This paper centers on stochastic Hopfield neural networks with variable coefficients and infinite delay. First, we propose an integral inequality that improves and extends some existing works. Second, by employing some inequalities and stochastic analysis techniques, some sufficient conditions for ensuring pth moment generalized exponential stability are established. Our results do not necessitate the construction of a complex Lyapunov function or rely on the assumption of bounded variable coefficients, and our results expand some existing works. At last, to illustrate the efficacy of our result, we present several simulation examples.
Citation: Dehao Ruan, Yao Lu. Generalized exponential stability of stochastic Hopfield neural networks with variable coefficients and infinite delay[J]. AIMS Mathematics, 2024, 9(8): 22910-22926. doi: 10.3934/math.20241114
[1] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[2] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[3] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
[4] | Hasan Kara, Hüseyin Budak, Mehmet Eyüp Kiriş . On Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions. AIMS Mathematics, 2020, 5(5): 4681-4701. doi: 10.3934/math.2020300 |
[5] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[6] | Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098 |
[7] | Baoli Feng, Mamoona Ghafoor, Yu Ming Chu, Muhammad Imran Qureshi, Xue Feng, Chuang Yao, Xing Qiao . Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions. AIMS Mathematics, 2020, 5(6): 6959-6971. doi: 10.3934/math.2020446 |
[8] | Naila Mehreen, Matloob Anwar . Some inequalities via Ψ-Riemann-Liouville fractional integrals. AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403 |
[9] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[10] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
This paper centers on stochastic Hopfield neural networks with variable coefficients and infinite delay. First, we propose an integral inequality that improves and extends some existing works. Second, by employing some inequalities and stochastic analysis techniques, some sufficient conditions for ensuring pth moment generalized exponential stability are established. Our results do not necessitate the construction of a complex Lyapunov function or rely on the assumption of bounded variable coefficients, and our results expand some existing works. At last, to illustrate the efficacy of our result, we present several simulation examples.
Let I⊆R be an interval. Then a real-valued function X:I→R is said to be convex if the inequality
X((1−μ)x+μy)≤(1−μ)X(x)+μX(y) |
holds for all x,y∈I and μ∈[0,1].
It is well-known that convexity has wild applications in pure and applied mathematics [1,2,3,4,5,6,7,8]. In particular, many remarkable inequalities can be found in the literature [9,10,11,12,13,14,15,16,17,18,19,20] via the convexity theory. Recently, the generalizations, extensions and variants for the convexity have attracted the attentions of many researchers [21,22,23,24,25].
İşcan [26] introduced the class of reciprocal convex functions as follows.
A real-vauled function X:I⊆(0,∞)→R is said to be reciprocal convex if the inequality
X(xy(1−μ)x+μy)≤μX(x)+(1−μ)X(y) |
holds for all x,y∈I and μ∈[0,1].
In [27], Noor et al. introduced and discussed the class of reciprocal ρ-convex functions. Later, Noor et al. [28] extended the class of reciprocal convex functions on coordinates and introduced the class of 2D reciprocal convex functions.
Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be 2D reciprocal convex if the inequality
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤μλX(y,w)+μ(1−λ)X(y,u)+(1−μ)λX(x,w)+(1−μ)(1−λ)X(x,u) |
holds for all x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Very recently, Awan et al. [29] gave the definition of approximately reciprocal ρ-convex functions depending on a metric function.
It is well-known that the classical Hermite-Hadamard inequality [30,31,32,33,34,35] is one of the most famous and important inequalities in convexity theory, which can be stated as follows.
The double inequality
f(a+b2)≤1b−ab∫af(x)dx≤f(a)+f(b)2 |
holds for all a,b∈I with a≠b if f:I→R is a convex function.
In the past half century, many researchers have devoted themselves to the generalizations, improvements and variants of the Hermite-Hadamard inequality. For example, Dragomir [36] obtained a two dimensional version of the Hermite-Hadamard inequality using the coordinated convex functions, Budak et al. [37] provided a two dimensional extension of the Hermite-Hadamard inequality by use of coordinated trigonometrically ρ-convex functions, İşcan [26] derived a new variant of the Hermite-Hadamard inequality by using the class of reciprocal convex functions, Noor et al. [27] obtained a generalized version of the Hermite-Hadamard inequality via the reciprocal ρ-convex functions, and Noor et al. [28] establshed a 2D version of the Hermite-Hadamard inequality using 2D reciprocal convex functions.
The main purpose of the article is to introduce the 2D approximately reciprocal ρ-convex functions, discuss how this class of functions unifies several other unrelated classes of reciprocal convex functions by considering some suitable choices of the given function Δ(⋅,⋅) and the real function ρ(⋅), derive several new refinements of the Hermite-Hadamard like inequalities involving 2D approximately reciprocal ρ-convex functions, and discuss the special cases of the main obtained results.
In this section, we provide the definition of the class of 2D approximately reciprocal ρ-convex functions, and discuss its special cases.
Definition 2.1. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be a 2D approximately reciprocal ρ-convex function if the inequality
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u) |
+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u)+Δ(x,y)+Δ(u,w), |
holds for x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Next, We discuss some special cases of Definition 2.1.
Ⅰ. If we take Δ(x,y)=ϵ(‖x−1−y−1‖)γ and Δ(u,w)=ϵ(‖u−1−w−1‖)γ for some ϵ∈R and γ>1 in Definition 2.1, then we have a new definition of "γ-paraharmonic ρ-convex function of higher order".
Definition 2.2. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be a 2D γ-paraharmonic ρ-convex function of higher order if the inequality
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u) |
+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u)+ϵ(‖x−1−y−1‖)γ+ϵ(‖u−1−w−1‖)γ |
takes place for all x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Ⅱ. If we take Δ(x,y)=ϵ(‖x−1−y−1‖) and Δ(u,w)=ϵ(‖u−1−w−1‖) for some ϵ∈R in Definition 2.1, then we obtain a new definition of "ϵ-paraharmonic ρ-convex function".
