered Eq (1.1) when the nonlinearity takes the following form:
{−Δpu−Δu=f(x,u),x∈Ω,u|∂Ω=0, | (1.4) |
where p>2 and Ω∈RN is a bounded C2 domain. Under the assumption that f(x,u) exhibits asymmetric behaviour as u→±∞, more precisely f(x,u) is superlinear in the positive direction (without satisfying the Ambrosetti-Rabinowitz condition) and sublinear resonant in the negative direction, the authors obtained the existence and multiplicity results of (1.4) via variational tools and Morse theory methods. Later, Papageorgiou-Rădulescu-Repovš [28] imposed certain assumptions on f(x,u) to make it double resonant at both ±∞ and 0. By virtue of variational tools and critical groups, the authors obtained the existence and multiplicity results of (1.4).
In [27], the authors considered the following Dirichlet problem:
{−Δpu−Δu=λ|u|p−2u+f(x,u),x∈Ω,u|∂Ω=0, | (1.5) |
where p>2, λ>0, Ω⊂RN with a C2 boundary, and f(x,u) is a Carathéodory function. Based on critical point theory, together with suitable truncation and comparison techniques, Papageorgiou-Rădulescu-Repovš [27] obtained the existence and multiplicity results of (1.5) when λ is near the principal eigenvalue λ1(p)>0 of (−Δp,W1,p0(Ω)). Subsequently, their work was extended by Bhattacharya-Emamizadeh-Farjudian [6] to the case of 1<p<2. By applying the fibering method and spectrum analysis, a priori bounds and regularity results of (1.5) were investigated. Moameni-Wong [24] studied the case of f(x,u) in (1.5) satisfying supercritical growth. By using a variational principle on convex subsets of a Banach space, the authors proved the existence of at least one nontrivial solution of (1.5). Equation (1.5) with Neumann boundary condition (∂u∂ν=0) has been considered recently in Mihăilescu [23]. The authors showed that the eigenvalue set of this problem consists of 0 and an unbounded open interval from the first eigenvalue of −Δp−Δ (p>2) to infinity. After that, Fărcăşeanu et al. [12] extended the results in [23] to 0<p<2 by means of the determination of a critical point on the Nehari manifold [3]. For more results related to the (p,2)-Laplacian equation, one can refer to [1,16]
Recently, Moroz-Van Schaftingen [25] established the W2,qloc(RN) regularity (q>1) and Pohožaev identity of weak solutions for the following generalized Choquard equation:
−Δu+u=(Iα∗F(u))f(u), x∈RN, | (1.6) |
where N⩾3, α∈(0,N), and F satisfies the subcritical Berestycki-Lions type condition, namely:
(H1) There exists t0∈R∖{0} such that F(t0)≠0, where F:t∈R→∫t0f(ζ)dζ.
(H2) There exists C>0 such that for every t∈R, |tf(t)|⩽C(|t|N+αN+|t|N+αN−2).
(H3)
limt→0F(t)|t|N+αN=0 and limt→∞F(t)|t|N+αN−2=0. |
Li-Ma [17] studied Eq (1.6) with a perturbation. By virtue of the subcritical approximation and the Pohožaev constraint method, they obtained the regularity and Pohožaev identity of weak solutions. Cassani-Du-Liu [7] studied Eq (1.6) with N=2 and Iα=ln1|x|. By using an asymptotic approximation approach, the existence of positive solutions of (1.6) is obtained.
Up to our knowledge, no results have been reported regarding the existence and regularity of weak solutions for the (p,2)-Laplacian equation with critical Hartree-type nonlinearity. Inspired by the above cited results, the main objective of this paper is to fill this gap. The novelty of this paper lies in two aspects. On one hand, due to the existence of the (p,2)-Laplacian operator, problem (1.1) becomes non-homogeneous. Therefore, the method used in [25] is invalid. To overcome this difficulty, we introduce some new ideas and establish new estimates to improve the integrability of weak solutions of Eq (1.1). On the other hand, we are the first to consider a class of (p,2)-Laplacian equation with critical Hartree-type nonlinearity.
Before we present our results, we suppose that f satisfies the following conditions:
(F1) There exists C>0 such that for every t∈R, |tf(t)|⩽C(|t|2♯α+|t|2∗α), where 2♯α=N+αN and 2∗α=N+αN−2.
(F2) F(u)=12♯α|u|2♯α+λ2∗α|u|2∗α.
Now we can formulate our main results in this paper.
Theorem 1.1. Let N⩾3, 1<p<N, 0<α<N, and condition (F1) holds. If u is a nontrivial solution of Eq (1.1), then
(i) u∈Lq(RN) for any q∈[2,∞];
(ii) the following Pohožaev identity holds:
N−22‖u‖2D1,2(RN)+N2‖u‖2L2(RN)+N−pp‖u‖pD1,p(RN)+Np‖u‖pLp(RN)=N+α2∫RN(Iα∗F(u))F(u)dx. |
Theorem 1.2. Let N⩾3, 1<p<N, 0<α<N, and condition (F2) hold. Then, there exists Λ>0 such that for any λ∈(0,Λ), Eq (1.1) possesses a nonnegative radially symmetric ground state solution, where
Λ=2∗α(α+2)2∗α−12(N−2)12(N+α)N+αα(N−2)S2∗α22α2∗α−12[N⋅(2♯α)2]2∗α−12(2♯α−1)S2♯α(2∗α−1)2(2♯α−1)1. |
At the end of this section, we outline our method. We introduce this into two parts.
Regularity: First, by applying the Minty-Browder theorem [11] and the decomposition of Riesz potential, we improve the integrability of weak solutions to Eq (1.1). Then, under a different range of 2∗α, we use two different iteration approaches to establish an L∞(RN) estimate for weak solutions of Eq (1.1). As a result, the Pohožaev identity of Eq (1.1) is established.
Existence: With delicate analysis and optimal range of λ, we give an exact estimate of the minimum on the Pohožaev manifold. Using this fact, one can show that the minimizing sequences in Pohožaev manifold are non-vanishing in L2(RN) and L2∗(RN). This, together with a compactness lemma (see Proposition 2.2), the existence of ground state solutions of Eq (1.1) is obtained. Finally, we prove these ground solutions are radially symmetric.
This paper is organized as follows. In Section 2, we introduce some basic notations and technical lemmas. In Section 3, we study the regularity of weak solutions and Pohožaev identity of Eq (1.1). In Section 4, we study the existence and symmetry of ground state solutions of Eq (1.1).
In this section, we give some definitions and results which will be used later. C, Ci(i=1,2,⋯) denote positive constants which can be changed line by line. Let X be a Banach space, and use Xrad to denote the radial subspace of X.
In this work, our working space can be defined by
E=H1(RN)∩W1,p(RN) |
equipped with the norm
‖u‖E=‖u‖H1(RN)+‖u‖W1,p(RN). |
Proposition 2.1. ([19]) Let s,t>1, and α∈(0,N) with 1s+1t=1+αN. Then, there exists C(N,α,s,t)>0 such that for any u∈Ls(RN) and v∈Lt(RN),
|∫RN∫RNu(x)v(y)|x−y|N−αdxdy|⩽C(N,α,s,t)‖u‖Ls(RN)‖v‖Lt(RN). |
If s=t=2NN+α, then C(N,α,s,t)=CN,α=πN−α2Γ(α2)Γ(N+α2)[Γ(N2)Γ(N)]−αN.
Proposition 2.2. ([34]) Let N⩾3, and {un}⊂E be any bounded sequence satisfying
limn→∞∫RN|un|2dx>0 and limn→∞∫RN|un|2∗dx>0. |
Then, the sequence {un} converges weakly and a.e. to u≢0 in L2loc(RN).
The following inequalities can be viewed as a consequence of Proposition 2.1, which is useful in the following estimation:
S1[∫RN(Iα∗|u|2♯α)|u|2♯αdx]12♯α⩽‖u‖2L2(RN), u∈L2(RN) | (2.1) |
and
S2[∫RN(Iα∗|u|2∗α)|u|2∗αdx]12∗α⩽‖u‖2D1,2(RN), u∈D1,2(RN), | (2.2) |
where S1 and S2 are the embedding constants.
Lemma 2.1. For any x,y∈RN, the following assertions are valid:
(i) If 1<p<2, then
|x−y|2(|x|+|y|)2−p⩽C(|x|p−2x−|y|p−2y)(x−y);||x|p−2x−|y|p−2y|⩽C|x−y|p−1. |
(ii) If 2⩽p<∞, then
|x−y|p⩽C(|x|p−2x−|y|p−2y)(x−y);||x|p−2x−|y|p−2y|⩽C(|x|+|y|)p−2|x−y|. |
In this section, we study the regularity of weak solutions of Eq (1.1).
Lemma 3.1. ([25]) Let q,r,w,t∈[1,∞) and ζ∈[0,2] such that
1+αN−1w−1t=ζq+2−ζr. |
If μ∈(0,2) satisfies
min(q,r)(αN−1w)<μ<max(q,r)(1−1w),min(q,r)(αN−1t)<2−μ<max(q,r)(1−1t), |
then for every H∈Lw(RN), K∈Lt(RN), and u∈Lq(RN)∩Lr(RN),
∫RN(Iα∗(H|u|μ))G|u|2−μdx⩽C(∫RN|H|wdx)1w(∫RN|G|tdx)1t(∫RN|u|qdx)ζq(∫RN|u|rdx)2−ζr. |
Similar to the proof of [25, Lemma 3.2], we get the following lemma without proof.
Lemma 3.2. Let N⩾3, 0<α<N, and 0<θ<2. If H,G∈L2Nα(RN)+L2Nα+2(RN), and αN<θ<2, then for every ϵ>0 there exists Cϵ,θ∈R such that, for every u∈E,
∫RN[Iα∗(H|u|θ)]G|u|2−θdx⩽ϵ2‖u‖2D1,2(RN)+Cϵ,θ‖u‖2L2(RN). |
Proposition 3.1. ([11]) Let X be a reflexive Banach space. Let Φ be a (nonlinear) continuous mapping from X into its dual space X−1 such that
(i) ⟨Φu−Φv,u−v⟩>0, ∀u,v∈X,u≠v{;
(ii) lim‖u‖X→∞⟨Φu,u⟩‖u‖X=+∞.
Then, for every g∈X−1, there exists a unique u∈X such that Φu=g.
