We considered the Boussinesq maximal estimate when n≥1. We obtained the Boussinesq maximal operator B∗Ef is bounded from L2(Rn) to L2(Rn) when f∈L2(Rn) and suppˆf⊂B(0,λ).
Citation: Dan Li, Xiang Li. A note on Boussinesq maximal estimate[J]. AIMS Mathematics, 2024, 9(1): 1819-1830. doi: 10.3934/math.2024088
[1] | Xinli Wang, Haiyang Yu, Tianfeng Wu . Global well-posedness and optimal decay rates for the $ n $-D incompressible Boussinesq equations with fractional dissipation and thermal diffusion. AIMS Mathematics, 2024, 9(12): 34863-34885. doi: 10.3934/math.20241660 |
[2] | Qianjun He, Xiang Li . Necessary and sufficient conditions for boundedness of commutators of maximal function on the $ p $-adic vector spaces. AIMS Mathematics, 2023, 8(6): 14064-14085. doi: 10.3934/math.2023719 |
[3] | Wei Zhang . A priori estimates for the free boundary problem of incompressible inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion. AIMS Mathematics, 2023, 8(3): 6074-6094. doi: 10.3934/math.2023307 |
[4] | Na Li, Qin Zhong . Smoothing algorithm for the maximal eigenvalue of non-defective positive matrices. AIMS Mathematics, 2024, 9(3): 5925-5936. doi: 10.3934/math.2024289 |
[5] | Zongcheng Li, Jin Li . Linear barycentric rational collocation method for solving a class of generalized Boussinesq equations. AIMS Mathematics, 2023, 8(8): 18141-18162. doi: 10.3934/math.2023921 |
[6] | Liang Chen, Wenjun Liu . On the uniform approximation estimation of deep ReLU networks via frequency decomposition. AIMS Mathematics, 2022, 7(10): 19018-19025. doi: 10.3934/math.20221045 |
[7] | Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040 |
[8] | Feng Cheng . On the dissipative solutions for the inviscid Boussinesq equations. AIMS Mathematics, 2020, 5(4): 2869-2876. doi: 10.3934/math.2020184 |
[9] | Yanqi Yang, Shuangping Tao, Guanghui Lu . Weighted and endpoint estimates for commutators of bilinear pseudo-differential operators. AIMS Mathematics, 2022, 7(4): 5971-5990. doi: 10.3934/math.2022333 |
[10] | Dan Li, Fangyuan Chen . On pointwise convergence of sequential Boussinesq operator. AIMS Mathematics, 2024, 9(8): 22301-22320. doi: 10.3934/math.20241086 |
We considered the Boussinesq maximal estimate when n≥1. We obtained the Boussinesq maximal operator B∗Ef is bounded from L2(Rn) to L2(Rn) when f∈L2(Rn) and suppˆf⊂B(0,λ).
We first introduce the free Schrödinger equation
{i∂tu+Δxu=0,(x,t)∈Rn×R;u(x,0)=f(x),x∈Rn. | (1.1) |
The formal solution of (1.1) is defined by
eit△f(x)=1(2π)n∫Rnei(x⋅ξ+t|ξ|2)ˆf(ξ)dξ, |
where ˆf(ξ)=∫Rne−ix⋅ξf(x)dx.
Carleson [6] first posed the problem: Determine the optimal s such that
limt→0eit△f(x)=f(x),a. e. x∈Rn | (1.2) |
holds whenever f∈Hs(Rn), where Hs(Rn) is the L2 Sobolev space, which is defined by
Hs(Rn):={f∈S′:‖f‖Hs(Rn)=(∫Rn(1+|ξ|2)s|ˆf(ξ)|2dξ)12<∞}. |
We call the above problem as Carleson's problem.
Carleson [6] first showed that the almost everywhere convergence (1.2) holds for all s≥14 in R. Dahlberg-Kenig [9] proved (1.2) fails for s<14 when n≥1. Thus, the Carleson problem was solved in one dimension. For the situation in higher dimensions, many researchers are interested in Carleson's problem. The sufficient condition of Carleson's problem has been obtained by many references [1,2,5,7,8,10,11,13,15,16,18,20,21,22,23,27,28] and references therein. Bourgain [3] gave counterexamples demonstrating that (1.2) fails when s<n2(n+1). The best sufficient condition was improved by Du-Guth-Li [12] when n=2 and Du-Zhang [14] when n≥3. Hence, the Carleson problem was essentially solved, except for the endpoint.