Definition 2.3. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a function X:Ω→R is said to be a 2D ϵ-paraharmonic ρ-convex function if
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u)+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u) |
+ϵ(‖x−1−y−1‖)+ϵ(‖u−1−w−1‖) |
whenever x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Ⅲ. If we take
Δ(x,y)=−μ(μσ(1−μ)+μ(1−μ)σ)(‖1x−1y‖)σ |
and
Δ(u,w)=−μ(λσ(1−λ)+λ(1−λ)σ)(‖1u−1w‖)σ |
in Definition 2.1, then we get a new definition of 2D reciprocal strong ρ-convex function of higher order.
Definition 2.4. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be a 2D reciprocal strong ρ-convex function of higher order if the inequality
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u)+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u) |
−μ(μσ(1−μ)+μ(1−μ)σ)(‖1x−1y‖)σ−μ(λσ(1−λ)+λ(1−λ)σ)(‖1u−1w‖)σ, |
is valid for all x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Ⅳ. If we take σ=2 in Definition 2.4, then
Δ(x,y)=−μμ(1−μ)(‖1x−1y‖)2 |
Δ(u,w)=−μλ(1−λ)(‖1u−1w‖)2 |
and we have the definition of 2D reciprocal strong ρ-convex function.
Definition 2.5. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be a 2D reciprocal strong ρ-convex function if the inequality
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u)+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u) |
−μμ(1−μ)(‖1x−1y‖)2−μλ(1−λ)(‖1u−1w‖)2, |
holds for x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Ⅴ. If we take Δ(x,y)=μμ(1−μ)(1x−1y)2 and Δ(u,w)=μλ(1−λ)(1u−1w)2 for some μ>0 in Definition 2.1, then we obtain the definition of 2D reciprocal relaxed ρ-convex function.
Definition 2.6. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be a 2D reciprocal relaxed ρ-convex function if
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u)+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u) |
+μμ(1−μ)(1x−1y)2+μλ(1−λ)(1u−1w)2 |
whenever x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Ⅵ. If we take Δ(x,y)=−μ(1−μ)(xyx−y)2 and Δ(u,w)=−λ(1−λ)(uwu−w)2 in Definition 2.1, then we have a new definition of 2D strongly F reciprocal ρ-convex function.
Definition 2.7. Let Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞). Then a real-valued function X:Ω→R is said to be a 2D strongly F reciprocal ρ-convex function if the inequality
X(xyμx+(1−μ)y,uwru+(1−λ)w) |
≤ρ(μ)ρ(λ)X(y,w)+ρ(μ)ρ(1−λ)X(y,u)+ρ(1−μ)ρ(λ)X(x,w)+ρ(1−μ)ρ(1−λ)X(x,u) |
−μ(1−μ)(xyx−y)2−λ(1−λ)(uwu−w)2 |
holds for all x,y∈[a,b], u,w∈[c,d] and μ,λ∈[0,1].
Remark 2.8. It is pertinent to mention here that we can recapture other new classes of reciprocal convexity from Definition 2.1 by considering suitable choices of function ρ(⋅). For example, if we take ρ(μ)=μs and ρ(λ)=λs in Definition 2.1, then we have the class of Breckner type 2D approximately reciprocal s-convex functions; if we take ρ(μ)=μ−s and ρ(λ)=λ−s in Definition 2.1, then we get the class of Godunova-Levin type 2D approximately reciprocal s-convex functions; if we take ρ(μ)=1 and ρ(λ)=1 in Definition 2.1, then we obtain the class of 2D approximately reciprocal P-convex functions. Moreover, if we choose suitable function Δ(⋅,⋅) in these discussed classes, then we also can get new refinements of reciprocal convexity, we left the details to the interested readers.
In this section, we derive a new variant of the Hermite-Hadamard inequality using the class of 2D approximately reciprocal ρ-convex functions.
Theorem 3.1. Let X:Ω=[a,b]×[c,d]→R be an integrable 2D approximately reciprocal ρ-convex function. Then we have the Hermite-Hadamard type inequality as follows
14ρ2(12)[X(2aba+b,2cdc+d)−abb−ab∫aΔ(x,(a−1+b−1−x−1)−1)x2dx |
−cdd−cd∫cΔ(u,(c−1+d−1−u−1)−1)u2du] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤[X(a,c)+X(a,d)+X(b,c)+X(b,d)]1∫01∫0ρ(μ)ρ(λ)dμdλ+Δ(a,b)+Δ(c,d). |
Proof. It follows from the 2D approximately reciprocal ρ-convexity of X that
X(2aba+b,2cdc+d) |
≤ρ2(12)[X(abta+(1−μ)b,cdrc+(1−λ)d)+X(abta+(1−μ)b,cdrd+(1−λ)c) |
+X(abtb+(1−μ)a,cdrc+(1−λ)d)+X(abtb+(1−μ)a,cdrd+(1−λ)c)] |
+Δ(abta+(1−μ)b,ab(1−μ)a+tb)+Δ(cdrc+(1−λ)d,cd(1−λ)c+rd). |
Integrating above inequality with respect to (μ,λ) on [0,1]×[0,1] leads to
14ρ2(12)[X(2aba+b,2cdc+d)−abb−ab∫aΔ(x,(a−1+b−1−x−1)−1)x2dx |
−cdd−cd∫cΔ(u,(c−1+d−1−u−1)−1)u2du] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx. |
Similarly, we have
X(abta+(1−μ)b,cdrc+(1−λ)d) |
≤ρ(μ)ρ(λ)X(b,d)+ρ(μ)ρ(1−λ)X(b,c)+ρ(1−μ)ρ(λ)X(a,d) |
+ρ(1−μ)ρ(1−λ)X(a,c)+Δ(a,b)+Δ(c,d). |
Integrating both sides of the above inequality with respect to (μ,λ) on [0,1]×[0,1], we get
(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤(X(a,c)+X(a,d)+X(b,c)+X(b,d))1∫01∫0ρ(μ)ρ(λ)dμdλ+Δ(a,b)+Δ(c,d). |
This completes the proof.