Lemma 3.3. Let
⟨Φu,v⟩=∫RN∇u∇vdx+∫RN|∇u|p−2∇u∇vdx+τ∫RNuvdx+∫RN|u|p−2uvdx−∫RN(Iα∗Hu)Gvdx, ∀u,v∈E. | (3.1) |
Then, Φ satisfies the following conditions:
(i) ⟨Φu−Φv,u−v⟩>0, ∀u,v∈E,u≠v;
(ii) lim‖u‖E→∞⟨Φu,u⟩‖u‖E=+∞.
Proof. Under direct calculation, we can compute
⟨Φ(u)−Φ(v),u−v⟩=‖u−v‖2D1,2(RN)+τ‖u−v‖2L2(RN)+∫RN(|∇u|p−2∇u−|∇v|p−2∇v)(∇u−∇v)dx+∫RN(|u|p−2u−|v|p−2v)(u−v)dx−∫RN[Iα∗H(u−v)]G(u−v)dx. |
Now, we give the verifications of (i)–(ii). By Lemma 2.1, we have that for 1<p<2,
∫RN(|∇u|p−2∇u−|∇v|p−2∇v)(∇u−∇v)dx+∫RN(|u|p−2u−|v|p−2v)(u−v)dx⩾C{[∫RN(|∇u|p−2∇u−|∇v|p−2∇v)(∇u−∇v)dx][∫RN(|∇u|p+|∇v|p)dx]2−pp+[∫RN(|u|p−2u−|v|p−2v)(u−v)dx][∫RN(|u|p+|v|p)dx]2−pp}⩾C{[∫RN|(|∇u|p−2∇u−|∇v|p−2∇v)(∇u−∇v)|p2(|∇u|2−p+|∇v|2−p)p2dx]2p+[∫RN|(|u|p−2u−|v|p−2v)(u−v)|p2(|u|2−p+|v|2−p)p2dx]2p}⩾C{[∫RN|(|∇u|p−2∇u−|∇v|p−2∇v)(∇u−∇v)|p2(∇u+∇v)p(2−p)2dx]2p+[∫RN|(|u|p−2u−|v|p−2v)(u−v)|p2(u+v)p(2−p)2dx]2p}⩾C[(∫RN|∇(u−v)|pdx)2p+(∫RN|u−v|pdx)2p], | (3.2) |
and for 2⩽p<∞,
∫RN(|∇u|p−2∇u−|∇v|p−2∇v)(∇u−∇v)dx+∫RN(|u|p−2u−|v|p−2v)(u−v)dx⩾C(∫RN|∇(u−v)|pdx+∫RN|u−v|pdx). | (3.3) |
Combining (3.2) and (3.3), for p∈(1,∞) there exists C>0 such that
∫RN(|∇u|p−2∇u−|∇v|p−2∇v)(∇u−∇v)dx+∫RN(|u|p−2u−|v|p−2v)(u−v)dx⩾C(∫RN|∇(u−v)|pdx+∫RN|u−v|pdx). | (3.4) |
In view of Lemma 3.2 with θ=1, there exists τ>0 such that for each v∈E, we have
∫RN(Iα∗G|v|)H|v|dx⩽12∫RN|∇v|2dx+τ2∫RN|v|2dx. | (3.5) |
Taking this together with (3.4) and (3.5), we obtain
⟨Φu−Φφ,u−φ⟩⩾12‖u−φ‖2D1,2(RN)+τ2‖u−φ‖2L2(RN)+C(‖u−φ‖pD1,p(RN)+‖u−φ‖pLp(RN))>0. |
So, condition (i) follows. By Lemma 3.2, it is easy to verify condition (ii). The proof is complete.
Lemma 3.4. Suppose that H,G∈L2Nα(RN)+L2Nα+2(RN) and u∈E solve
−Δpu−Δu+u+|u|p−2u=(Iα∗Hu)G. | (3.6) |
Then, u∈Lq(RN) for each q∈[2,2∗Nα].
Proof. Using Lemma 3.2 with θ=1, there exists τ>0 such that, for every φ∈E,
∫RN(Iα∗|Hφ|)|Gφ|dx⩽12‖φ‖2D1,2(RN)+τ2‖φ‖2L2(RN). | (3.7) |
Let sequences {Hn},{Gn}∈L2Nα(RN) such that |Hn|⩽|H| and |Gn|⩽|G|, and Hn→H and Gn→G almost everywhere in RN. In what follows, we claim that there exists a unique solution un∈E satisfying
−Δpun−Δun+τun+|un|p−2un=[Iα∗(Hnun)]Gn+(τ−1)u, | (3.8) |
where u∈E is the given solution of (3.6). The duality is given in this case by
⟨Ψu,φ⟩=∫RN∇u∇φdx+∫RN|∇u|p−2∇u∇φdx+τ∫RNuφdx+∫RN|u|p−2uφdx−∫RN(Iα∗Hu)Gφdx, ∀u,φ∈E. | (3.9) |
In view of Lemma 3.3, it is easy to verify that Ψ satisfies all the conditions described in Proposition 3.1. Applying Proposition 3.1 with g(u)=(τ−1)u, we get the desired results.
Moreover, we also claim that the sequence {un} converges weakly to u in E as n→∞. Multiplying both sides of (3.8) by un and integrating it over RN, then
‖un‖2D1,2(RN)+τ‖un‖2L2(RN)+‖un‖pD1,p(RN)+‖un‖pLp(RN)=∫RN[Iα∗(Hnun)]Gnundx+(τ−1)∫RNunudx. |
Combining this with (3.7), the Hölder inequality, and the Young inequality, one has
12‖un‖2D1,2(RN)+τ2‖un‖2L2(RN)+‖un‖pD1,p(RN)+‖un‖pLp(RN)⩽(τ−1)(∫RN|un|2dx)12(∫RN|u|2dx)12⩽τ−12(‖un‖2L2(RN)+‖u‖2L2(RN)). |
By this, we obtain
‖un‖2H1(RN)+‖un‖pW1,p(RN)⩽C‖u‖2L2(RN), | (3.10) |
which implies that {un} is bounded in E. Then, there exists ˜u∈E such that un⇀˜u in E and un→˜u almost everywhere in RN. By Hn∈L2Nα+2(RN), it is easy to verify Hnun is bounded in L2NN+α(RN). Hence, we get Hnun⇀H˜u in L2NN+α(RN). Moreover, for any φ∈C∞0(RN), by |Gn|⩽|G| and the Lebesgue dominated convergence theorem, we can deduce Gnφ→Gφ in L2NN+α(RN). Then, we have
∫RN[Iα∗(Hnun)]Gnφdx→∫RN[Iα∗(H˜u)]Gφdx, ∀φ∈C∞0(RN). |
Thus, ˜u is a weak solution of
−Δp˜u−Δ˜u+τ˜u+|˜u|p−2˜u=[Iα∗(H˜u)]G+(τ−1)u. | (3.11) |
By Proposition 3.1, we know that Eq (3.11) admits a unique solution. Then, u=˜u.
For θ>0, we define the truncation un,θ:RN→R by
un,θ(x)={−θ,un⩽−θ,un,−θ<un<θ,θ,un⩾θ. |
For any q>2, it is easy to check |un,θ|q−2un,θ∈E. Taking |un,θ|q−2un,θ∈E as a test function in Eq (3.8), we can see that
∫RN∇un∇(|un,θ|q−2un,θ)dx+τ∫RN||un,θ|q2|2dx⩽∫RN∇un∇(|un,θ|q−2un,θ)dx+∫RN|∇un|p−2∇un∇(|un,θ|q−2un,θ)dx+τ∫RN|un,θ|q−2un,θundx+∫RN|un,θ|q−2un,θ|un|p−2undx=∫RN[Iα∗(Hnun)](Gn|un,θ|q−2un,θ)dx+(τ−1)∫RN|un,θ|q−2un,θundx. |
Applying Lemma 3.2 with θ=2q, where q∈[2,2Nα), there then exists C>0 such that
∫RN[Iα∗|Hnun,θ|](|Gn||un,θ|q−2un,θ)dx⩽∫RN[Iα∗(|H||un,θ|)](|G||un,θ|q−1)dx⩽2(q−1)q2∫RN|∇(|un|q2)|2dx+C∫RN||un,θ|q2|2dx. |
Taking this together with the above two chain of inequalities and making use of the Hölder inequality and the Young inequality, we can infer
∫RN|∇(|un|q2)|2dx⩽C∫RN(|un|q+|u|q)dx+C∫{|un|>θ}[Iα∗(|Hnun|)](|Gn||un|q−1)dx. | (3.12) |
By q∈[2,2Nα) and Proposition 2.1, then
∫{|un|>θ}[Iα∗(|Hnun|)](|Gn||un|q−1)dx⩽C(∫RN|Hnun|sdx)1s(∫RN||Gn||un|q−1|tdx)1t, |
with 1s=N+α2N−12+1q and 1t=N+α2N+12−1q.
Using the fact that un∈Lq(RN) and Hn,Gn∈L2Nα(RN), we get |Hnun|∈Ls(RN) and |Gn||un|q−1∈Lt(RN). By applying the Lebesgue dominated convergence theorem, we have
limθ→∞∫{|un|>θ}[Iα∗(|Hnun|)](|Gn||un|q−1)dx=0. |
Inserting this into (3.12) and taking θ→∞, by the Sobolev embedding theorem we can deduce
(∫RN|un|qNN−2dx)N−2N⩽C∫RN(|un|q+|u|q)dx. | (3.13) |
Taking into account (3.10), (3.13), and the Fatou lemma, we get that
(∫RN|u|qNN−2dx)N−2N⩽C∫RN|u|qdx, | (3.14) |
which means that u∈Lq(RN) for any q∈[2,2∗Nα]. The proof is complete.
Lemma 3.5. ([19]) Let 1⩽s⩽∞, g∈Lt1(RN), and h∈Lt2(RN). Then, there exists C>0 such that
‖g∗h‖Ls(RN)⩽C‖g‖Lt1(RN)‖h‖Lt2(RN), |
where
1t1+1t2=1+1s. |
Lemma 3.6. Suppose that all the conditions described in Theorem 1.1 are satisfied. Let u∈E be a nontrivial solution of Eq (1.1). Then,
‖Iα∗F(u)‖L∞(RN)⩽C |
Proof. In view of Lemma 3.4, we obtain u∈Lq(RN) for every q∈[2,2∗Nα]. By condition (F1), one can infer F(u)∈L˜p(RN) for every ˜p∈[2NN+α,2N2α(N+α)].