As a nonlinear variant of (1.2), the Boussinesq operator acting on f∈S(Rn) is given by
Bf(x,t)=(2π)−n∫Rnei(x⋅ξ+t|ξ|√1+|ξ|2)ˆf(ξ)dξ, |
which occurs in many physical situations. The name of this operator comes from the Boussinesq equation
utt−uxx±uxxxx=(u2)xx, ∀(x,t)∈R×[0,+∞); |
see [4] for more details.
We are motivated by subsection 1.1 to study the pointwise convergence of Bf(x,t): Evaluate the optimal s so that
limt→0Bf(x,t)=f(x),a. e. x∈Rn | (1.3) |
holds for any f∈Hs(Rn).
Cho-Ko [7] improved the convergence on the Schrödinger operator to generalized dispersive operators excluding the Boussinesq operator. Li-Li [17] obtained the optimal s=14 in one dimension including the endpoint. Li-Wang [19] obtained the almost everywhere convergence (1.3) that holds for the optimal s=13 when n=2, except for the endpoint.
In this paper, we are interested in a more general problem. Let E be a bounded set in Rn+1. For f∈S(Rn), we introduce the maximal function
B∗Ef(x):=sup(y,t)∈E|Bf(x+y,t)|,x∈Rn. |
Let's review the fractional Schrödinger operator, which is defined by
Sf(x,t)=(2π)−n∫Rnei(x⋅ξ+t|ξ|a)ˆf(ξ)dξ,a>0, |
and its maximal function, which is given by
S∗Ef(x):=sup(y,t)∈E|Sf(x+y,t)|,x∈Rn. |
Sjölin-Strömberg [24] obtained maximal function S∗Ef is bounded from L2(Rn) to L2(Rn) when n≥1; see [25] for more studies. The Boussinesq maximal function is different from the fractional Schrödinger maximal function and they have different properties. Thus, we consider the Boussinesq maximal function in this paper. Our main result is as follows.
Theorem 1.1. Assume n≥1,λ≥1. Let the interval J⊂[0,1]. Suppose B is a ball in Rn with radius r and set E=B×J={(y,t):y∈B,t∈J}. Let f∈L2(Rn) with suppˆf⊂B(0,λ), then one has
‖B∗Ef‖L2(R)≲(|J|14λ12+r12λ12+1)‖f‖L2(R)whenn=1 |
and
‖B∗Ef‖L2(Rn)≲(|J|12λ+rλ+1)(rλ+1)n−22‖f‖L2(Rn)whenn≥2. |
In section two we give the proof of Theorem 1.1. We use the methods of frequency decomposition, linearization of the maximal operator, TT∗ and so on. In fact, in subsection 2.1 we first introduce our main lemma. In order to prove our main lemma, we shall introduce two lemmas, which are proved in section three, then we give the proof of our main lemma. In subsection 2.2 we prove Theorem 1.1.
Throughout this paper, we always use C to denote a positive constant independent of the main parameters involved, but whose value may change at each occurrence. The positive constants with subscripts, such as C1 and C2, do not change in different occurrences. For two real functions f and g, we always use f≲g or g≳f to denote that f is smaller than a positive constant C times g, and we always use f∼g as shorthand for f≲g≲f. If the function f has compact support, we use suppf to denote the support of f. We write |A| for the Lebesgue measure of A⊂R. We use S(Rn) to denote the Schwartz function on Rn. We use B(c,r) to represent the ball centered at c with radius r in Rn.
In order to prove Theorem 1.1, we give our main lemma as follows.
Lemma 2.1. Assume n≥1,λ≥1. Let the interval J⊂[0,1]. Suppose B is a ball in Rn with radius r and E=B×J={(y,t):y∈B,t∈J}. If f∈L2(Rn) with suppˆf⊂B(0,λ), then
‖B∗Ef‖L2(Rn)≲(|J|n4λn2+rn2λn2+1)‖f‖L2(Rn). |
Remark 2.1. In fact, Lemma 2.1 contains the Theorem 1.1 when n=1 and n=2, so it suffices to prove Theorem 1.1 when n≥3.
Lemma 2.1 plays a key role in the proof of Theorem 1.1. In order to prove Lemma 2.1, we shall use the following Lemmas 2.2 and 2.3. We postpone the proofs of Lemmas 2.2 and 2.3 here and the details will be shown in section three.