In this section, we present some applications of Theorem 3.1.
Ⅰ. If ρ(μ)=μ and ρ(λ)=λ, then Theorem 3.1 leads to Corollary 4.1.
Corollary 4.1. Let X:Ω=[a,b]×[c,d]→R be an integrable 2D approximately reciprocal convex function. Then one has
X(2aba+b,2cdc+d)−abb−ab∫aΔ(x,(a−1+b−1−x−1)−1)x2dx |
−cdd−cd∫cΔ(u,(c−1+d−1−u−1)−1)u2du |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤[X(a,c)+X(a,d)+X(b,c)+X(b,d)]4+Δ(a,b)+Δ(c,d). |
Ⅱ. If ρ(μ)=μs and ρ(λ)=λs, then Theorem 3.1 becomes Corollary 4.2.
Corollary 4.2. Let X:Ω=[a,b]×[c,d]→R be an integrable Breckner type 2D approximately reciprocal s-convex function. Then
141−s[X(2aba+b,2cdc+d)−abb−ab∫aΔ(x,(a−1+b−1−x−1)−1)x2dx |
−cdd−cd∫cΔ(u,(c−1+d−1−u−1)−1)u2du] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤X(a,c)+X(a,d)+X(b,c)+X(b,d)(s+1)2+Δ(a,b)+Δ(c,d). |
Ⅲ. If ρ(μ)=μ−s and ρ(λ)=λ−s, then Theorem 3.1 reduces to Corollary 4.3.
Corollary 4.3. Let X:Ω=[a,b]×[c,d]→R be an integrable Godunova-Levin type 2D approximately reciprocal s-convex function. Then we get
14s+1[X(2aba+b,2cdc+d)−abb−ab∫aΔ(x,(a−1+b−1−x−1)−1)x2dx |
−cdd−cd∫cΔ(u,(c−1+d−1−u−1)−1)u2du] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤X(a,c)+X(a,d)+X(b,c)+X(b,d)(1−s)2+Δ(a,b)+Δ(c,d). |
Ⅳ. If ρ(μ)=ρ(λ)=1, then Theorem 3.1 leads to Corollary 4.4.
Corollary 4.4. Let X:Ω=[a,b]×[c,d]→R be an integrable 2D approximately reciprocal P-convex function. Then one has
14[X(2aba+b,2cdc+d)−abb−ab∫aΔ(x,(a−1+b−1−x−1)−1)x2dx |
−cdd−cd∫cΔ(u,(c−1+d−1−u−1)−1)u2du] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤[X(a,c)+X(a,d)+X(b,c)+X(b,d)]+Δ(a,b)+Δ(c,d). |
Ⅴ. If we take
Δ(a,b)=−μ(μσ(1−μ)+μ(1−μ)σ)(‖1a−1b‖)σ |
and
Delta(c,d)=−μ(λσ(1−λ)+λ(1−λ)σ(‖1c−1d‖)σ |
for some μ>0, then Theorem 3.1 reduces to Corollary 4.5.
Corollary 4.5. Let X:Ω=[a,b]×[c,d]→R be an integrable 2D reciprocal strong ρ-convex function of higher order. Then we obtain the inequality
14ρ2(12)[X(2aba+b,2cdc+d)+μ2σ(σ+1)[‖b−aab‖σ+‖d−cdc‖σ]] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤(X(a,c)+X(a,d)+X(b,c)+X(b,d))1∫01∫0ρ(μ)ρ(λ)dμdλ |
−2μ(σ+1)(σ+2)[‖1a−1b‖σ+‖1c−1d‖σ]. |
Ⅵ. If we take σ=2. Then Corollary 4.5 becomes Corollary 4.6.
Corollary 4.6. Let X:Ω=[a,b]×[c,d]→R be an integrable 2D reciprocal strong ρ-convex function. Then one has
14ρ2(12)[X(2aba+b,2cdc+d)+μ12[‖b−aab‖2+‖d−cdc‖2]] |
≤(abb−a)(cdd−c)b∫ad∫cX(x,u)x2u2dudx |
≤(X(a,c)+X(a,d)+X(b,c)+X(b,d))1∫01∫0ρ(μ)ρ(λ)dμdλ |
−μ6[‖1a−1b‖2+‖1c−1d‖2]. |
In this section, we present some bounds pertaining to trapezium like inequality using partial differentiable 2D approximately reciprocal ρ-convex functions. The following auxiliary result will play significant role in our Theorem 5.2.
Lemma 5.1. (See [28]) Let X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differential function on Ω such that ∂2X∂μ∂λ∈L1(Ω). Then
X(a,b,c,d,x,y:Ω) |
=ab(b−a)cd(d−c)41∫01∫0(1−2μ(tb+(1−μ)a)2)(1−2λ(rd+(1−λ)c)2) |
×∂2X∂λ∂μ(abtb+(1−μ)a,cdrd+(1−λ)c)dλdμ, |
where
X(a,b,c,d,x,y:Ω) |
=X(a,c)+X(b,c)+X(a,d)+X(b,d)4−12[abb−a[b∫aX(x,c)x2dx+b∫aX(x,d)x2dx] |
+[cdd−c[d∫cX(a,u)u2du+d∫cX(b,u)u2du]]+abcd(b−a)(d−c)b∫ad∫cX(x,u)x2u2dudx. |
In order to obtain our results we need the gamma function Γ [38,39], beta function B [40] and Gaussian hypergeometric functions 2F1 [41,42], which are defined by
Γ(x)=∫∞0e−xμx−1dμ, |
B(x,y)=Γ(x)Γ(y)Γ(x+y)=∫10μx−1(1−μ)y−1 dμ |
and
2F1(x,y;c;z)=1B(y,c−y)∫10μy−1(1−μ)c−y−1(1−zt)−xdμ, |
respectively.