Fixing ϵ∈(0,αN2N+α), Iα can be decomposed as
Iα=I1α+I2α, |
where I1α∈LN−ϵN−α(RN) and I2α∈LN+ϵN−α(RN). Let s=∞ in Lemma 3.5. It follows from I1α∈LN−ϵN−α(RN) that
‖I1α∗F(u)‖L∞(RN)⩽C‖I1α‖LN−ϵN−α(RN)‖F(u)‖LN−ϵα−ϵ(RN). | (3.15) |
Similar to (3.15), by I2α∈LN+ϵN−α(RN) we can infer that
‖I2α∗F(u)‖L∞(RN)⩽C‖I2α‖LN+ϵN−α(RN)‖F(u)‖LN+ϵα+ϵ(RN). | (3.16) |
In view of ϵ∈(0,αN2N+α), we derive
2NN+α<N+ϵα+ϵ<N−ϵα−ϵ<2N2α(N+α). | (3.17) |
It follows from (3.15)–(3.17) that
I1α∗F(u)∈L∞(RN) and I2α∗F(u)∈L∞(RN). |
The proof is completed.
Lemma 3.7. Suppose that all the conditions described in Theorem 1.1 are satisfied. Let u∈E be a nontrivial solution of Eq (1.1). For each L>2, define
uL(x)={−L,u(x)<−L;u(x),|u(x)|⩽L;L,u(x)>L. |
For τ>1, we set ˜uL=uu2(τ−1)L. Then, for any s∈[2,2∗], we have
(∫RN|uuτ−1L|sdx)2s⩽Cτ2(∫RNu2♯α−2|uuτ−1L|2dx+∫RNu2∗α−2|uuτ−1L|2dx). |
Proof. Multiplying both sides of Eq (1.1) by ˜uL and integrating, it follows that
∫RN∇u∇˜uLdx+∫RNu˜uLdx+∫RN|∇u|p−2∇u∇˜uLdx+∫RN|u|p−2u˜uLdx=∫RN(Iα∗F(u))f(u)˜uLdx. |
Combining the above relation with Lemma 3.6, this leads to
(∫RN|uuτ−1L|sdx)2s⩽C[∫RN|∇(uuτ−1L)|2dx+∫RNu˜uLdx]⩽Cτ2(∫RNu2♯α−2|uuτ−1L|2dx+∫RNu2∗α−2|uuτ−1L|2dx). |
The proof is completed.
We now are ready to establish Theorem 1.1.
Proof of Theorem 1.1. (ⅰ) (L∞ estimate) We consider the following two cases separately.
Case 1. 2∗α⩽2⇔N⩾4+α.
In this case, we should keep in mind that τ=2∗2.
Step 1. Clearly, we have
2<2♯α+2(τ−1)<2∗α+2(τ−1)<2∗Nα. |
In view of Lemma 3.4, we have u∈Lq(RN) for any q∈[2,2∗Nα]. That is,
∫RNu2♯α−2|uuτ−1L|2dx<∞ and ∫RNu2∗α−2|uuτ−1L|2dx<∞. |
For any 0<R<∞, we set
Bτ=∫RNu2♯α−2|uuτ−1L|2dx=∫{u⩽R}u2♯α−2|uuτ−1L|2dx+∫{u>R}u2♯α−2|uuτ−1L|2dx=Bτ(R)+Bcτ(R) |
and
˜Bτ=∫RNu2∗α−2|uuτ−1L|2dx=∫{u⩽R}u2∗α−2|uuτ−1L|2dx+∫{u>R}u2∗α−2|uuτ−1L|2dx=˜Bτ(R)+˜Bcτ(R). |
Obviously, we have
limR→∞Bτ(R)=Bτ, limR→0Bτ(R)=0 |
and
limR→∞˜Bτ(R)=˜Bτ, limR→0˜Bτ(R)=0. |
Clearly, if it holds that Bτ=Bτ(R) or ˜Bτ=˜Bτ(R), then we have u∈L∞(RN). This completes our proof. To this end, we just need to consider the following case
Bτ(R)<Bτ and ˜Bτ(R)<˜Bτ. |
Without loss of generality, we set R=1. Then, there exist 0<C1,˜C1<∞ such that
Bτ(1)=C1Bτ and ˜Bτ(1)=˜C1˜Bτ. | (3.18) |
From 2♯α<2, we deduce
Bcτ(1)=∫{u>1}u2♯α−2|uuτ−1L|2dx⩽∫{u>1}|uuτ−1L|2dx. |
It follows from (3.18) that
Bτ=Bτ(1)+Bcτ(1)=11−C1Bcτ(1)⩽11−C1∫{u>1}|uuτ−1L|2dx. | (3.19) |
Similarly, one can infer
˜Bτ=˜Bτ(1)+˜Bcτ(1)=11−˜C1˜Bcτ(1)⩽11−˜C1∫{u>1}|uuτ−1L|2dx. | (3.20) |
Combining (3.19), (3.20), and Lemma 3.7, we obtain
(∫RN|uuτ−1L|sdx)2s⩽(C1−C1+C1−˜C1)∫RN|uuτ−1L|2dx. |
Let L→∞ in the above expression. Then,
(∫RN|u|sτdx)2s⩽(C1−C1+C1−˜C1)∫RN|u|2τdx. | (3.21) |
By τ=2∗2, we have
‖u‖L2∗s2(RN)⩽(C1−C1+C1−˜C1)12∗‖u‖L2∗(RN)<∞. |
Since s∈[2,2∗], we get u∈Lp1(RN), where p1∈[2,(2∗)22].
Step 2. Obviously, we have
2<2♯α+2(τ2−1)<2∗α+2(τ2−1)<(2∗)22 |
and for Bτ and ˜Bτ, we have
Bτ2<∞ and ˜Bτ2<∞. |
Similar to Step 1, we just need to show the case
Bτ2(1)<Bτ2 and ˜Bτ2(1)<˜Bτ2. |
Moreover, we have
Bτ(1)=∫{u⩽1}u2♯α−2|uuτ−1L|2dx⩾∫{u⩽1}u2♯α−2|uuτ−1L(uτ2−τL)|2dx=Bτ2(1) | (3.22) |
and
Bcτ(1)=∫{u>1}u2♯α−2|uuτ−1L|2dx⩽∫{u>1}u2♯α−2|uuτ−1L(uτ2−τL)|2dx=Bcτ2(1). | (3.23) |
In view of (3.19), (3.20), (3.22), and (3.23), it follows that
Bτ2(1)⩽Bτ(1)=C11−C1Bcτ(1)⩽C11−C1Bcτ2(1), |
which implies
Bτ2⩽11−C1∫{u>1}|uuτ2−1L|2dx. |
Similarly, we have
˜Bτ2⩽11−˜C1∫{u>1}|uuτ2−1L|2dx. |
Taking L→∞ and making use of Lemma 3.7 again, we get
‖u‖Ls⋅(2∗2)2(RN)⩽(C1−C1+C1−˜C1)12⋅(2∗2)2‖u‖L(2∗)22(RN)<∞, |
which implies u∈Lp2(RN), where p2∈[2,2∗s⋅(2∗s2)2].
Step 3. Iterating the above procedure, for any n∈N∗ we conclude
‖u‖Ls⋅(2∗2)n(RN)⩽(C1−C1+C1−˜C1)12⋅(2∗2)n‖u‖L(2∗)n2n−1(RN). |
Let s=2∗. Then,
‖u‖L(2∗)n+12n(RN)⩽(C1−C1+C1−˜C1)n∑i=112⋅(2∗2)i‖u‖L2∗(RN). | (3.24) |
Obviously, we have
limi→∞2⋅(2∗2)i2⋅(2∗2)i+1=22∗<1. |
This means that the series n∑i=112⋅(2∗2)i converges absolutely.
Let n→∞ in (3.24). Then, it holds that
‖u‖L∞(RN)⩽C‖u‖L2∗(RN)<∞. |
Case 2. 2∗α>2⇔N<4+α.
Step 1. Let τ1∈[1+2−2♯α2,1+2∗Nα−2♯α2]. Then, we claim
(1+∫RN|u|2∗ατ1dx)22∗α(τ1−1)<∞. | (3.25) |
By the definition of uL, we obtain
∫RN|u|2♯α−2|uuτ1−1L|2dx⩽∫RN|u|2♯α+2(τ1−1)dx. |
Let l>0 be chosen later. By the Hölder inequality, we have
∫RNu2∗α−2|uuτ1−1L|2dx⩽l2∗α−2♯α∫{u⩽l}u2♯α−2|uuτ1−1L|2dx+∫{u>l}u2∗α−2|uuτ1−1L|2dx⩽l2∗α−2♯α∫RN|u|2♯α+2(τ1−1)dx+(∫{u>l}|u|2∗αdx)2∗α−22∗α(∫RN|uuτ1−1L|2∗αdx)22∗α. |
By 2∗α∈[2,2∗Nα], we can choose suitable l>0 such that
(∫{u>l}|u|2∗αdx)2∗α−22∗α⩽12Cτ21. |
It follows from the inequalities and Lemma 3.7 that
(∫RN|uuτ1−1L|2∗αdx)22∗α⩽2Cτ21(∫RNu2♯α−2|uuτ1−1L|2dx+l2∗α−2♯α∫RN|u|2♯α+2(τ1−1)dx). |
Let L→∞. The above inequality becomes
(∫RN|u|2∗ατ1dx)22∗α⩽2Cτ21(1+l2∗α−2♯α)∫RN|u|2♯α+2(τ1−1)dx. | (3.26) |
In view of 2♯α+2(τ1−1)∈[2,2∗Nα] and (3.26), we conclude (3.25).