Lemma 2.2. Assume n≥1,λ≥1. Let the interval J⊂[0,1]. Suppose B is a ball in Rn with radius r and E=B×J={(y,t):y∈B,t∈J}. If f∈L2(Rn) with suppˆf⊂{ξ∈Rn:λ2≤|ξ|≤λ}, then
‖B∗Ef‖L2(Rn)≲(|J|n4λn2+rn2λn2+1)‖f‖L2(Rn). |
The only difference between Lemma 2.1 and Lemma 2.2 is the support of ˆf and that the condition of Lemma 2.1 is weaker than that of Lemma 2.2.
Remark 2.2. If we take B=B(0,ϵ) with ϵ>0 small enough in Lemma 2.2, then we have
‖supt∈J|Bf(⋅,t)|‖L2(Rn)≲(|J|n4λn2+1)‖f‖L2(Rn). |
Lemma 2.3. Let y0∈Rn,t0∈R,0<r≤1, f∈L2(Rn) with suppˆf⊂B(0,λ) and λ≥1. Set
E={(y,t)∈Rn+1:yy0,j≤yj≤yy0,j+rfor1≤j≤nandt0≤t≤t0+r2}, |
then
‖B∗Ef‖L2(Rn)≲(1+r2λ2)(1+rλ)n‖f‖L2(Rn). |
Proof of Lemma 2.1. Let N be the smallest integer so that |J|2−2Nλ2+r2−Nλ<2. We write f=N∑j=0fj where supp^fj⊂{ξ∈Rn:2−j−1λ≤|ξ|≤2−jλ} for 0≤j≤N−1 and supp^fN⊂B(0,2−Nλ). We make the following two-fold analysis:
On the one hand, we take E=B×J={(y,t):y∈B,t∈J} in Lemma 2.3, where B is the same as in Lemma 2.1, which implies that
‖B∗EfN‖L2(Rn)≲(1+|J|2−2Nλ2)(1+r2−Nλ)n‖fN‖L2(Rn)≲‖f‖L2(Rn). | (2.1) |
On the other hand, according to Lemma 2.2 we have
‖B∗Efj‖L2(Rn)≲(2−jn2|J|n4λn2+rn2λn22−jn2)‖f‖L2(Rn) |
for 0≤j≤N−1, which implies that
‖B∗E(N−1∑j=0fj)‖L2(Rn)≲(|J|n4λn2+rn2λn2)‖f‖L2(Rn). | (2.2) |
(2.1) and (2.2) yield that
‖B∗Ef‖L2(Rn)≤N∑j=0‖B∗Efj‖L2(Rn)≲(|J|n4λn2+rn2λn2+1)‖f‖L2(Rn). |
This completes the proof of Lemma 2.1.
We now are ready to combine our main Lemma 2.1 and finish our proof.
Proof of Theorem 1.1. By Remark 2.1, it suffices to consider the case n≥3. By Lemma 2.1 we have
‖B∗Ef‖2L2(Rn)≲(|J|n2λn+rnλn+1)‖f‖2L2(Rn). |
Cover J with intervals Ji,i=1,2,⋅⋅⋅,N, of intervals of equal length |Ji| such that |Ji|λ2=r2λ2+1 with N≤|J||Ji|+1. Set Ei:=B×Ji, then we have
‖B∗Eif‖2L2(Rn)≲((|Ji|λ2)n2+(r2λ2+1)n2)‖f‖2L2(Rn)=2(r2λ2+1)n2‖f‖2L2(Rn), |
which implies that
‖B∗Ef‖2L2(Rn)≤N∑i=1‖B∗Eif‖2L2(Rn)≲N(r2λ2+1)n2‖f‖2L2(Rn)≤(|J||Ji|+1)(r2λ2+1)n2‖f‖2L2(Rn)=(|J|λ2(r2λ2+1)−1+1)(r2λ2+1)n2‖f‖2L2(Rn)=(|J|λ2+r2λ2+1)(r2λ2+1)n−22‖f‖2L2(Rn)≤(|J|12λ+rλ+1)2(rλ+1)n−2‖f‖2L2(Rn), |
which gives the desired estimate.
In order to finish the proof of Lemma 2.2, we will need the following lemma, known as Van der Corput's lemma.
Lemma 3.1. (Van der Corput's lemma [26]) For a<b, let F∈C∞([a,b]) be real valued and ψ∈C∞([a,b]).