Theorem 5.2 Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a 2D approximately reciprocal ρ-convex function. Then we have
|X(a,b,c,d,x,y:Ω)| |
≤ab(b−a)cd(d−c)4(p+1)2p[φ1(a,b,c,d:Ω)|∂2X∂λ∂μ(b,d)|q |
+φ2(a,b,c,d:Ω)|∂2X∂λ∂μ(a,d)|q+φ3(a,b,c,d:Ω)|∂2X∂λ∂μ(b,c)|q |
+φ4(a,b,c,d:Ω)|∂2X∂λ∂μ(a,c)|q+φ5(a,b,c,d:Ω)+φ6(a,b,c,d:Ω)]1q, |
where
φ1(a,b,c,d;Ω)=1∫01∫0[ρ(μ)(tb+(1−μ)a)2q][ρ(λ)(rd+(1−λ)c)2q]dμdλ, |
φ2(a,b,c,d;Ω)=1∫01∫0[ρ(1−μ)(tb+(1−μ)a)2q][ρ(λ)(rd+(1−λ)c)2q]dμdλ, |
φ3(a,b,c,d;Ω)=1∫01∫0[ρ(μ)(tb+(1−μ)a)2q][ρ(1−λ)(rd+(1−λ)c)2q]dμdλ, |
φ4(a,b,c,d;Ω)=1∫01∫0[ρ(1−μ)(tb+(1−μ)a)2q][ρ(1−λ)(rd+(1−λ)c)2q]dμdλ, |
φ5(a,b,c,d;Ω)=Δ(a,b)(1∫01∫0[1(tb+(1−μ)a)2q][1(rd+(1−λ)c)2q]dμdλ) |
=Δ(a,b)([a−2q 2F1(2q,1,2,1−ba)][c−2q 2F1(2q,1,2,1−dc)]) |
and
φ6(a,b,c,d;Ω)=Δ(c,d)(1∫01∫0[1(tb+(1−μ)a)2q][1(rd+(1−λ)c)2q]dμdλ) |
=Δ(c,d)([a−2q 2F1(2q,1,2,1−ba)][a−2q 2F1(2q,1,2,1−ba)]). |
Proof. It follows from Lemma 5.1, Hölder inequality and the 2D approximately reciprocal ρ-convexity of |∂2X∂λ∂μ|q that
|X(a,b,c,d,x,y:Ω)| |
=|ab(b−a)cd(d−c)41∫01∫0(1−2μ(tb+(1−μ)a)2)(1−2λ(rd+(1−λ)c)2) |
×∂2X∂λ∂μ[abtb+(1−μ)a,cdrd+(1−λ)c)]dλdμ| |
≤ab(b−a)cd(d−c)41∫01∫0[|(1−2μ)(1−2λ)|pdλdμ]1p |
×[1∫01∫0[1(tb+(1−μ)a)2q1(rd+(1−λ)c)2q] |
×|∂2X∂λ∂μ[abtb+(1−μ)a,cdrd+(1−λ)c]|qdλdμ]1q |
≤ab(b−a)cd(d−c)4(p+1)2p(1∫01∫0[1(tb+(1−μ)a)2q][1(rd+(1−λ)c)2q] |
×[ρ(μ)ρ(λ)|∂2X∂λ∂μ(b,d)|q+ρ(1−μ)ρ(λ)|∂2X∂λ∂μ(a,d)|q+ρ(μ)ρ(1−λ)|∂2X∂λ∂μ(b,c)|q |
+ρ(1−μ)ρ(1−λ)|∂2X∂λ∂μ(a,c)|q+Δ(a,b)+Δ(c,d)]dλdμ)1q. |
This completes the proof.
Ⅰ. If we take ρ(μ)=μ and ρ(λ)=λ, then Theorem 5.2 leads to Corollary 5.3.
Corollary 5.3. Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a 2D approximately reciprocal convex function. Then one has
|X(a,b,c,d,x,y:Ω)| |
≤ab(b−a)cd(d−c)4(p+1)2p[φ∗1(a,b,c,d:Ω)|∂2X∂λ∂μ(b,d)|q |
+φ∗2(a,b,c,d:Ω)|∂2X∂λ∂μ(a,d)|q+φ∗3(a,b,c,d:Ω)|∂2X∂λ∂μ(b,c)|q |
+φ∗4(a,b,c,d:Ω)|∂2X∂λ∂μ(a,c)|q+φ5(a,b,c,d:Ω)+φ6(a,b,c,d:Ω)]1q, |
where
φ∗1(a,b,c,d;Ω)=1∫01∫0[μ(tb+(1−μ)a)2q][λ(rd+(1−λ)c)2q]dμdλ |
=[a−2q2 2F1(2q,2,3,1−ba)][c−2q2 2F1(2q,2,3,1−dc)], |
φ∗2(a,b,c,d;Ω)=1∫01∫0[(1−μ)(tb+(1−μ)a)2q][λ(rd+(1−λ)c)2q]dμdλ |
=[a−2q2 2F1(2q,1,3,1−ba)][c−2q2 2F1(2q,2,3,1−dc)], |
φ∗3(a,b,c,d;Ω)=1∫01∫0[μ(tb+(1−μ)a)2q][(1−λ)(rd+(1−λ)c)2q]dμdλ |
=[a−2q2 2F1(2q,2,3,1−ba)][c−2q2 2F1(2q,1,3,1−dc)], |
φ∗4(a,b,c,d;Ω)=1∫01∫0[(1−μ)(tb+(1−μ)a)2q][(1−λ)(rd+(1−λ)c)2q]dμdλ |
=[a−2q2 2F1(2q,1,3,1−ba)][c−2q2 2F1(2q,1,3,1−dc)], |
and φ5(a,b,c,d;Ω) and φ6(a,b,c,d;Ω) are given in Theorem 5.2.