Step 2. Let τ2=1+2∗α2(τ1−1). We claim
(1+∫RN|u|2∗ατ2dx)22∗α(τ2−1)⩽(Cτ2)2τ2−1(1+∫RN|u|2∗ατ1dx)22∗α(τ1−1). |
We choose τ∈[τ1,τ2]. Then,
2⩽2♯α+2(τ−1)<2∗α+2(τ−1)⩽2∗ατ1. |
Combining (3.25) and Lemma 3.7, we obtain
(∫RN|u|2∗ατdx)22∗α⩽Cτ2(∫RN|u|2♯α+2(τ−1)dx+∫RN|u|2∗α+2(τ−1)dx)<∞. | (3.27) |
Let τ=τ2 in (3.27). Then,
(∫RN|u|2∗ατ2dx)22∗α⩽Cτ22(∫RN|u|2♯α+2(τ2−1)dx+∫RN|u|2∗α+2(τ2−1)dx)<∞. |
Making use of the Young inequality, it holds that
∫RN|u|2♯α+2(τ2−1)dx=∫RN|u|a|u|bdx⩽a2∗α∫RN|u|2∗αdx+2∗α−a2∗α∫RN|u|2∗α+2(τ2−1)dx⩽C(1+∫RN|u|2∗α+2(τ2−1)dx), |
where a=2∗α(2∗α−2♯α)2(τ2−1) and b=2♯α+2(τ2−1)−2∗α(2∗α−2♯α)2(τ2−1). Thus, we get
(∫RN|u|2∗ατ2dx)22∗α⩽Cτ22(1+∫RN|u|2∗α+2(τ2−1)dx). |
Moreover, by 22∗α<1, it is easy to observe
(x1+x2)22∗α⩽x22∗α1+x22∗α2, ∀x1,x2>0. |
Then,
(1+∫RN|u|2∗ατ2dx)22∗α⩽1+(∫RN|u|2∗ατ2dx)22∗α⩽Cτ22(1+∫RN|u|2∗α+2(τ2−1)dx), |
which implies
(1+∫RN|u|2∗ατ2dx)22∗α(τ2−1)⩽(Cτ2)2τ2−1(1+∫RN|u|2∗ατ1dx)1τ2−1=(Cτ2)2τ2−1(1+∫RN|u|2∗ατ1dx)22∗α(τ1−1). |
Step 3. We iterate the above procedure and set
τi+1−1=2∗α2(τi−1), ∀i⩾1 and i∈N∗. | (3.28) |
Then,
(1+∫RN|u|2∗ατi+1dx)22∗α(τi+1−1)⩽(Cτi+1)2τi+1−1(1+∫RN|u|2∗ατidx)22∗α(τi−1), |
which further gives
(∫RN|u|2∗ατn+1dx)22∗α(τn+1−1)⩽(1+∫RN|u|2∗ατn+1dx)22∗α(τn+1−1)⩽n∏i=1(Cτi+1)2τi+1−1(1+∫RN|u|2∗ατ1dx)22∗α(τ1−1). |
This yields that
‖u‖L2∗ατn+1(RN)⩽[n∏i=1(Cτi+1)2τi+1−1(1+∫RN|u|2∗ατ1dx)22∗α(τ1−1)]τn+1−12τn+1. | (3.29) |
According to (3.28), we deduce
τn+1=1+(2∗α2)n(τ1−1). | (3.30) |
Taking into account (3.29) and (3.30), it follows that
‖u‖L2∗ατn+1(RN)⩽[n∏i=1(Cτi+1)2τi+1−1(1+∫RN|u|2∗ατ1dx)22∗α(τ1−1)](2∗α)n(τ1−1)2[2n+(2∗α)n(τ1−1)]. | (3.31) |
By a straightforward calculation, we can infer
limn→∞n∏i=1(Cτi+1)2τi+1−1=limn→∞e2n∑i=1(lnCτi+1−1+lnτi+1τi+1−1). | (3.32) |
For the series ∞∑i=1lnCτi+1−1, we have
limi→∞i√lnCτi+1−1=limi→∞i√2ilnC(2∗α)i(τ1−1)=22∗α<1. | (3.33) |
This means ∞∑i=1lnCτi+1−1 converges absolutely.
For the series ∞∑i=1lnτi+1τi+1−1, it follows that
limi→∞lnτi+2τi+2−1⋅τi+1−1lnτi+1=22∗αlimi→∞ln[1+2∗α2(τi+1−1)]lnτi+1⩽22∗αlimi→∞ln[2∗α2+2∗α2(τi+1−1)]lnτi+1=22∗αlimi→∞(ln2∗α2lnτi+1+lnτi+1lnτi+1)<1, | (3.34) |
which implies ∞∑i=1lnτi+1τi+1−1 converges absolutely.
Together with (3.32)–(3.34), we conclude ∞∏i=1(Cτi+1)2τi+1−1<∞. Letting n→∞ in (3.31), we obtain
‖u‖L∞(RN)<∞. |
(ⅱ) (Pohožaev indentity) Observe that, by u∈L∞(RN), Lemma 3.6, and condition (F1), there exists C>0 such that
−Δpu−Δu=−u−|u|p−2u+(Iα∗F(u))f(u)⩽C(|u|2♯α−2u+|u|2∗α−2u). |
Set l(u)=C(|u|2♯α−2u+|u|2∗α−2u). By a classical bootstrapping argument for subcritical local problems in [33], we infer that u∈W2,qloc(RN) for every q⩾1, and hence we have u∈C1,βloc(RN) for any 0<β<1 by the Sobolev embedding theorem. Under the classical strategy used in [25, Theorem 3], one can show that
N−22‖u‖2D1,2(RN)+N2‖u‖2L2(RN)+N−pp‖u‖pD1,p(RN)+Np‖u‖pLp(RN)=N+α2∫RN(Iα∗F(u))F(u)dx. |
This completes the proof of Theorem 1.1.
In this section, we prove Theorem 1.2 by virtue of the Pohožaev manifold method and a generalized version of a Lions-type theorem.
Under condition (F2), Eq (1.1) turns into a (p,2)-Laplacian equation as follows:
−Δpu−Δu+u+|u|p−2u=[Iα∗(12♯α|u|2♯α+λ2∗α|u|2∗α)](|u|2♯α−2u+λ|u|2∗α−2u), x∈RN. | (D) |
Then, the corresponding energy functional of Eq (D) can be defined as
J(u)=12‖u‖2D1,2(RN)+12‖u‖2L2(RN)+1p‖u‖pD1,p(RN)+1p‖u‖pLp(RN)−12⋅(2♯α)2∫RN(Iα∗|u|2♯α)|u|2♯αdx−λ22⋅(2∗α)2∫RN(Iα∗|u|2∗α)|u|2∗αdx−λ2♯α⋅2∗α∫RN(Iα∗|u|2♯α)|u|2∗αdx. |
It is easy to check J∈C1(E,R). Obviously, the critical points of J are weak solutions of Eq (D) and satisfy the following Pohožaev identity:
P(u)=N−22‖u‖2D1,2(RN)+N2‖u‖2L2(RN)+N−pp‖u‖pD1,p(RN)+Np‖u‖pLp(RN)−N+α2⋅(2♯α)2∫RN(Iα∗|u|2♯α)|u|2♯αdx−λ2(N+α)2⋅(2∗α)2∫RN(Iα∗|u|2∗α)|u|2∗αdx−λ(N+α)2♯α⋅2∗α∫RN(Iα∗|u|2♯α)|u|2∗αdx. |
We define the Pohožaev manifold and its minimum as follows:
\begin{equation*} \begin{aligned} \mathcal{P} = \left\{u\in E\backslash\{0\}\big|P(u) = 0 \right\} \ \ \mathrm{and} \ \ m = \inf\limits_{u\in\mathcal{P}}J(u). \end{aligned} \end{equation*} |
Lemma 4.1. Assume that all conditions described in Theorem 1.2 are satisfied. Let C_{1}, C_{2}, C_{3} > 0 . Define a function k:\mathbb{R}^{+}\to\mathbb{R} as
\begin{equation*} \begin{aligned} k(t) = C_{1}t^{N-2}+C_{2}t^{N}+C_{3}t^{N-p}-C_{4}t^{N+\alpha}. \end{aligned} \end{equation*} |
Then, k(t) has a unique critical point which corresponds to its maximum.
Proof. By the definition of k(\cdot) , we have
\begin{equation*} \begin{aligned} k'(t) = C_{1}(N-2)t^{N-3}+C_{2}Nt^{N-1}+C_{3}(N-p)t^{N-p-1}-C_{4}(N+\alpha)t^{N+\alpha-1}. \end{aligned} \end{equation*} |
From the above expression, it is easy to see that k'(t) > 0 for t > 0 small, and k'(t) < 0 for t > 0 large. This yields that k(t) possesses at least one maximum point. Next, we claim that the maximun point corresponding to k(t) is unique. Otherwise, we suppose that there exists t_{1}\not = t_{2} > 0 such that
\begin{equation*} \begin{aligned} k'(t_{1}) = C_{1}(N-2)t_{1}^{N-3}+C_{2}Nt_{1}^{N-1}+C_{3}(N-p)t_{1}^{N-p-1}-C_{4}(N+\alpha)t_{1}^{N+\alpha-1} = 0 \end{aligned} \end{equation*} |
and
\begin{equation*} \begin{aligned} k'(t_{2}) = C_{1}(N-2)t_{2}^{N-3}+C_{2}Nt_{2}^{N-1}+C_{3}(N-p)t_{2}^{N-p-1}-C_{4}(N+\alpha)t_{2}^{N+\alpha-1} = 0. \end{aligned} \end{equation*} |
Combining the above two equalities, it holds that
\begin{equation*} \begin{aligned} C_{1}(N-2)(t_{1}^{-2}-t_{2}^{-2})+C_{3}(N-p)(t_{1}^{-p}-t_{2}^{-p}) = C_{4}(N+\alpha)(t_{1}^{\alpha}-t_{2}^{\alpha}), \end{aligned} \end{equation*} |
which further gives t_{1} = t_{2} . The proof is complete.
Lemma 4.2. Assume that all conditions described in Theorem 1.2 are satisfied. Then, for every u\in E , there exists a unique t_{u} > 0 such that P(u_{t_{u}}) = 0 , where u_{t} = u\left(\frac{x}{t}\right) . Moreover, J(u_{t_{u}}) = \max\limits_{t\geqslant 0} J(u_{t}) .
