This paper aims to study the Geometric properties of analytic function in the open unit disk. In the present investigation, we obtain some geometric properties of Pascal distribution involving Kamali type related to leaf like domain. In this paper, we find coefficient inequality, Radii Properties, convolution product, partial sum of the class Σ(δ,Φ,β,s,t,m). Furthermore, we examine the distortion bounds belonging to the same class.
Citation: K. Saritha, K. Thilagavathi. An application of Pascal distribution involving Kamali type related to leaf like domain[J]. AIMS Mathematics, 2023, 8(7): 16511-16527. doi: 10.3934/math.2023844
[1] | K. Saritha, K. Thilagavathi . Differential subordination, superordination results associated with Pascal distribution. AIMS Mathematics, 2023, 8(4): 7856-7864. doi: 10.3934/math.2023395 |
[2] | Madan Mohan Soren, Luminiţa-Ioana Cotîrlǎ . Fuzzy differential subordination and superordination results for the Mittag-Leffler type Pascal distribution. AIMS Mathematics, 2024, 9(8): 21053-21078. doi: 10.3934/math.20241023 |
[3] | Afis Saliu, Khalida Inayat Noor, Saqib Hussain, Maslina Darus . Some results for the family of univalent functions related with Limaçon domain. AIMS Mathematics, 2021, 6(4): 3410-3431. doi: 10.3934/math.2021204 |
[4] | B. A. Frasin, M. Darus . Subclass of analytic functions defined by $ q $-derivative operator associated with Pascal distribution series. AIMS Mathematics, 2021, 6(5): 5008-5019. doi: 10.3934/math.2021295 |
[5] | Rabha W. Ibrahim, Dumitru Baleanu . Fractional operators on the bounded symmetric domains of the Bergman spaces. AIMS Mathematics, 2024, 9(2): 3810-3835. doi: 10.3934/math.2024188 |
[6] | N. E. Cho, G. Murugusundaramoorthy, K. R. Karthikeyan, S. Sivasubramanian . Properties of $ \lambda $-pseudo-starlike functions with respect to a boundary point. AIMS Mathematics, 2022, 7(5): 8701-8714. doi: 10.3934/math.2022486 |
[7] | G. Murugusundaramoorthy, K. Vijaya, K. R. Karthikeyan, Sheza M. El-Deeb, Jong-Suk Ro . Bi-univalent functions subordinated to a three leaf function induced by multiplicative calculus. AIMS Mathematics, 2024, 9(10): 26983-26999. doi: 10.3934/math.20241313 |
[8] | Murugusundaramoorthy Gangadharan, Vijaya Kaliyappan, Hijaz Ahmad, K. H. Mahmoud, E. M. Khalil . Mapping properties of Janowski-type harmonic functions involving Mittag-Leffler function. AIMS Mathematics, 2021, 6(12): 13235-13246. doi: 10.3934/math.2021765 |
[9] | Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015 |
[10] | Pinhong Long, Jinlin Liu, Murugusundaramoorthy Gangadharan, Wenshuai Wang . Certain subclass of analytic functions based on $ q $-derivative operator associated with the generalized Pascal snail and its applications. AIMS Mathematics, 2022, 7(7): 13423-13441. doi: 10.3934/math.2022742 |
This paper aims to study the Geometric properties of analytic function in the open unit disk. In the present investigation, we obtain some geometric properties of Pascal distribution involving Kamali type related to leaf like domain. In this paper, we find coefficient inequality, Radii Properties, convolution product, partial sum of the class Σ(δ,Φ,β,s,t,m). Furthermore, we examine the distortion bounds belonging to the same class.