(i) If |F′(x)|≥λ>0, ∀ x∈[a,b] and F′(x) is monotonic on [a,b], then
|∫baeiF(x)ψ(x)dx|≤Cλ(|ψ(b)|+∫ba|ψ′(x)|dx), |
where C does not depend on F, ψ or [a,b].
(ii) If |F″(x)|≥λ>0, ∀ x∈[a,b], then
|∫baeiF(x)ψ(x)dx|≤Cλ12(|ψ(b)|+∫ba|ψ′(x)|dx), |
where C does not depend on F, ψ or [a,b].
Proof of Lemma 2.2. Assume that χ is a smooth nonnegative function on R, suppχ⊂[13,43] and χ≡1 on [12,1]. We also use the same notation for the radial function on Rn with χ(ξ)=χ(|ξ|), then we get the following truncated Boussinesq operator:
Bλf(x,t):=(2π)−n∫Rnei(x⋅ξ+t|ξ|√1+|ξ|2)ˆf(ξ)χ(ξλ)dξ. |
Let t:Rn→J and b:Rn→B be measurable functions. By linearizing the maximal operator, we have
Bλf(x+b(x),t(x))=(2π)−n∫Rnei((x+b(x))⋅ξ+t(x)|ξ|√1+|ξ|2)ˆf(ξ)χ(ξλ)dξ=(2π)−nλn∫Rnei(λ(x+b(x))⋅η+t(x)|λη|√1+|λη|2)ˆf(λη)χ(η)dη=:λnTλ(ˆf(λ⋅))(x), |
where
Tλg(x):=∫Rnei(λ(x+b(x))⋅ξ+t(x)|λξ|√1+|λξ|2)g(ξ)χ(ξ)dξ. |
We use the method of TT∗ to finish the proof of Lemma 2.2. After some computation, we get that the kernel of TλT∗λ is
Kλ(x,y):=∫Rnei(λ(x−y+b(x)−b(y))⋅ξ+(t(x)−t(y))|λξ|√1+|λξ|2)χ2(ξ)dξ. |
We need to control Kλ(x,y). However, it is difficult to estimate Kλ(x,y), which leads us to majorize the kernel Kλ by a convolution kernel Gλ; that is |Kλ(x,y)|≲Gλ(x−y). Next, we divide the proof into two parts in order to obtain the expression of function Gλ.
On the one hand, we have that the trivial estimate
|Kλ(x,y)|≲1 |
holds for any x and y. We shall use this estimate when λ|x−y|≤C0+2λd, where d=2r.
On the other hand, we discuss the case λ|x−y|>C0+2λd. Let σ be the surface measure on the unit sphere in Rn. Clearly, polar coordinates yield that
Kλ(x,y)=∫∞0eiλr(t(x)−t(y))√1+λ2r2χ2(r)(∫Sn−1eiλr(x−y+b(x)−b(y))⋅ξ′dσ(ξ′))rn−1dr=∫∞0eiλr(t(x)−t(y))√1+λ2r2χ2(r)ˆσ(λ(x−y+b(x)−b(y))r)rn−1dr. |
Stein [26] implies that
ˆσ(ξ)=(2π)−n|ξ|1−n2Jn−22(|ξ|), |
where Jn−22(|ξ|) is a Bessel function, which is defined by
Jν(t)=(t2)νΓ(ν+12)Γ(12)∫1−1eits(1−s2)νds√1−s2. |
We take C0 large enough such that
Jn−22(r)=a0eirr12+a1eirr32+⋅⋅⋅+aNeirrN+12+b0e−irr12+b1e−irr32+⋅⋅⋅+bNe−irrN+12+R(r), |
for r≥C0, where |R(r)|≲1rN+32 (see [26]). This yields that
Kλ(x,y)=∫∞0eiλr(t(x)−t(y))√1+λ2r2χ2(r)rn−1(a0eiλ|x−y+b(x)−b(y)|r(λ|x−y+b(x)−b(y)|r)n2−12+⋅⋅⋅+bNe−iλ|x−y+b(x)−b(y)|r(λ|x−y+b(x)−b(y)|r)N+n2−12+R1(λ|x−y+b(x)−b(y)|r))dr, | (3.1) |
where R1(r)=r1−n2R(r).