Ⅱ. Let ρ(μ)=μs and ρ(λ)=λs. Then Theorem 5.2 reduces to Corollary 5.4.
Corollary 5.4. Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a Breckner type 2D approximately reciprocal s-convex function. Then
|X(a,b,c,d,x,y:Ω)| |
≤ab(b−a)cd(d−c)4(p+1)2p[φ∗∗1(a,b,c,d:Ω)|∂2X∂λ∂μ(b,d)|q |
+φ∗∗2(a,b,c,d:Ω)|∂2X∂λ∂μ(a,d)|q+φ∗∗3(a,b,c,d:Ω)|∂2X∂λ∂μ(b,c)|q |
+φ∗∗4(a,b,c,d:Ω)|∂2X∂λ∂μ(a,c)|q+φ5(a,b,c,d:Ω)+φ6(a,b,c,d:Ω)]1q, |
where
φ∗∗1(a,b,c,d;Ω)=1∫01∫0[μs(tb+(1−μ)a)2q][λs(rd+(1−λ)c)2q]dμdλ |
=[a−2qs+1 2F1(2q,s+1,s+2,1−ba)][c−2qs+1 2F1(2q,s+1,s+2,1−dc)], |
φ∗∗2(a,b,c,d;Ω)=1∫01∫0[(1−μ)s(tb+(1−μ)a)2q][λs(rd+(1−λ)c)2q]dμdλ |
=[a−2qs+1 2F1(2q,1,s+2,1−ba)][c−2qs+1 2F1(2q,s+1,s+2,1−dc)], |
φ∗∗3(a,b,c,d;Ω)=1∫01∫0[μs(tb+(1−μ)a)2q][(1−λ)s(rd+(1−λ)c)2q]dμdλ |
=[a−2qs+1 2F1(2q,s+1,s+2,1−ba)][c−2qs+1 2F1(2q,1,s+2,1−dc)], |
φ∗∗4(a,b,c,d;Ω)=1∫01∫0[(1−μ)s(tb+(1−μ)a)2q][(1−λ)s(rd+(1−λ)c)2q]dμdλ |
=[a−2qs+1 2F1(2q,1,s+2,1−ba)][c−2qs+1 2F1(2q,1,s+2,1−dc)], |
and φ5(a,b,c,d;Ω) and φ6(a,b,c,d;Ω) are given in Theorem 5.2.
Ⅲ. If we take ρ(μ)=μ−s and ρ(λ)=λ−s, then Theorem 5.2 becomes Corollary 5.5.
Corollary 5.5. Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a Godunova-Levin type 2D approximately reciprocal s-convex function. Then we obtain
|X(a,b,c,d,x,y:Ω)|≤ab(b−a)cd(d−c)4(p+1)2p[φ∗∗∗1(a,b,c,d:Ω)|∂2X∂λ∂μ(b,d)|q |
+φ∗∗∗2(a,b,c,d:Ω)|∂2X∂λ∂μ(a,d)|q+φ∗∗∗3(a,b,c,d:Ω)|∂2X∂λ∂μ(b,c)|q |
+φ∗∗∗4(a,b,c,d:Ω)|∂2X∂λ∂μ(a,c)|q+φ5(a,b,c,d:Ω)+φ6(a,b,c,d:Ω)]1q, |
where
φ∗∗∗1(a,b,c,d;Ω)=1∫01∫0[μ−s(tb+(1−μ)a)2q][λ−s(rd+(1−λ)c)2q]dμdλ |
=[a−2q1−s 2F1(2q,1−s,2−s,1−ba)][c−2q1−s 2F1(2q,1−s,2−s,1−dc)], |
φ∗∗∗2(a,b,c,d;Ω)=1∫01∫0[(1−μ)−s(tb+(1−μ)a)2q][λ−s(rd+(1−λ)c)2q]dμdλ |
=[a−2q1−s 2F1(2q,1,2−s,1−ba)][c−2q1−s 2F1(2q,1−s,2−s,1−dc)], |
φ∗∗∗3(a,b,c,d;Ω)=1∫01∫0[μ−s(tb+(1−μ)a)2q][(1−λ)−s(rd+(1−λ)c)2q]dμdλ |
=[a−2q1−s 2F1(2q,1−s,2−s,1−ba)][c−2q1−s 2F1(2q,1,2−s,1−dc)], |
φ∗∗∗4(a,b,c,d;Ω)=1∫01∫0[(1−μ)−s(tb+(1−μ)a)2q][(1−λ)−s(rd+(1−λ)c)2q]dμdλ |
=[a−2q1−s 2F1(2q,1,2−s,1−ba)][c−2q1−s 2F1(2q,1,2−s,1−dc)], |
and φ5(a,b,c,d;Ω) and φ6(a,b,c,d;Ω) are given in Theorem 5.2.
Ⅳ. Let ρ(μ)=ρ(λ)=1. Then Theorem 5.2 leads to Corollary 5.6.
Corollary 5.6. Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a 2D approximately reciprocal P-convex function. Then we have
|X(a,b,c,d,x,y:Ω)| |
≤ab(b−a)cd(d−c)4(p+1)2p[φ(a,b,c,d:Ω)]1q[|∂2X∂λ∂μ(b,d)|q |
+|∂2X∂λ∂μ(a,d)|q+|∂2X∂λ∂μ(b,c)|q+|∂2X∂λ∂μ(a,c)|q+Δ(a,b)+Δ(c,d)]1q, |
where
φ(a,b,c,d;Ω)=1∫01∫0[1(tb+(1−μ)a)2q][1(rd+(1−λ)c)2q]dμdλ |
=[a−2q 2F1(2q,1,2,1−ba)][c−2q 2F1(2q,1,2,1−dc)]. |
Ⅴ. Let
Δ(a,b)=−μ(μσ(1−μ)+μ(1−μ)σ)(∥1a−1b∥)σ |
and
Δ(c,d)=−μ(λσ(1−λ)+λ(1−λ)σ)(∥1c−1d∥)σ |
for some μ>0. Then Theorem 5.2 reduces to Corollary 5.7.