Let G be the holomorphic function in the open unit disc U which is defined by
ȷ(ζ)=ζ+∞∑k=2bkζk,ζ∈U, | (1.1) |
and let k be the subclass of G consisting of functions of the form
ȷ(ζ)=ζ−∞∑k=2bkζk,ζ∈U, | (1.2) |
which are univalent and normalized in U. For ȷ∈G and of the form (1.1) and ı(ζ)∈G given by
ı(ζ)=ζ+∞∑k=2ckζk,ζ∈U, | (1.3) |
convolution of ȷ(ζ) and ı(ζ) is given by
(ȷ⋆ı)(ζ)=ζ+∞∑k=2bkckζk,ζ∈U. | (1.4) |
Let ȷ(ζ) and ı(ζ) be holomorphic functions and b and c are coefficient of the function which is belonging to G, so we state that ȷ is subordinate to ı it is denoted by ȷ≺ı (see [10]), then there is a Schwarz function ℘ that is holomorphic in U including ℘(0)=0 and |℘(ζ)|<1 for every ζ∈U, such that ȷ(ζ)=ı(℘(ζ)), for ζ∈U. Moreover, we have ȷ is univalent in U.
ȷ≺ı⇔ȷ(0)=ı(0)andȷ(U)⊂ı(U). |
A Variable Y is said to have the Pascal distribution if it takes the values 0, 1, 2, 3... with the probabilities (1−t)m,tm(1−t)m1!,t2m(m+1)(1−t)m2!,t3m(m+1)(m+2)(1−t)m3!, ... respectively, where t,m are called the parameters and thus,
P(Y=k)=(k+m−1m−1)tk(1−t)m,k∈{0,1,2,...}. | (1.5) |
Many essentially interesting proof techniques involving a power series, whose co-efficients are probabilities of the Pascal distribution series introduced by El-Deeb et al. [15] that is
Qmt(ζ)=ζ+(k+m−1m−1)t(k−1)(1−t)mζk,k∈U,(m≥1,0≤t≤1). | (1.6) |
The family of an holomorphic function as follows
E={F:F(ζ)=ȷ∗Qmt(ζ)=ζ+∞∑k=2(k+m−2m−1)tk−1(1−t)mbkζk,ȷ∈G}. | (1.7) |
Muhammet Kamali et al. [11] introduced the class of function and gave the following condition.
Let Φ:U→C be holomorphic and for 0≤δ≤1. We define the class Σ(δ,Φ,β,s,t,m) as
Σ(δ,Φ,β,s,t,m)={ȷ∈G:δζ3F‴(ζ)+(1+2δ)F″(ζ)ζ2+ζF′(ζ)δζ2F″(ζ)+ζF′(ζ)}=ζ+∞∑k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk. | (1.8) |
Atshan et al. [19] was stuided in the class of function and the following condition is given in Eq (1.8). Paprocki and Sokół [12] studied the class of analytic and univalent functions defined by S∗(α,b), where α≥1,b≥12. For the choice of α=1, the class of S∗(α,b) investigated by Janowski [9]. For the choice of α=2,b=1, the class S∗(2,1) investigated by Sokół [18]. It is easy to see that f∈S∗(α,b) iff
ζf′(ζ)f(ζ)≺q0(ζ)=(1+ζ1+(1−bb)ζ)1α,q0(0)=1, |
which is a leaf like set.
Making use of this the class C(β,s) and is a leaf like set. For the choice of β=2,s=1, the class C(2,1) are investigated by Paprocki and Sokół [12]. The concept of leaf like domain was investigated by Paprocki and Sokół [12]. For more details related to the leaf-like domain, one may refer to the recent papers (see[1,17]).
For fixed parameter β,s we say that F∈G is in the class Σ(δ,Φ,β,s,t,m) if it satisfies the following subordination condition.
1+ζ(Σt,mβ,sF(ζ))″(Σt,mβ,sF(ζ))′≺(1+ω(ζ)1+(1−ss)ω(ζ))1β. | (1.9) |
In view of the definition of subordination is equivalent to the following conditions:
|ω(ζ)|<1.|[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β−[(Σt,mβ,s)′]β[(Σt,mβ,s)′]β−(1−ss)[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β|<1. | (1.10) |
This is used to obtain geometric properties like coefficient inequality, Radius of starlikeness, convolution properties, partial sum of the class Σ(δ,Φ,β,s,t,m) involving Pascal distribution series related to the leaf like domain. The following theorem gives a necessary and sufficient condition for a function F to be in the class Σ(δ,Φ,β,s,t,m).