We first consider the remainder term. Since |R(r)|≲1rN+32, we obtain
R1(λ|x−y+b(x)−b(y)|r)≲1(λ|x−y+b(x)−b(y)|)N+n2+12. |
Observing that b(x),b(y)∈B, we have |b(x)−b(y)|≤d, which yields
|x−y|(1−d|x−y|)=|x−y|−d<|x−y+b(x)−b(y)|<|x−y|+d=|x−y|(1+d|x−y|). |
Note that λ|x−y|>C0+2λd. It follows that
12|x−y|<|x−y+b(x)−b(y)|<32|x−y|. |
Furthermore, we conclude
R1(λ|x−y+b(x)−b(y)|r)≲1(λ|x−y|)N+n2+12. |
Henceforth, we establish the estimate of the remainder term
|Kλ,rem(x,y)|≲(λ|x−y|)−N−n2−12. |
In order to obtain the upbound of |Kλ(x,y)|, it suffices to estimate the main term, which is defined by
Kλ,main(x,y):=a0(λ|x−y+b(x)−b(y)|)n2−12∫∞0eiΦλ(r)χ2(r)rn2−12dr, |
where
Φλ(r):=λr(t(x)−t(y))√1+λ2r2+λ|x−y+b(x)−b(y)|r. |
Next, we make the following two-fold analysis:
Case 1. |x−y|≫λ|t(x)−t(y)|. The definition of Φλ(r) implies that Φ′λ(r)=λ(t(x)−t(y))1+2λ2r2√1+λ2r2+λ|x−y+b(x)−b(y)|, which yields
|Φ′λ(r)|≥λ|x−y+b(x)−b(y)|−λ|t(x)−t(y)|1+2λ2r2√1+λ2r2≳λ|x−y|. |
Using integration by parts, we obtain
|Kλ,main(x,y)|≲1(λ|x−y+b(x)−b(y)|)n2−12(λ|x−y|)−N≲(λ|x−y|)−Nfor∀N. |
Case 2. |x−y|≲λ|t(x)−t(y)|. Since t(x),t(y)∈J, we get |x−y|≲λ|J|. It follows from the definition of Φλ(r) that Φ″λ(r)=λ(t(x)−t(y))λ2r(3+2λ2r2)(1+λ2r2)32, which implies
|Φ″λ(r)|≳λ2|t(x)−t(y)|. |
Using Lemma 3.1, we have
|Kλ,main(x,y)|≲1(λ|x−y|)n2−12(λ2|t(x)−t(y)|)−12≲(λ|x−y|)−n2. |
We have established the upbound of |Kλ(x,y)|. In summary, by |Kλ(x,y)|≲Gλ(x−y), we may take
Gλ(x):=χ{|x|<C0λ−1+2d}(x)+λ−Nχ{|x|≥λ−1}(x)|x|−N+λ−n2χ{|x|≤Cλ|J|}(x)|x|−n2, |
which yields
‖Gλ‖L1(Rn)≲(λ−1+d)n+λ−n+∫|x|≤Cλ|J|λ−n2|x|−n2dx≲(λ−1+d)n+λ−n+λ−n2∫Cλ|J|0rn2−1dr≲(λ−1+d)n+λ−n+|J|n2≲λ−n+dn+|J|n2, |
where in the second inequality we used polar coordinates. This implies that
‖TλT∗λ‖L2(Rn)→L2(Rn)≲‖Gλ‖L1(Rn)≲λ−n+dn+|J|n2. |
It follows that
‖Tλ‖L2(Rn)→L2(Rn)≲λ−n2+dn2+|J|n4. |
We combine the above estimates and get
‖Bλf(x+b(x),t(x))‖L2(Rn)≤λn‖Tλ(ˆf(λ⋅))‖L2(Rn)≤λn‖Tλ‖L2(Rn)→L2(Rn)‖ˆf(λ⋅)‖L2(Rn)≲λn(λ−n2+dn2+|J|n4)λ−n2‖f‖L2(Rn)=(1+dn2λn2+λn2|J|n4)‖f‖L2(Rn). |
This completes the proof of Lemma 2.2.