Proof. For every u\in E\backslash\{0\} , one has
\begin{equation*} \begin{aligned} J(u_{t}) = & \frac{t^{N-2}}{2} \|u\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{t^{N}}{2} \|u\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{t^{N-p}}{p} \|u\|_{D^{1, p}(\mathbb{R}^{N})}^{2} + \frac{t^{N}}{p} \|u\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{t^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|u|^{2_{\alpha}^{\sharp}}\bigr) |u|^{2_{\alpha}^{\sharp}} \mathrm{d}x - \frac{\lambda^{2}t^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|u|^{2_{\alpha}^{*}}\bigr) |u|^{2_{\alpha}^{*}} \mathrm{d}x \\&- \frac{\lambda t^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|u|^{2_{\alpha}^{\sharp}}\bigr) |u|^{2_{\alpha}^{*}} \mathrm{d}x \end{aligned} \end{equation*} |
and
\begin{equation*} \begin{aligned} P(u_{t}) = & \frac{(N-2)t^{N-2}}{2} \|u\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{Nt^{N}}{2} \|u\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{(N-p)t^{N-p}}{p} \|u\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{Nt^{N}}{p} \|u\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{(N+\alpha)t^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|u|^{2_{\alpha}^{\sharp}}\bigr) |u|^{2_{\alpha}^{\sharp}} \mathrm{d}x - \frac{\lambda^{2}(N+\alpha)t^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|u|^{2_{\alpha}^{*}}\bigr) |u|^{2_{\alpha}^{*}} \mathrm{d}x \\&- \frac{\lambda(N+\alpha)t^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|u|^{2_{\alpha}^{\sharp}}\bigr) |u|^{2_{\alpha}^{*}} \mathrm{d}x. \end{aligned} \end{equation*} |
Combining the above two formulas, it is easy to see that P(u_{t}) = tJ'(u_{t}) = 0 . By Lemma 4.1, we complete the proof.
Lemma 4.3. Suppose that all conditions described in Theorem 1.2 are satisfied. Then, m > 0 .
Proof. For every u\in\mathcal{P} , it follows from Proposition 2.1 that
\begin{equation*} \begin{aligned} &\frac{N-2}{2} \|u\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{N}{2} \|u\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{N-p}{p} \|u\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{N}{p} \|u\|_{L^{p}(\mathbb{R}^{N})}^{p} \\ = & \frac{N+\alpha}{2\cdot(2_{\alpha}^{\sharp})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u|^{2_{\alpha}^{\sharp}} \bigr)|u|^{2_{\alpha}^{\sharp}} \mathrm{d}x + \frac{\lambda^{2}(N+\alpha)}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u|^{2_{\alpha}^{\sharp}} \bigr)|u|^{2_{\alpha}^{*}} \mathrm{d}x \\&+ \frac{\lambda(N+\alpha)}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u|^{2_{\alpha}^{*}} \bigr)|u|^{2_{\alpha}^{*}} \mathrm{d}x \\\leqslant& C\|u\|_{E}^{2\cdot 2_{\alpha}^{\sharp}} + C\|u\|_{E}^{2_{\alpha}^{\sharp}+2_{\alpha}^{*}} + C\|u\|_{E}^{2\cdot 2_{\alpha}^{*}}, \end{aligned} \end{equation*} |
which implies that \|u\|_{E}\geqslant C . Then, it holds that
\begin{equation} \begin{aligned} &J(u)-\frac{1}{N+\alpha}P(u) \\ = & \frac{\alpha+2}{2(N+\alpha)} \|u\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{\alpha}{2(N+\alpha)} \|u\|_{L^{2}(\mathbb{R}^{N})}^{2} \\{+}& \frac{\alpha+p}{p(N+\alpha)} \|u\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{\alpha}{p(N+\alpha)} \|u\|_{L^{p}(\mathbb{R}^{N})}^{p} \\\geqslant& C\|u\|_{E}^{2} > 0. \end{aligned} \end{equation} | (4.1) |
The proof is complete.
Lemma 4.4. Assume that all conditions described in Theorem 1.2 are satisfied. Then, we have
\begin{equation*} \begin{aligned} 0 < m < m^{*} = & \min\left\{ \frac{\alpha}{2(N+\alpha)} \left[ \frac{N\cdot(2_{\alpha}^{\sharp})^{2}}{N+\alpha} \right] ^{\frac{1}{2_{\alpha}^{\sharp}-1}} \mathcal{S}_{1}^{\frac{2_{\alpha}^{\sharp}}{2_{\alpha}^{\sharp}-1}} , \frac{\alpha+2}{2(N+\alpha)}\left[ \frac{(2_{\alpha}^{*})^{2}(N-2)}{\lambda^{2}(N+\alpha)} \right] ^{\frac{1}{2_{\alpha}^{*}-1}} \mathcal{S}_{2}^{\frac{2_{\alpha}^{*}}{2_{\alpha}^{*}-1}} \right\}. \end{aligned} \end{equation*} |
Proof. From \lambda < \Lambda , we can easily get
\begin{equation*} \begin{aligned} \frac{\alpha}{2(N+\alpha)} \left[ \frac{N\cdot(2_{\alpha}^{\sharp})^{2}}{N+\alpha} \right] ^{\frac{1}{2_{\alpha}^{\sharp}-1}} \mathcal{S}_{1}^{\frac{2_{\alpha}^{\sharp}}{2_{\alpha}^{\sharp}-1}} < \frac{\alpha+2}{2(N+\alpha)}\left[ \frac{(2_{\alpha}^{*})^{2}(N-2)}{\lambda^{2}(N+\alpha)} \right] ^{\frac{1}{2_{\alpha}^{*}-1}} \mathcal{S}_{2}^{\frac{2_{\alpha}^{*}}{2_{\alpha}^{*}-1}}, \end{aligned} \end{equation*} |
where \Lambda is defined in Threorem 1.2.
The extremal function of inequalities (2.1) can be defined as
\begin{equation*} \begin{aligned} \mu_{\sigma} = \frac{C\sigma^{\frac{N}{2}}}{(\sigma^{2}+|x|^{2})^{\frac{N}{2}}}. \end{aligned} \end{equation*} |
Let t_{\sigma} > 0 satisfy
\begin{equation*} \begin{aligned} J\bigl((\mu_{\sigma})_{t_{\sigma}}\bigr) = \max\limits_{t > 0}J\bigl((\mu_{\sigma})_{t}\bigr). \end{aligned} \end{equation*} |
By the definition of m , it is easy to see that
\begin{equation*} \begin{aligned} 0 < m < J\bigl((\mu_{\sigma})_{t_{\sigma}}\bigr). \end{aligned} \end{equation*} |
A straightforward calculation shows that
\begin{equation*} \begin{aligned} \|\mu_{\sigma}\|_{L^{2}(\mathbb{R}^{N})}^{2} = \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} = \int_{\mathbb{R}^{N}} \bigl(I_\alpha * |\mu_{1}|^{2_{\alpha}^{\sharp}}\bigr) |\mu_{1}|^{2_{\alpha}^{\sharp}} \mathrm{d}x = \int_{\mathbb{R}^{N}} \bigl(I_\alpha * |\mu_{\sigma}|^{2_{\alpha}^{\sharp}}\bigr) |\mu_{\sigma}|^{2_{\alpha}^{\sharp}} \mathrm{d}x = \mathcal{S}_{1}^{\frac{2_{\alpha}^{\sharp}}{2_{\alpha}^{\sharp}-1}}. \end{aligned} \end{equation*} |
Moreover, we can compute
\begin{equation*} \begin{aligned} \int_{\mathbb{R}^{N}} |\nabla\mu_{\sigma}|^{2} \mathrm{d}x = \sigma^{-2} \int_{\mathbb{R}^{N}} |\nabla\mu_{1}|^{2} \mathrm{d}x, \ \ \int_{\mathbb{R}^{N}} |\nabla\mu_{\sigma}|^{p} \mathrm{d}x = \sigma^{\frac{(2-p)N}{2}-p} \int_{\mathbb{R}^{N}} |\nabla\mu_{1}|^{p} \mathrm{d}x \end{aligned} \end{equation*} |
and
\begin{equation*} \begin{aligned} \int_{\mathbb{R}^{N}} |\mu_{\sigma}|^{p} \mathrm{d}x = \sigma^{\frac{(2-p)N}{2}} \int_{\mathbb{R}^{N}} |\mu_{1}|^{p} \mathrm{d}x \end{aligned} \end{equation*} |
and
\begin{equation*} \begin{aligned} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|\mu_{\sigma}|^{2_{\alpha}^{*}}\bigr)|\mu_{\sigma}|^{2_{\alpha}^{*}} \mathrm{d}x = \sigma^{-2\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}}\bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \end{aligned} \end{equation*} |
and
\begin{equation*} \begin{aligned} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|\mu_{\sigma}|^{2_{\alpha}^{\sharp}}\bigr)|\mu_{\sigma}|^{2_{\alpha}^{*}} \mathrm{d}x = \sigma^{-2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl(I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}}\bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x. \end{aligned} \end{equation*} |
It follows that
\begin{equation} \begin{aligned} 0 = &P\bigl((\mu_{\sigma})_{t_{\sigma}}\bigr) \\ = & \frac{(N-2)\sigma^{-2}t_{\sigma}^{N-2}}{2} \|\mu_{1}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \left[ \frac{Nt_{\sigma}^{N}}{2} - \frac{(N+\alpha)t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \right] \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} \\&+ \frac{(N-p)\sigma^{\frac{(2-p)N}{2}-p}t_{\sigma}^{N-p}}{p} \|\mu_{1}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{N\sigma^{\frac{(2-p)N}{2}}t_{\sigma}^{N}}{p} \|\mu_{1}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{\lambda^{2}(N+\alpha)\sigma^{-2\cdot 2_{\alpha}^{*}}t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \\&- \frac{\lambda(N+\alpha)\sigma^{-2_{\alpha}^{*}}t_{\sigma}^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x. \end{aligned} \end{equation} | (4.2) |
Taking the limit superior as \sigma\to\infty in (4.1), we further obtain
\begin{equation} \begin{aligned} &\limsup\limits_{\sigma\to\infty} \left[ \frac{(N-2)\sigma^{-2}t_{\sigma}^{N-2}}{2} \|\mu_{1}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{Nt_{\sigma}^{N}}{2} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} \right.\\&+\left. \frac{(N-p)\sigma^{\frac{(2-p)N}{2}-p}t_{\sigma}^{N-p}}{p} \|\mu_{1}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{N\sigma^{\frac{(2-p)N}{2}}t_{\sigma}^{N}}{p} \|\mu_{1}\|_{L^{p}(\mathbb{R}^{N})}^{p} \right] \\ = & \limsup\limits_{\sigma\to\infty} \left[ \frac{(N+\alpha)t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{\lambda^{2}(N+\alpha)\sigma^{-2\cdot 2_{\alpha}^{*}}t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \right.\\&+\left. \frac{\lambda(N+\alpha)\sigma^{-2_{\alpha}^{*}}t_{\sigma}^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \right]. \end{aligned} \end{equation} | (4.3) |
Let s_{\infty} = \limsup\limits_{\sigma\to\infty}t_{\sigma} . We can prove 0 < t_{\sigma} < \infty . Otherwise, we suppose t_{\sigma} = \infty . Then,
\begin{equation*} \begin{aligned} &\limsup\limits_{\sigma\to\infty} \left[ \frac{(N-2)\sigma^{-2}t_{\sigma}^{N-2}}{2} \|\mu_{1}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{Nt_{\sigma}^{N}}{2} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} \right.\\&+\left. \frac{(N-p)\sigma^{\frac{(2-p)N}{2}-p}t_{\sigma}^{N-p}}{p} \|\mu_{1}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{N\sigma^{\frac{(2-p)N}{2}}t_{\sigma}^{N}}{p} \|\mu_{1}\|_{L^{p}(\mathbb{R}^{N})}^{p} \right] \\ < & \limsup\limits_{\sigma\to\infty} {t_{\sigma}}^{N} \left[ \frac{(N+\alpha)t_{\sigma}^{\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} \right] \\\leqslant& \limsup\limits_{\sigma\to\infty} \left[ \frac{(N+\alpha)t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{\lambda^{2}(N+\alpha)\sigma^{-2\cdot 2_{\alpha}^{*}}t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \right.\\&+\left. \frac{\lambda(N+\alpha)\sigma^{-2_{\alpha}^{*}}t_{\sigma}^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \right]. \end{aligned} \end{equation*} |
This yields a contradiction with (4.3).