Corollary 5.7. Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a 2D reciprocal strong ρ-convex function of higher order. Then one has
|X(a,b,c,d,x,y:Ω)| |
≤ab(b−a)cd(d−c)4(p+1)2p[φ1(a,b,c,d:Ω)|∂2X∂λ∂μ(b,d)|q |
+φ2(a,b,c,d:Ω)|∂2X∂λ∂μ(a,d)|q+φ3(a,b,c,d:Ω)|∂2X∂λ∂μ(b,c)|q |
+φ4(a,b,c,d:Ω)|∂2X∂λ∂μ(a,c)|q+φ∗5(a,b,c,d:Ω)+φ∗6(a,b,c,d:Ω)]1q, |
where φ1(a,b,c,d:Ω), φ2(a,b,c,d:Ω), φ3(a,b,c,d:Ω), φ4(a,b,c,d:Ω) are given in Theorem 5.2, and
φ∗5(a,b,c,d;Ω) |
=−μ(‖1a−1b‖)σ(1∫01∫0[(μσ(1−μ)+μ(1−μ)σ(tb+(1−μ)a)2q][1(rd+(1−λ)c)2q]dμdλ) |
=−μ(‖1a−1b‖)σ([a−2q(σ+1)(σ+2) 2F1(2q,σ+1,σ+3,1−ba) |
+a−2q(σ+2)(σ+1) 2F1(2q,2,σ+3,1−ba)][c−2q 2F1(2q,1,2,1−dc)]), |
φ∗6(a,b,c,d;Ω) |
=−μ(‖1c−1d‖)σ(1∫01∫0[1(tb+(1−μ)a)2q][(λσ(1−λ)+λ(1−λ)σ)(rd+(1−λ)c)2q]dμdλ) |
=−μ(‖1c−1d‖)σ([a−2q 2F1(2q,1,2,1−ba)][c−2q(σ+1)(σ+2) 2F1(2q,σ+1,σ+3,1−dc) |
+c−2q(σ+2)(σ+1) 2F1(2q,2,σ+3,1−dc)]. |
Ⅵ. If we take σ=2, then Corollary 5.7 becomes Corollary 5.8.
Corollary 5.8. Let p,q>1 with 1/p+1/q=1, and X:Ω=[a,b]×[c,d]⊆(0,∞)×(0,∞)→R be a partial differentiable function on Ω such that ∂2X∂μ∂λ∈L1(Ω) and |∂2X∂λ∂μ|q is a 2D reciprocal strong ρ-convex function. Then
|X(a,b,c,d,x,y:Ω)| |
≤ab(b−a)cd(d−c)4(p+1)2p[φ1(a,b,c,d:Ω)|∂2X∂λ∂μ(b,d)|q |
+φ2(a,b,c,d:Ω)|∂2X∂λ∂μ(a,d)|q+φ3(a,b,c,d:Ω)|∂2X∂λ∂μ(b,c)|q |
+φ4(a,b,c,d:Ω)|∂2X∂λ∂μ(a,c)|q+φ∗∗5(a,b,c,d:Ω)+φ∗∗6(a,b,c,d:Ω)]1q, |
where φ1(a,b,c,d:Ω), φ2(a,b,c,d:Ω), φ3(a,b,c,d:Ω), φ4(a,b,c,d:Ω) are given in Theorem 5.2, and
φ∗∗5(a,b,c,d;Ω) |
=−μ(‖1a−1b‖)2(1∫01∫0[μ(1−μ)(tb+(1−μ)a)2q][1(rd+(1−λ)c)2q]dμdλ) |
=−μ(‖1a−1b‖)2([a−2q6 2F1(2q,2,4,1−ba)][c−2q 2F1(2q,1,2,1−dc)]), |
φ∗∗6(a,b,c,d;Ω) |
=−μ(‖1c−1d‖)2(1∫01∫0[1(tb+(1−μ)a)2q][λ(1−λ)(rd+(1−λ)c)2q]dμdλ) |
=−μ(‖1c−1d‖)2([a−2q 2F1(2q,1,2,1−ba)][c−2q6 2F1(2q,2,4,1−dc)]). |
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
The research was supported by the National Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485, 11971142, 11871202).
The authors declare that they have no competing interests.