Proof of Lemma 2.3. We write y=(y1,⋅⋅⋅,yn) and y0=(y0,1,⋅⋅⋅,y0,n). For 1≤j≤n, we write Λj:=eiξjyj−eiξjy0,j and Λn+1:=eit|ξ|√1+|ξ|2−eit0|ξ|√1+|ξ|2. It follows that
Bf(x+y,t)=(2π)−n∫Rneiξ⋅xeiξ1y1⋅⋅⋅eiξnyneit|ξ|√1+|ξ|2ˆf(ξ)dξ=(2π)−n∫Rneiξ⋅x(Λ1+eiξ1y0,1)⋅⋅⋅(Λn+eiξny0,n)(Λn+1+eit0|ξ|√1+|ξ|2)ˆf(ξ)dξ. |
Henceforth, Bf(x+y,t) is the sum of integrals of the form
(2π)−n∫Rneiξ⋅x(∏j∈Ω1Λj)(∏j∈Ω2eiξjy0,j)Λn+1ˆf(ξ)dξ=:B1f(x,y,t) | (3.2) |
or
(2π)−n∫Rneiξ⋅x(∏j∈Ω1Λj)(∏j∈Ω2eiξjy0,j)eit0|ξ|√1+|ξ|2ˆf(ξ)dξ=:B2f(x,y,t). | (3.3) |
Here, Ω1 and Ω2 are disjoint subsets of {1,2,3,⋅⋅⋅,n} and Ω1∪Ω2={1,2,3,⋅⋅⋅,n}.
First, we give the discussion of B1f(x,y,t). For j∈Ω1, we have
Λj=iξj∫yjy0,jeiξjsjdsj, |
and we also get
Λn+1=i|ξ|√1+|ξ|2∫tt0ei|ξ|√1+|ξ|2sn+1dsn+1. |
Assuming Ω1={k1,k2,⋅⋅⋅,km}, we conclude
B1f(x,y,t)=∫Rn∫yk1y0,k1∫yk2y0,k2⋅⋅⋅∫ykmy0,km∫tt0eiξ⋅x(∏j∈Ω1iξjeiξjsj)(∏j∈Ω2eiξjy0,j)×i|ξ|√1+|ξ|2ei|ξ|√1+|ξ|2sn+1ˆf(ξ)dsk1dsk2⋅⋅⋅dskmdsn+1dξ. |
By changing the order of integration we get
|B1f(x,y,t)|≤∫yk1y0,k1⋅⋅⋅∫ykmy0,km∫tt0|FΩ1(x;sk1,⋅⋅⋅,skm,sn+1)|dsk1⋅⋅⋅dskmdsn+1, |
where
FΩ1(x;sk1,⋅⋅⋅,skm,sn+1):=(2π)−n∫Rneiξ⋅x(∏j∈Ω1iξjeiξjsj)(∏j∈Ω2eiξjy0,j)i|ξ|√1+|ξ|2ei|ξ|√1+|ξ|2sn+1ˆf(ξ)dξ. |
It follows that
sup(y,t)∈E|B1f(x,y,t)|≤∫y0,k1+ry0,k1⋅⋅⋅∫y0,km+ry0,km∫t0+r2t0|FΩ1(x;sk1,⋅⋅⋅,skm,sn+1)|dsk1⋅⋅⋅dskmdsn+1. | (3.4) |
Taking L2 norms of both sides of (3.4) and from Minkowski's inequality and Plancherel's theorem, we deduce
‖sup(y,t)∈E|B1f(⋅,y,t)|‖L2(Rn)≤∫y0,k1+ry0,k1⋅⋅⋅∫y0,km+ry0,km∫t0+r2t0‖FΩ1(⋅;sk1,⋅⋅⋅,skm,sn+1)‖L2(Rn)dsk1⋅⋅⋅dskmdsn+1=(2π)−n2∫y0,k1+ry0,k1⋅⋅⋅∫y0,km+ry0,km∫t0+r2t0(∫Rn(∏j∈Ω1|ξj|2)(|ξ|√1+|ξ|2)2|ˆf(ξ)|2dξ)12dsk1⋅⋅⋅dskmdsn+1≤rmr2λmλ2‖f‖L2(Rn), |
where the last inequality follows by applying the fact that f∈L2(Rn) and suppˆf⊂B(0,λ).