Now, we show s_{\infty} > 0 . Arguing by contradiction, we assume s_{\infty} = 0 . Therefore, there exists \hat{\sigma} > 0 large such that s_{\hat{\sigma}} > 0 small enough. Then,
\begin{equation*} \begin{aligned} &\frac{(N-2)\hat{\sigma}^{-2}s_{\hat{\sigma}}^{N-2}}{2} \|\mu_{1}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{Ns_{\hat{\sigma}}^{N}}{2} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{(N-p)\hat{\sigma}^{\frac{(2-p)N}{2}-p}s_{\hat{\sigma}}^{N-p}}{p} \|\mu_{1}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} \\&+ \frac{N\hat{\sigma}^{\frac{(2-p)N}{2}}s_{\hat{\sigma}}^{N}}{p} \|\mu_{1}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\ > & \frac{Ns_{\hat{\sigma}}^{N}}{2} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} \\\geqslant& s_{\hat{\sigma}}^{N} \left[ \frac{(N+\alpha)s_{\hat{\sigma}}^{\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{\lambda^{2}(N+\alpha)\hat{\sigma}^{-2\cdot 2_{\alpha}^{*}}s_{\hat{\sigma}}^{\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \right.\\&+\left. \frac{\lambda(N+\alpha)\hat{\sigma}^{-2_{\alpha}^{*}}s_{\hat{\sigma}}^{\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \right] \\ = & \frac{(N+\alpha)s_{\hat{\sigma}}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{\lambda^{2}(N+\alpha)\hat{\sigma}^{-2\cdot 2_{\alpha}^{*}}s_{\hat{\sigma}}^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \\&+ \frac{\lambda(N+\alpha)\hat{\sigma}^{-2_{\alpha}^{*}}s_{\hat{\sigma}}^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x, \end{aligned} \end{equation*} |
which contradicts with (4.2). Hence, we get 0 < s_{\infty} < \infty .
In view of 0 < s_{\infty} < \infty and taking the limit superior as \sigma\to\infty in (4.2) again, it holds that
\begin{equation*} \begin{aligned} \limsup\limits_{\sigma\to\infty} \left[ \frac{Nt_{\sigma}^{N}}{2} - \frac{(N+\alpha)t_{\sigma}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \right] \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} = 0. \end{aligned} \end{equation*} |
Then, we have
\begin{equation*} \begin{aligned} s_{\infty} = \left[ \frac{N\cdot(2_{\alpha}^{\sharp})^{2}}{N+\alpha} \right] ^{\frac{1}{\alpha}}. \end{aligned} \end{equation*} |
Applying this for any \bar{\sigma} > 0 large, it follows that
\begin{equation} \begin{aligned} J\bigl((\mu_{\bar{\sigma}})_{s_{\bar{\sigma}}}\bigr) = & \frac{\bar{\sigma}^{-2}s_{\bar{\sigma}}^{N-2}}{2} \|\mu_{1}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \left( \frac{s_{\bar{\sigma}}^{N}}{2} - \frac{s_{\bar{\sigma}}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \right) \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} \\&+ \frac{\bar{\sigma}^{\frac{(2-p)N}{2}-p}s_{\bar{\sigma}}^{N-p}}{p} \|\mu_{1}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{\bar{\sigma}^{\frac{(2-p)N}{2}}s_{\bar{\sigma}}^{N}}{p} \|\mu_{1}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{\lambda^{2}\bar{\sigma}^{-2\cdot 2_{\alpha}^{*}}s_{\bar{\sigma}}^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{*}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \\&- \frac{\lambda\bar{\sigma}^{-2_{\alpha}^{*}}s_{\bar{\sigma}}^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|\mu_{1}|^{2_{\alpha}^{\sharp}} \bigr)|\mu_{1}|^{2_{\alpha}^{*}} \mathrm{d}x \\ < & \max\limits_{s > 0}\left[ \frac{s^{N}}{2} - \frac{s^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \right] \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2}. \end{aligned} \end{equation} | (4.4) |
Set
\begin{equation*} \begin{aligned} h(t) = \frac{t^{N}}{2} - \frac{t^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}}. \end{aligned} \end{equation*} |
Then, we know h'(s_{\infty}) = 0 and s_{\infty} is the unique maxium point of h(\cdot) . By (4.4), one has
\begin{equation*} \begin{aligned} J\bigl((\mu_{\bar{\sigma}})_{s_{\bar{\sigma}}}\bigr) < \left[ \frac{s_{\infty}^{N}}{2} - \frac{s_{\infty}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \right] \|\mu_{1}\|_{L^{2}(\mathbb{R}^{N})}^{2} = \frac{\alpha}{2(N+\alpha)} \left[ \frac{N\cdot(2_{\alpha}^{\sharp})^{2}}{N+\alpha} \right] ^{\frac{1}{2_{\alpha}^{\sharp}-1}} \mathcal{S}_{1}^{\frac{2_{\alpha}^{\sharp}}{2_{\alpha}^{\sharp}-1}}. \end{aligned} \end{equation*} |
The proof is completed.
Lemma 4.5. Suppose that all conditions described in Theorem 1.2 hold. Let \{u_{n}\} be a bounded minimizing sequence of J satisfying
\begin{equation*} \begin{aligned} J(u_{n})\to m \ \ and \ \ P(u_{n})\to 0, \ \ as\;n\to\infty. \end{aligned} \end{equation*} |
Then, we have
\begin{equation*} \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} |u_{n}|^{2} \mathrm{d}x > 0 \ \ and \ \ \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} |u_{n}|^{2^{*}} \mathrm{d}x > 0. \end{equation*} |
Proof. First, we show \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} |u_{n}|^{2} \mathrm{d}x > 0 . Otherwise, we suppose
\begin{equation} \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} |u_{n}|^{2} \mathrm{d}x = 0. \end{equation} | (4.5) |
Combining Proposition 2.1 and (4.5), we have
\begin{equation*} \begin{aligned} \lim\limits_{n\to\infty} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{\sharp}} \bigr) |u_{n}|^{2_{\alpha}^{\sharp}} \mathrm{d}x \leqslant \lim\limits_{n\to\infty} C_{N, \alpha} \left( \int_{\mathbb{R}^{N}} |u_{n}|^{2} \mathrm{d}x \right) ^{\frac{N+\alpha}{N}} = 0 \end{aligned} \end{equation*} |
and
\begin{equation*} \begin{aligned} \lim\limits_{n\to\infty} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{\sharp}} \bigr) |u_{n}|^{2_{\alpha}^{*}} \mathrm{d}x \leqslant \lim\limits_{n\to\infty} C_{N, \alpha} \left( \int_{\mathbb{R}^{N}} |u_{n}|^{2} \mathrm{d}x \right) ^{\frac{N+\alpha}{2N}} \left( \int_{\mathbb{R}^{N}} |u_{n}|^{2^{*}} \mathrm{d}x \right) ^{\frac{N+\alpha}{2N}} = 0. \end{aligned} \end{equation*} |
Combining the above two inequalities, one has
\begin{equation} \begin{aligned} m+o_{n}(1) = & \frac{1}{2} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{1}{2} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{1}{p} \|u_{n}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{1}{p} \|u_{n}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{\lambda^{2}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{*}} \bigr) |u_{n}|^{2_{\alpha}^{*}} \mathrm{d}x \end{aligned} \end{equation} | (4.6) |
and
\begin{equation} \begin{aligned} o_{n}(1) = & \frac{N-2}{2} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{N}{2} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{N-p}{p} \|u_{n}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{N}{p} \|u_{n}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{\lambda^{2}(N+\alpha)}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{*}} \bigr)|u_{n}|^{2_{\alpha}^{*}} \mathrm{d}x. \end{aligned} \end{equation} | (4.7) |
Combining (4.6) and (4.7), it follows that
\begin{equation} \begin{aligned} m+o_{n}(1) \geqslant& \frac{\alpha+2}{2(N+\alpha)} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{\alpha}{2(N+\alpha)} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{\alpha+p}{p(N+\alpha)} \|u_{n}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} \\&+ \frac{\alpha}{p(N+\alpha)} \|u_{n}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\\geqslant& \frac{\alpha+2}{2(N+\alpha)} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2}. \end{aligned} \end{equation} | (4.8) |
It follows from (2.2) and (4.7) that
\begin{equation*} \begin{aligned} (N-2) \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} \leqslant& \frac{\lambda^{2}(N+\alpha)}{(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{*}} \bigr) |u_{n}|^{2_{\alpha}^{*}} \mathrm{d}x \\\leqslant& \frac{\lambda^{2}(N+\alpha)}{(2_{\alpha}^{*})^{2}} \left( \frac{1}{\mathcal{S}_{2}} \right)^{2_{\alpha}^{*}} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2\cdot 2_{\alpha}^{*}}. \end{aligned} \end{equation*} |
This implies
\begin{equation} \left[ \frac{(2_{\alpha}^{*})^{2}(N-2)}{\lambda^{2}(N+\alpha)} \right] ^{\frac{1}{2_{\alpha}^{*}-1}} \mathcal{S}_{2}^{\frac{2_{\alpha}^{*}}{2_{\alpha}^{*}-1}} \leqslant \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2}. \end{equation} | (4.9) |
In view of (4.8) and (4.9), we can derive
\begin{equation*} \begin{aligned} m+o_{n}(1) \geqslant& \frac{\alpha+2}{2(N+\alpha)}\left[ \frac{(2_{\alpha}^{*})^{2}(N-2)}{\lambda^{2}(N+\alpha)} \right] ^{\frac{1}{2_{\alpha}^{*}-1}} \mathcal{S}_{2}^{\frac{2_{\alpha}^{*}}{2_{\alpha}^{*}-1}}. \end{aligned} \end{equation*} |
This yields a contradiction with Lemma 4.4.