[1] |
T. Deb, A. K. Ghosh, A. Mukherjee, Singular value decomposition applied to associative memory of Hopfield neural network, Mater. Today: Proc., 5 (2018), 2222–2228. https://doi.org/10.1016/j.matpr.2017.09.222 doi: 10.1016/j.matpr.2017.09.222
![]() |
[2] |
M. Muneyasu, K. Yamamoto, T. Hinamoto, Image restoration using layered neural networks and Hopfield networks, Proceedings., International Conference on Image Processing, 2 (1995), 33–36. https://doi.org/10.1109/ICIP.1995.537408 doi: 10.1109/ICIP.1995.537408
![]() |
[3] |
P. N. Suganthan, E. K. Teoh, D. P. Mital, Pattern recognition by homomorphic graph matching using Hopfield neural networks, Image Vision Comput., 13 (2015), 45–60. https://doi.org/10.1016/0262-8856(95)91467-R doi: 10.1016/0262-8856(95)91467-R
![]() |
[4] |
C. M. Marcus, R. M. Westervelt, Stability of analog neural networks with delay, Phys. Rev. A, 39 (1989), 347–359. https://doi.org/10.1103/physreva.39.347 doi: 10.1103/physreva.39.347
![]() |
[5] |
X. Wang, M. Jiang, S. Fang, Stability analysis in Lagrange sense for a non-autonomous Cohen-Grossberg neural network with mixed delays, Nonlinear Anal.: Theory Methods Appl., 70 (2009), 4294–4306. https://doi.org/10.1016/j.na.2008.09.019 doi: 10.1016/j.na.2008.09.019
![]() |
[6] | S. Haykin, Neural networks: a comprehensive foundation, 3 Eds., Prentice-Hall, Inc., 2007. |
[7] |
Z. Wang, H. Shu, J. Fang, X. Liu, Robust stability for stochastic Hopfield neural networks with time delays, Nonlinear Anal.: Real World Appl., 7 (2006), 1119–1128. https://doi.org/10.1016/j.nonrwa.2005.10.004 doi: 10.1016/j.nonrwa.2005.10.004
![]() |
[8] |
Z. Wang, Y. Liu, K. Fraser, X. Liu, Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays, Phys. Lett. A, 354 (2006), 288–297. https://doi.org/10.1016/j.physleta.2006.01.061 doi: 10.1016/j.physleta.2006.01.061
![]() |
[9] |
Y. Chen, Z. Wang, Y. Liu, F. E. Alsaadi, Stochastic stability for distributed delay neural networks via augmented Lyapunov-Krasovskii functionals, Appl. Math. Comput., 338 (2018), 869–881. https://doi.org/10.1016/j.amc.2018.05.059 doi: 10.1016/j.amc.2018.05.059
![]() |
[10] |
Q. Zhou, L. Wan, Exponential stability of stochastic delayed Hopfield neural networks, Appl. Math. Comput., 199 (2008), 84–89. https://doi.org/10.1016/j.amc.2007.09.025 doi: 10.1016/j.amc.2007.09.025
![]() |
[11] |
J. Hu, S. Zhong, L. Liang, Exponential stability analysis of stochastic delayed cellular neural network, Chaos Soliton. Fract., 27 (2006), 1006–1010. https://doi.org/10.1016/j.chaos.2005.04.067 doi: 10.1016/j.chaos.2005.04.067
![]() |
[12] |
L. Liu, F. Deng, Stability analysis of time varying delayed stochastic Hopfield neural networks in numerical simulation, Neurocomputing, 316 (2018), 294–305. https://doi.org/10.1016/j.neucom.2018.08.004 doi: 10.1016/j.neucom.2018.08.004
![]() |
[13] |
J. Luo, Fixed points and stability of neutral stochastic delay differential equations, J. Math. Anal. Appl., 334 (2007), 431–440. https://doi.org/10.1016/j.jmaa.2006.12.058 doi: 10.1016/j.jmaa.2006.12.058
![]() |
[14] |
J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342 (2008), 753–760. https://doi.org/10.1016/j.jmaa.2007.11.019 doi: 10.1016/j.jmaa.2007.11.019
![]() |
[15] |
J. Luo, Fixed points and exponential stability for stochastic Volterra-Levin equations, J. Comput. Appl. Math., 234 (2010), 934–940. https://doi.org/10.1016/j.cam.2010.02.013 doi: 10.1016/j.cam.2010.02.013
![]() |
[16] |
G. Chen, D. Li, L. Shi, O. van Ganns, S. V. Lunel, Stability results for stochastic delayed recurrent neural networks with discrete and distributed delays, J. Differ. Equations, 264 (2018), 3864–3898. https://doi.org/10.1016/j.jde.2017.11.032 doi: 10.1016/j.jde.2017.11.032
![]() |
[17] |
Q. Song, R. Zeng, Z. Zhao, Y. Liu, F. E. Alsaadi, Mean-square stability of stochastic quaternion-valued neural networks with variable coefficients and neutral delays, Neurocomputing, 471 (2022), 130–138. https://doi.org/10.1016/j.neucom.2021.11.033 doi: 10.1016/j.neucom.2021.11.033
![]() |
[18] |
X. Hou, H. Wu, J. Cao, Observer-based prescribed-time synchronization and topology identification for complex networks of piecewise-smooth systems with hybrid impulses, Comput. Appl. Math., 43 (2008), 180. https://doi.org/10.1007/s40314-024-02701-x doi: 10.1007/s40314-024-02701-x
![]() |
[19] |
Y. Zhao, H. Wu, Fixed/Prescribed stability criterions of stochastic system with time-delay, AIMS Math., 9 (2024), 14425–14453. https://doi.org/10.3934/math.2024701 doi: 10.3934/math.2024701
![]() |
[20] |
L. Wan, J. Sun, Mean square exponential stability of stochastic delayed Hopfield neural networks, Phys. Lett. A, 343 (2005), 306–318. https://doi.org/10.1016/j.physleta.2005.06.024 doi: 10.1016/j.physleta.2005.06.024
![]() |
[21] |
Y. Sun, J. Cao, pth moment exponential stability of stochastic recurrent neural networks with time-varying delays, Nonlinear Anal.: Real World Appl., 8 (2007), 1171–1185. https://doi.org/10.1016/j.nonrwa.2006.06.009 doi: 10.1016/j.nonrwa.2006.06.009
![]() |
[22] |
X. Li, D. Deng, Mean square exponential stability of stochastic Hopfield neural networks with mixed delays, Stat. Probab. Lett., 126 (2017), 88–96. https://doi.org/10.1016/j.spl.2017.02.029 doi: 10.1016/j.spl.2017.02.029
![]() |
[23] |
D. Ruan, Z. Huang, X. Guo, Inequalities and stability of stochastic Hopfield neural networks with discrete and distributed delays, Neurocomputing, 407 (2020), 281–291. https://doi.org/10.1016/j.neucom.2020.05.005 doi: 10.1016/j.neucom.2020.05.005
![]() |
[24] |
F. Zhang, C. Fei, W. Fei, Stability of stochastic Hopfield neural networks driven by G-Brownian motion with time-varying and distributed delays, Neurocomputing, 520 (2023), 320–330. https://doi.org/10.1016/j.neucom.2022.10.065 doi: 10.1016/j.neucom.2022.10.065