Next, we study B2f(x,y,t) in (3.3). The estimate of B2f(x,y,t) is similar to that of B1f(x,y,t). Since Ω1={k1,k2,⋅⋅⋅,km}, it follows that
B2f(x,y,t)=∫Rn∫yk1y0,k1⋅⋅⋅∫ykmy0,kmeiξ⋅x(∏j∈Ω1iξjeiξjsj)(∏j∈Ω2eiξjy0,j)eit0|ξ|√1+|ξ|2ˆf(ξ)dsk1⋅⋅⋅dskmdξ. |
Changing the order of integration again, one then obtains
|B2f(x,y,t)|≤∫yk1y0,k1⋅⋅⋅∫ykmy0,km|HΩ1(x;sk1,⋅⋅⋅,skm)|dsk1⋅⋅⋅dskm, |
where
HΩ1(x;sk1,⋅⋅⋅,skm):=(2π)−n∫Rneiξ⋅x(∏j∈Ω1iξjeiξjsj)(∏j∈Ω2eiξjy0,j)eit0|ξ|√1+|ξ|2ˆf(ξ)dξ. |
Furthermore, we get
sup(y,t)∈E|B2f(x,y,t)|≤∫y0,k1+ry0,k1⋅⋅⋅∫y0,km+ry0,km|HΩ1(x;sk1,⋅⋅⋅,skm)|dsk1⋅⋅⋅dskm. |
Using Minkowski's inequality and Plancherel's theorem, we then obtain
‖sup(y,t)∈E|B2f(⋅,y,t)|‖L2(Rn)≤∫y0,k1+ry0,k1⋅⋅⋅∫y0,km+ry0,km‖HΩ1(⋅;sk1,⋅⋅⋅,skm)‖L2(Rn)dsk1⋅⋅⋅dskm=(2π)−n2∫y0,k1+ry0,k1⋅⋅⋅∫y0,km+ry0,km(∫Rn(∏j∈Ω1|ξj|2)|ˆf(ξ)|2dξ)12dsk1⋅⋅⋅dskm≤rmλm‖f‖L2(Rn). |
By summation of the above integrals, we conclude that
‖B∗Ef‖L2(Rn)≲(1+r2λ2)(1+rλ)n‖f‖L2(Rn). |
Thus, Lemma 2.3 is established.
In this paper, we studied the boundedness of the Boussinesq maximal operator when n≥1. We obtained the Boussinesq maximal operator is bounded from L2(Rn) to L2(Rn) when f∈L2(Rn) and suppˆf⊂B(0,λ) by using the methods of frequency decomposition, linearization of the maximal operator, TT∗ and so on.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Dan Li is supported by Mathematics Research Branch Institute of Beijing Association of Higher Education and Beijing Interdisciplinary Science Society (No. SXJC-2022-032) and the Disciplinary funding of Beijing Technology and Business University (No. STKY202308). Xiang Li∗ is supported by the Scientific Research Foundation Funded Project of Chuzhou University (No. 2022qd058).
The authors declare that they have no conflicts of interest.
[1] | J. Bourgain, Some new estimates on oscillatory integrals, In: Essays on Fourier analysis in honor of Elias M. Stein (PMS-42), Princeton: Princeton University Press, 1995. https://doi.org/10.1515/9781400852949.83 |
[2] |
J. Bourgain, On the Schrödinger maximal function in higher dimension, Proc. Steklov Inst. Math., 280 (2013), 46–60. https://doi.org/10.1134/S0081543813010045 doi: 10.1134/S0081543813010045
![]() |
[3] |
J. Bourgain, A note on the Schrödinger maximal function, J. Anal. Math., 130 (2016), 393–396. https://doi.org/10.1007/s11854-016-0042-8 doi: 10.1007/s11854-016-0042-8
![]() |
[4] | J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17 (1872), 55–108. |
[5] |
A. Carbery, Radial Fourier multipliers and associated maximal functions, North Holland Math. Stud., 111 (1985), 49–56. https://doi.org/10.1016/S0304-0208(08)70279-2 doi: 10.1016/S0304-0208(08)70279-2
![]() |
[6] | L. Carleson, Some analytic problems related to statistical mechanics, In: Euclidean harmonic analysis, Berlin, Heidelberg: Springer, 1980, 5–45. https://doi.org/10.1007/BFb0087666 |
[7] | C. Cho, H. Ko, A note on maximal estimates of generalized Schrödinger equation, 2018, arXiv: 1809.03246. |
[8] | M. G. Cowling, Pointwise behavior of solutions to Schrödinger equations, In: Harmonic analysis, Berlin, Heidelberg: Springer, 1982, 83–90. https://doi.org/10.1007/BFb0069152 |
[9] | B. E. J. Dahlberg, C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, In: Harmonic analysis, Berlin, Heidelberg: Springer, 1982,205–209. https://doi.org/10.1007/BFb0093289 |
[10] | C. Demeter, S. Guo, Schrödinger maximal function estimates via the pseudoconformal transformation, 2016, arXiv: 1608.07640. |
[11] |