Next, we show \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} |u_{n}|^{2^{*}} \mathrm{d}x > 0 . On the contrary, it suffices to show
\begin{equation} \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} |u_{n}|^{2^{*}} \mathrm{d}x = 0. \end{equation} | (4.10) |
From Proposition 2.1 and (4.10), we have
\begin{equation*} \lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{*}} \bigr) |u_{n}|^{2_{\alpha}^{*}} \mathrm{d}x \leqslant \lim\limits_{n\rightarrow \infty} C_{N, \alpha} \left( \int_{\mathbb{R}^{N}} |u_{n}|^{2^{*}} \mathrm{d}x \right) ^{\frac{N+\alpha}{N}} = 0 \end{equation*} |
and
\begin{equation*} \begin{aligned} &\lim\limits_{n\rightarrow \infty} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{\sharp}} \bigr) |u_{n}|^{2_{\alpha}^{*}} \mathrm{d}x \\\leqslant& \lim\limits_{n\rightarrow \infty} C_{N, \alpha} \left( \int_{\mathbb{R}^{N}} |u_{n}|^{2} \mathrm{d}x \right) ^{\frac{N+\alpha}{2N}} \left( \int_{\mathbb{R}^{N}} |u_{n}|^{2^{*}} \mathrm{d}x \right) ^{\frac{N+\alpha}{2N}} = 0. \end{aligned} \end{equation*} |
Together with the above two expressions, we get
\begin{equation} \begin{aligned} m+o_{n}(1) = & \frac{1}{2} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{1}{2} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{1}{p} \|u_{n}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{1}{p} \|u_{n}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{\lambda^{2}}{2\cdot\bigl(2_{\alpha}^{\sharp}\bigr)^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{\sharp}} \bigr) |u_{n}|^{2_{\alpha}^{\sharp}} \mathrm{d}x \end{aligned} \end{equation} | (4.11) |
and
\begin{equation} \begin{aligned} o_{n}(1) = & \frac{N-2}{2} \|u_{n}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{N}{2} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{N-p}{p} \|u_{n}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{N}{p} \|u_{n}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\&- \frac{\lambda^{2}(N+\alpha)}{2\cdot(2_{\alpha}^{\sharp})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{\sharp}} \bigr)|u_{n}|^{2_{\alpha}^{\sharp}} \mathrm{d}x. \end{aligned} \end{equation} | (4.12) |
From (4.11) and (4.12), we get that
\begin{equation} \begin{aligned} m+o_{n}(1) \geqslant \frac{\alpha}{2(N+\alpha)} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2}. \end{aligned} \end{equation} | (4.13) |
Observe that, by (2.1) and (4.12), we have
\begin{equation*} \begin{aligned} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2} \leqslant& \frac{\lambda^{2}(N+\alpha)}{N\cdot(2_{\alpha}^{\sharp})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*|u_{n}|^{2_{\alpha}^{\sharp}} \bigr) |u_{n}|^{2_{\alpha}^{\sharp}} \mathrm{d}x \\\leqslant& \frac{\lambda^{2}(N+\alpha)}{N\cdot(2_{\alpha}^{\sharp})^{2}} \left( \frac{1}{\mathcal{S}_{1}} \right)^{2_{\alpha}^{\sharp}} \|u_{n}\|_{L^{2}(\mathbb{R}^{N})}^{2\cdot 2_{\alpha}^{\sharp}}. \end{aligned} \end{equation*} |
This shows
\begin{equation} \left[ \frac{N\cdot(2_{\alpha}^{\sharp})^{2}}{\lambda^{2}(N+\alpha)} \right] ^{\frac{1}{2_{\alpha}^{\sharp}-1}} \mathcal{S}_{1} ^{\frac{2_{\alpha}^{\sharp}}{2_{\alpha}^{\sharp}-1}} \leqslant \|u\|_{L^{2}(\mathbb{R}^{N})}^{2}. \end{equation} | (4.14) |
Combining (4.13) and (4.14), we infer that
\begin{equation*} \begin{aligned} m\geqslant \frac{\alpha}{2(N+\alpha)} \left[ \frac{N\cdot(2_{\alpha}^{\sharp})^{2}}{\lambda^{2}(N+\alpha)} \right] ^{\frac{1}{2_{\alpha}^{\sharp}-1}} \mathcal{S}_{1} ^{\frac{2_{\alpha}^{\sharp}}{2_{\alpha}^{\sharp}-1}}. \end{aligned} \end{equation*} |
This contradicts with Lemma 4.5, the proof is complete.
We now can conclude the proof of Theorem 1.2.
Proof of Theorem 1.2. Let \{u_{n}\} be a minimizing sequence of J satisfying
\begin{equation*} \begin{aligned} J(u_{n})\to m \ \ and \ \ P(u_{n})\to 0, \ \ as\;n\to\infty. \end{aligned} \end{equation*} |
It is easy to verify \{u_{n}\} is bounded in E . Taking into account Lemmas 4.4 and 4.5 and Proposition 2.2, we deduce that \{u_{n}\} converges weakly and a.e. to u\not\equiv0 in L_{loc}^{2}(\mathbb{R}^{N}) . Using the Brézis-Lieb lemma [35], we obtain
\begin{equation*} \begin{aligned} m\leqslant J(u) = J(u)- \frac{1}{N+\alpha} P(u) \leqslant \lim\limits_{n\rightarrow \infty} \left( J(u_{n}) - \frac{1}{N+\alpha} P(u_{n}) \right) = \lim\limits_{n\rightarrow \infty} J(u_{n}) = m, \end{aligned} \end{equation*} |
which implies J(u) = m . Moreover, we can choose u\geqslant0 . Therefore, u is a nonnegative ground state solution of Eq (\mathcal{D}).
Let u be a nonnegative ground state solution of Eq (\mathcal{D}). In order to show u is radial, it suffices to prove m = m_{rad} , where
\begin{equation*} \begin{aligned} \mathcal{P}_{rad} = \left\{ u\in E_{rad}\backslash\{0\}\Big| P(u) = 0 \right\} \end{aligned} \end{equation*} |
and
\begin{equation*} \begin{aligned} m_{rad} = \inf\limits_{u\in \mathcal{P}_{rad}}J(u). \end{aligned} \end{equation*} |
On one hand, by E_{rad}\subset E , it follows that m\leqslant m_{rad} . On the other hand, for any v\in\mathcal{P} , by J being even, we know |v|\in\mathcal{P} . Let |v|^{*} be the decreasing rearrangement of |v| . In view of [19, Theorem 3.7], one has
\begin{equation} \begin{aligned} \||v|^{*}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} \leqslant \||v|\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} \ \ \mathrm{and} \ \ \||v|^{*}\|_{L^{2}(\mathbb{R}^{N})}^{2} \leqslant \|v\|_{L^{2}(\mathbb{R}^{N})}^{2} \end{aligned} \end{equation} | (4.15) |
and
\begin{equation} \begin{aligned} \||v|^{*}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} \leqslant \||v|\|_{D^{1, p}(\mathbb{R}^{N})}^{p} \ \ \mathrm{and} \ \ \||v|^{*}\|_{L^{p}(\mathbb{R}^{N})}^{p} \leqslant \|v\|_{L^{p}(\mathbb{R}^{N})}^{p} \end{aligned} \end{equation} | (4.16) |
and
\begin{equation} \begin{aligned} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|v(x)|^{2_{\alpha}^{\sharp}}|v(y)|^{2_{\alpha}^{\sharp}}}{|x-y|^{N-\alpha}} \mathrm{d}x \mathrm{d}y \leqslant \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{||v(x)|^{*}|^{2_{\alpha}^{\sharp}}||v(y)|^{*}|^{2_{\alpha}^{\sharp}}}{|x-y|^{N-\alpha}} \mathrm{d}x \mathrm{d}y \end{aligned} \end{equation} | (4.17) |
and
\begin{equation} \begin{aligned} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|v(x)|^{2_{\alpha}^{\sharp}}|v(y)|^{2_{\alpha}^{*}}}{|x-y|^{N-\alpha}} \mathrm{d}x \mathrm{d}y \leqslant \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{||v(x)|^{*}|^{2_{\alpha}^{\sharp}}||v(y)|^{*}|^{2_{\alpha}^{*}}}{|x-y|^{N-\alpha}} \mathrm{d}x \mathrm{d}y \end{aligned} \end{equation} | (4.18) |
and
\begin{equation} \begin{aligned} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|v(x)|^{2_{\alpha}^{*}}|v(y)|^{2_{\alpha}^{*}}}{|x-y|^{N-\alpha}} \mathrm{d}x \mathrm{d}y \leqslant \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{||v(x)|^{*}|^{2_{\alpha}^{*}}||v(y)|^{*}|^{2_{\alpha}^{*}}}{|x-y|^{N-\alpha}} \mathrm{d}x \mathrm{d}y \end{aligned} \end{equation} | (4.19) |
From (4.15)–(4.19), for any t > 0 , it follows that
\begin{equation} \begin{aligned} J\bigl((|v|^{*})_{t}\bigr) \leqslant J\bigl((|v|_{t})\bigr). \end{aligned} \end{equation} | (4.20) |
By Lemma 4.2, there exists t_{v} > 0 such that (|v|^{*})_{t_{v}}\in\mathcal{P} . We have
\begin{equation*} \begin{aligned} &\frac{(N-2)t_{v}^{N-2}}{2} \||v|^{*}\|_{D^{1, 2}(\mathbb{R}^{N})}^{2} + \frac{Nt_{v}^{N}}{2} \||v|^{*}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \frac{(N-p)t_{v}^{N-p}}{p} \||v|^{*}\|_{D^{1, p}(\mathbb{R}^{N})}^{p} + \frac{Nt_{v}^{N}}{p} \||v|^{*}\|_{L^{p}(\mathbb{R}^{N})}^{p} \\ = & \frac{(N+\alpha)t_{v}^{N+\alpha}}{2\cdot(2_{\alpha}^{\sharp})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*||v|^{*}|^{2_{\alpha}^{\sharp}} \bigr)||v|^{*}|^{2_{\alpha}^{\sharp}} \mathrm{d}x + \frac{\lambda(N+\alpha)t_{v}^{N+\alpha}}{2_{\alpha}^{\sharp}\cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*||v|^{*}|^{2_{\alpha}^{\sharp}} \bigr)||v|^{*}|^{2_{\alpha}^{*}} \mathrm{d}x \\&+ \frac{\lambda^{2}(N+\alpha)t_{v}^{N+\alpha}}{2\cdot(2_{\alpha}^{*})^{2}} \int_{\mathbb{R}^{N}} \bigl( I_{\alpha}*||v|^{*}|^{2_{\alpha}^{*}} \bigr)||v|^{*}|^{2_{\alpha}^{*}} \mathrm{d}x. \end{aligned} \end{equation*} |
From the above and |v|\in\mathcal{P} , it is easy to observe t_{v}\in(0, 1] . In view of (4.20), one has
\begin{equation*} \begin{aligned} m\leqslant J\bigl((|v^{*}|)_{t_{v}}\bigr) \leqslant J\bigl((|v|)_{t_{v}}\bigr) \leqslant \max\limits_{t\geqslant 0} J\bigl((|v|)_{t}\bigr) = J(|v|). \end{aligned} \end{equation*} |
Therefore, for any |v|\in\mathcal{P} , there exists t_{v} > 0 such that t_{v}|v|^{*}\in\mathcal{P} and
\begin{equation*} \begin{aligned} J\bigl((|v|^{*})_{t_{v}}\bigr) \leqslant J(|v|). \end{aligned} \end{equation*} |
This implies m_{rad}\leqslant m . Hence, we have m_{rad} = m . This means u is a radially symmetric ground state solution of Eq (\mathcal{D}). The proof is complete.