![]() |
[25] |
B. Lu, H. Jiang, A. Abdurahman, C. Hu, Global generalized exponential stability for a class of nonautonomous cellular neural networks via generalized Halanay inequalities, Neurocomputing, 214 (2016), 1046–1052. https://doi.org/10.1016/j.neucom.2016.06.068 doi: 10.1016/j.neucom.2016.06.068
![]() |
[26] |
C. Huang, Y. He, H. Wang, Mean square exponential stability of stochastic recurrent neural networks with time-varying delays, Comput. Math. Appl., 56 (2008), 1773–1778. https://doi.org/10.1016/j.camwa.2008.04.004 doi: 10.1016/j.camwa.2008.04.004
![]() |
[27] |
C. Huang, Y. He, L. Huang, W. Zhu, pth moment stability analysis of stochastic recurrent neural networks with time-varying delays, Inf. Sci., 178 (2008), 2194–2203. https://doi.org/10.1016/j.ins.2008.01.008 doi: 10.1016/j.ins.2008.01.008
![]() |
[28] |
X. Lai, Y. Zhang, Fixed point and asymptotic analysis of cellular neural networks, J. Appl. Math., 2012 (2012), 701–708. https://doi.org/10.1155/2012/689845 doi: 10.1155/2012/689845
![]() |
[29] | R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, 1985. https://doi.org/10.1017/CBO9780511810817 |
[30] | A. Friedman, Stochastic differential equations and applications, In: J. Cecconi, Stochastic differential equations, C.I.M.E. Summer Schools, Springer, 77 (1997), 75–148. https://doi.org/10.1007/978-3-642-11079-5_2 |
1. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
2. | Sabir Hussain, Javairiya Khalid, Yu Ming Chu, Some generalized fractional integral Simpson’s type inequalities with applications, 2020, 5, 2473-6988, 5859, 10.3934/math.2020375 | |
3. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7 | |
4. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu, Estimates of quantum bounds pertaining to new q-integral identity with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02878-5 | |
5. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
6. | Ming-Bao Sun, Xin-Ping Li, Sheng-Fang Tang, Zai-Yun Zhang, Schur Convexity and Inequalities for a Multivariate Symmetric Function, 2020, 2020, 2314-8896, 1, 10.1155/2020/9676231 | |
7. | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, 2020, 5, 2473-6988, 5106, 10.3934/math.2020328 | |
8. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
9. | Saima Rashid, Aasma Khalid, Gauhar Rahman, Kottakkaran Sooppy Nisar, Yu-Ming Chu, On New Modifications Governed by Quantum Hahn’s Integral Operator Pertaining to Fractional Calculus, 2020, 2020, 2314-8896, 1, 10.1155/2020/8262860 | |
10. | Yu-Ming Chu, Muhammad Uzair Awan, Muhammad Zakria Javad, Awais Gul Khan, Bounds for the Remainder in Simpson’s Inequality via n-Polynomial Convex Functions of Higher Order Using Katugampola Fractional Integrals, 2020, 2020, 2314-4629, 1, 10.1155/2020/4189036 | |
11. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
12. | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456 | |
13. | Humaira Kalsoom, Muhammad Idrees, Dumitru Baleanu, Yu-Ming Chu, New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions, 2020, 2020, 2314-8896, 1, 10.1155/2020/3720798 | |
14. | Ming-Bao Sun, Yu-Ming Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, 2020, 114, 1578-7303, 10.1007/s13398-020-00908-1 | |
15. | Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, Certain novel estimates within fractional calculus theory on time scales, 2020, 5, 2473-6988, 6073, 10.3934/math.2020390 | |
16. | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu, Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, 2020, 5, 2473-6988, 6108, 10.3934/math.2020392 | |
17. | Ling Zhu, New Cusa-Huygens type inequalities, 2020, 5, 2473-6988, 5320, 10.3934/math.2020341 | |
18. | Li Xu, Yu-Ming Chu, Saima Rashid, A. A. El-Deeb, Kottakkaran Sooppy Nisar, On New Unified Bounds for a Family of Functions via Fractionalq-Calculus Theory, 2020, 2020, 2314-8896, 1, 10.1155/2020/4984612 | |
19. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9 | |
20. | Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, Some Trapezium-Like Inequalities Involving Functions Having Strongly n-Polynomial Preinvexity Property of Higher Order, 2020, 2020, 2314-8896, 1, 10.1155/2020/9154139 | |
21. | Arshad Iqbal, Muhammad Adil Khan, Noor Mohammad, Eze R. Nwaeze, Yu-Ming Chu, Revisiting the Hermite-Hadamard fractional integral inequality via a Green function, 2020, 5, 2473-6988, 6087, 10.3934/math.2020391 | |
22. | Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z | |
23. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338 | |
24. | Xue Wang, Absar ul Haq, Muhammad Shoaib Saleem, Sami Ullah Zakir, Mohsan Raza, The Strong Convex Functions and Related Inequalities, 2022, 2022, 2314-8888, 1, 10.1155/2022/4056201 | |
25. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Hüseyin Budak, On generalizations of some integral inequalities for preinvex functions via (p,q)-calculus, 2022, 2022, 1029-242X, 10.1186/s13660-022-02896-9 | |
26. | Artion Kashuri, Badreddine Meftah, Pshtiwan Othman Mohammed, Alina Alb Lupaş, Bahaaeldin Abdalla, Y. S. Hamed, Thabet Abdeljawad, Fractional Weighted Ostrowski-Type Inequalities and Their Applications, 2021, 13, 2073-8994, 968, 10.3390/sym13060968 | |
27. | Silvestru Sever Dragomir, Mohamed Jleli, Bessem Samet, On Fejér-type inequalities for generalized trigonometrically and hyperbolic k-convex functions, 2024, 57, 2391-4661, 10.1515/dema-2024-0001 | |
28. | Badreddine Meftah, Sara Samoudi, Some Bullen-Simpson type inequalities for differentiable s-convex functions, 2024, 28, 1450-5932, 63, 10.5937/MatMor2401063M |