Y. Ding, Y. M. Niu, Weighted maximal estimates along curve associated with dispersive equations, Anal. Appl., 15 (2017), 225–240. https://doi.org/10.1142/S021953051550027X doi: 10.1142/S021953051550027X
![]() |
[12] |
X. M. Du, L. Guth, X. C. Li, A sharp Schrödinger maximal eatimate in R2, Ann. Math., 186 (2017), 607–640. https://doi.org/10.4007/annals.2017.186.2.5 doi: 10.4007/annals.2017.186.2.5
![]() |
[13] |
X. M. Du, L. Guth, X. C. Li, R. X. Zhang, Pointwise convergence of Schrödinger solutions and multilinear refined Strichartz estimates, Forum Math. Sigma, 6 (2018), e14. https://doi.org/10.1017/fms.2018.11 doi: 10.1017/fms.2018.11
![]() |
[14] |
X. M. Du, R. X. Zhang, Sharp L2 estimate of Schrödinger maximal function in higher dimensions, Ann. Math., 189 (2019), 837–861. https://doi.org/10.4007/annals.2019.189.3.4 doi: 10.4007/annals.2019.189.3.4
![]() |
[15] |
S. Lee, On pointwise convergence of the solutions to Schrödinger equations in R2, Int. Math. Res. Not., 2006 (2006), 32597. https://doi.org/10.1155/IMRN/2006/32597 doi: 10.1155/IMRN/2006/32597
![]() |
[16] |
S. Lee, K. M. Rogers, The Schrödinger equation along curves and the quantum harmonic oscillator, Adv. Math., 229 (2012), 1359–1379. https://doi.org/10.1016/j.aim.2011.10.023 doi: 10.1016/j.aim.2011.10.023
![]() |
[17] |
D. Li, J. F. Li, A Carleson problem for the Boussinesq operator, Acta Math. Sin. Engl. Ser., 39 (2023), 119–148. https://doi.org/10.1007/s10114-022-1221-4 doi: 10.1007/s10114-022-1221-4
![]() |
[18] |
D. Li, J. F. Li, J. Xiao, An upbound of Hausdorff's dimension of the divergence set of the fractional Schrödinger operator on Hs(Rn), Acta Math. Sci., 41 (2021), 1223–1249. https://doi.org/10.1007/s10473-021-0412-x doi: 10.1007/s10473-021-0412-x
![]() |
[19] |
W. J. Li, H. J. Wang, A study on a class of generalized Schrödinger operators, J. Funct. Anal., 281 (2021), 109203. https://doi.org/10.1016/j.jfa.2021.109203 doi: 10.1016/j.jfa.2021.109203
![]() |
[20] | R. Lucà, K. Rogers, An improved necessary condition for the Schrödinger maximal estimate, 2015, arXiv: 1506.05325. |
[21] |
C. X. Miao, J. W. Yang, J. Q. Zheng, An improved maximal inequality for 2D fractional order Schrödinger operators, Stud. Math., 230 (2015), 121–165. https://doi.org/10.4064/sm8190-12-2015 doi: 10.4064/sm8190-12-2015
![]() |
[22] |
A. Moyua, A. Vargas, L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Not., 1996 (1996), 793–815. https://doi.org/10.1155/S1073792896000499 doi: 10.1155/S1073792896000499
![]() |
[23] |
P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J., 55 (1987), 699–715. https://doi.org/10.1215/S0012-7094-87-05535-9 doi: 10.1215/S0012-7094-87-05535-9
![]() |
[24] |
P. Sjölin, J. O. Strömberg, Schrödinger means in higher dimensions, J. Math. Anal. Appl., 504 (2021), 125353. https://doi.org/10.1016/j.jmaa.2021.125353 doi: 10.1016/j.jmaa.2021.125353
![]() |
[25] |
P. Sjölin, J. O. Strömberg, Analysis of Schrödinger means, Ann. Fenn. Math., 46 (2021), 389–394. https://doi.org/10.5186/aasfm.2021.4616 doi: 10.5186/aasfm.2021.4616
![]() |
[26] | E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton: Princeton University Press, 1993. |
[27] |
T. Tao, A. Vargas, A bilinear approach to cone multipliers Ⅰ. Restriction estimates, Geom. Funct. Anal., 10 (2000), 185–215. https://doi.org/10.1007/s000390050006 doi: 10.1007/s000390050006
![]() |
[28] |
L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102 (1988), 874–878. https://doi.org/10.2307/2047326 doi: 10.2307/2047326
![]() |