Lixiong Wang: Conceptualization, Methodology, Formal analysis, Writing-original draft preparation, Writing-reviewing and editing, Validation, Funding acquisition; Ting Liu: Writing-reviewing and editing, Visualization, Investigation, Supervision. All authors have read and approved the final version of the manuscript for publication.
The author desires to convey gratitude to Hunan Institute of Science and Technology and the Outstanding Youth Project of the Education Department of Hunan Province for the financial assistance provided for this work.
The authors declare there are no conflicts of interest.
[1] |
J. Abreu, G. F. Madeira, Generalized eigenvalues of the (p, 2)-Laplacian under a parametric boundary condition, Proc. Edinb. Math. Soc., 63 (2020), 287–303. https://doi.org/10.1017/s0013091519000403 doi: 10.1017/s0013091519000403
![]() |
[2] |
C. O. Alves, A. B. Nóbrega, M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var., 55 (2016), 48. https://doi.org/10.1007/s00526-016-0984-9 doi: 10.1007/s00526-016-0984-9
![]() |
[3] | M. Badiale, E. Serra, Semilinear elliptic equations for beginners, London: Springer, 2011. https://doi.org/10.1007/978-0-85729-227-8 |
[4] |
V. Benci, P. D'Avenia, D. Fortunato, L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Rational Mech. Anal., 154 (2000), 297–324. https://doi.org/10.1007/s002050000101 doi: 10.1007/s002050000101
![]() |
[5] |
V. Benci, D. Fortunato, L. Pisani, Soliton like solutions of a Lorentz invariant equation in dimension 3, Rev. Math. Phys., 10 (1998), 315–344. https://doi.org/10.1142/S0129055X98000100 doi: 10.1142/S0129055X98000100
![]() |
[6] |
T. Bhattacharya, B. Emamizadeh, A. Farjudian, Existence of continuous eigenvalues for a class of parametric problems involving the (p, 2)-Laplacian operator, Acta Appl. Math., 165 (2020), 65–79. https://doi.org/10.1007/s10440-019-00241-9 doi: 10.1007/s10440-019-00241-9
![]() |
[7] |
D. Cassani, L. Du, Z. Liu, Positive solutions to the planar logarithmic Choquard equation with exponential nonlinearity, Nonlinear Anal., 241 (2024), 113479. https://doi.org/10.1016/j.na.2023.113479 doi: 10.1016/j.na.2023.113479
![]() |
[8] |
D. Cassani, J. Zhang, Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth, Adv. Nonlinear Anal., 8 (2019), 1184–1212. https://doi.org/10.1515/anona-2018-0019 doi: 10.1515/anona-2018-0019
![]() |
[9] |
D. Cassani, J. Van Schaftingen, J. Zhang, Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent, Proc. Roy. Soc. Edinb. A, 150 (2020), 1377–1400. https://doi.org/10.1017/prm.2018.135 doi: 10.1017/prm.2018.135
![]() |
[10] |
L. Cherfils, Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with p \& q-Laplacian, Commun. Pure Appl. Anal., 4 (2005), 9–22. https://doi.org/10.3934/cpaa.2005.4.9 doi: 10.3934/cpaa.2005.4.9
![]() |
[11] | P. G. Ciarlet, Linear and nonlinear functional analysis with applications, Philadelphia, PA: SIAM, 2013. |
[12] |
M. Fărcăşeanu, M. Mihăilescu, D. Stancu-Dumitru, On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition, Nonlinear Anal.: Theor., 116 (2015), 19–25. https://doi.org/10.1016/j.na.2014.12.019 doi: 10.1016/j.na.2014.12.019
![]() |
[13] |
F. Gao, M. Yang, On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl., 448 (2017), 1006–1041. https://doi.org/10.1016/j.jmaa.2016.11.015 doi: 10.1016/j.jmaa.2016.11.015
![]() |
[14] |
L. Gasiński, N. S. Papageorgiou, Asymmetric (p, 2)-equations with double resonance, Calc. Var., 56 (2017), 88. https://doi.org/10.1007/s00526-017-1180-2 doi: 10.1007/s00526-017-1180-2
![]() |
[15] |
L. Gasiński, P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differ. Equations, 268 (2020), 4183–4193. https://doi.org/10.1016/j.jde.2019.10.022 doi: 10.1016/j.jde.2019.10.022
![]() |
[16] |
F. Li, T. Rong, Z. Liang, Multiple positive solutions for a class of (2, p)-Laplacian equation, J. Math. Phys., 59 (2018), 121506. https://doi.org/10.1063/1.5050030 doi: 10.1063/1.5050030
![]() |
[17] |
X. Li, S. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math., 22 (2020), 1950023. https://doi.org/10.1142/S0219199719500238 doi: 10.1142/S0219199719500238
![]() |
[18] |
E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93–105. https://doi.org/10.1002/sapm197757293 doi: 10.1002/sapm197757293
![]() |
[19] | E. H. Lieb, M. Loss, Analysis, 2 Eds., Providence, RI: American Mathematical Society, 1997. |
[20] |
P. L. Lions, The Choquard equation and related questions, Nonlinear Anal.: Theor., 4 (1980), 1063–1072. https://doi.org/10.1016/0362-546X(80)90016-4 doi: 10.1016/0362-546X(80)90016-4
![]() |
[21] |
S. Liu, J. Yang, Y. Su, Regularity for critical fractional Choquard equation with singular potential and its applications, Adv. Nonlinear Anal., 13 (2024), 20240001. https://doi.org/10.1515/anona-2024-0001 doi: 10.1515/anona-2024-0001
![]() |
[22] |
W. Liu, G. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equations, 265 (2018), 4311–4334. https://doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006
![]() |
[23] |
M. Mihăilescu, An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Commun. Pure Appl. Anal., 10 (2011), 701–708. https://doi.org/10.3934/cpaa.2011.10.701 doi: 10.3934/cpaa.2011.10.701
![]() |
[24] |
A. Moameni, K. L. Wong, Existence of solutions for supercritical (p, 2)-Laplace equations, Mediterr. J. Math., 20 (2023), 140. https://doi.org/10.1007/s00009-023-02336-y doi: 10.1007/s00009-023-02336-y
![]() |
[25] |
V. Moroz, J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557–6579. https://doi.org/10.1090/S0002-9947-2014-06289-2 doi: 10.1090/S0002-9947-2014-06289-2
![]() |
[26] |
V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005. https://doi.org/10.1142/S0219199715500054 doi: 10.1142/S0219199715500054
![]() |
[27] |
N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, On a class of parametric (p, 2)-equations, Appl. Math. Optim., 75 (2017), 193–228. https://doi.org/10.1007/s00245-016-9330-z doi: 10.1007/s00245-016-9330-z
![]() |
[28] |
N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, Existence and multiplicity of solutions for resonant (p, 2)-equations, Adv. Nonlinear Stud., 18 (2018), 105–129. https://doi.org/10.1515/ans-2017-0009 doi: 10.1515/ans-2017-0009
![]() |
[29] | S. I. Pekar, Untersuchung ber die elektronentheorie der kristalle, Berlin: Akademie Verlag, 1954. https://doi.org/10.1515/9783112649305 |
[30] |
R. Penrose, On gravity's role in quantum state reduction, Gen. Relat. Gravit., 28 (1996), 581–600. https://doi.org/10.1007/BF02105068 doi: 10.1007/BF02105068
![]() |
[31] |
D. Ruiz, J. Van Schaftingen, Odd symmetry of least energy nodal solutions for the Choquard equation, J. Differ. Equations, 264 (2018), 1231–1262. https://doi.org/10.1016/j.jde.2017.09.034 doi: 10.1016/j.jde.2017.09.034
![]() |
[32] |
J. Seok, Nonlinear Choquard equations: doubly critical case, Appl. Math. Lett., 76 (2018), 148–156. https://doi.org/10.1016/j.aml.2017.08.016 doi: 10.1016/j.aml.2017.08.016
![]() |
[33] | M. Struwe, Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems, Berlin: Springer, 2008. https://doi.org/10.1007/978-3-540-74013-1 |
[34] |
Y. Su, L. Wang, H. Chen, S. Liu, Multiplicity and concentration results for fractional Choquard equations: doubly critical case, Nonlinear Anal., 198 (2020), 111872. https://doi.org/10.1016/j.na.2020.111872 doi: 10.1016/j.na.2020.111872
![]() |
[35] | M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
[36] | V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 3 (1995), 249–269. |
[37] | V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 5 (1997), 105–116. |