Theorem 2.1. Let a function F∈G which is belonging to the class Σ(δ,Φ,β,s,t,m) if only if
∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(βk(s+1)+s(1−2β)s)bk≤2s−1s. | (2.1) |
Proof. Let F∈Σ(δ,Φ,β,s,t,m) then,
1+ζ(Σt,mβ,sF(ζ))″(Σt,mβ,sF(ζ))′≺(1+ω(ζ)1+(1−ss)ω(ζ))1β. | (2.2) |
Therfore, there exists an holomorphic function ω such that,
ω(ζ)=[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β−[(Σt,mβ,s)′]β[(Σt,mβ,s)′]β−(1−ss)[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β. | (2.3) |
Hence,
|ω(ζ)|=|[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β−[(Σt,mβ,s)′]β[(Σt,mβ,s)′]β−(1−ss)[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β|<1, | (2.4) |
let
[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β−[(Σt,mβ,s)′]β[(Σt,mβ,s)′]β−(1−ss)[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β<1. |
[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β−[(Σt,mβ,s)′]β<[(Σt,mβ,s)′]β−(1−ss)[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β. |
To solve this we get,
[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β<2[(Σt,mβ,s)′]β−(1−ss)[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β. |
Here,
[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β=1+β∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)bkζn−1, | (2.5) |
and
2[(Σt,mβ,s)′]β−(1−ss)[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β=(3s−1s)+∞∑k=2(k+m−2m−1)tk−1(1−t)m×k2(δk−δ+1)(2βs−βk+ss)bkζn−1. | (2.6) |
Compare the Eqs (2.4) and (2.5) we get,
∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(βk(s+1)+s(1−2β)s)bk≤2s−1s. |
Conversely, let
∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(βk(s+1)+s(1−2β)s)bk≤2s−1s. |
Then from Eq (1.10), we have
2[(Σt,mβ,s)′]β−(1−ss)[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β=(3s−1s)+∞∑k=2(k+m−2m−1)tk−1(1−t)m×k2(δk−δ+1)(2βs−βk+ss)bkζn−1.[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β<2[(Σt,mβ,s)′]β−(1−ss)[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β. | (2.7) |
|ω(ζ)|=|[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β−[(Σt,mβ,s)′]β[(Σt,mβ,s)′]β−(1−ss)[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β|<1. | (2.8) |
Thus,
ω(ζ)=[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β−[(Σt,mβ,s)′]β[(Σt,mβ,s)′]β−(1−ss)[(Σt,mβ,s)′+ζ(Σt,mβ,s)″]β, | (2.9) |
this proves that,
1+ζ(Σt,mβ,sF(ζ))″(Σt,mβ,sF(ζ))′≺(1+ω(ζ)1+(1−ss)ω(ζ))1β, | (2.10) |
and hence F∈Σ(δ,Φ,β,s,t,m).
The concept of neighborhoods was first introduced by Goodman [7] and then generalized by Ruscheweyh [13] and studied by some authors, Atshan [2] and Atshan and Kulkarni [3].
Theorem 3.1. Let a function F∈G is in the class F∈Σ(δ,Φ,β,s,t,m) then,
Ω=2s−1(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)(βk(s+1)+s(1−2β)). |
Proof. It follows from Theorem 2.1 that if F∈Σt,mβ,sF1(ζ) then we have,
∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(βk(s+1)+s(1−2β)s)bk≤2s−1s. |
Hence
∑kbk=(2s−1s)s(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)(βk(s+1)+s(1−2β)), |
which implies that
∑kbk=2s−1(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)(βk(s+1)+s(1−2β))=Ω. |
Theorem 4.1. For functions Fj(ζ)(j=1,2) defined by (1.2) let F1(ζ)∈Σt,mβ,s and F2(ζ)∈Σt,mβ,s then F1(ζ)∗F2(ζ)∈Σt,mβ,s where
§=βk(s+1)+s(1−2β)[1−βk(r+1)+r(1−2β)](2s−1)(2r−1)[β(k−2)+1]−2[βk(s+1)+s(1−2β)][βk(r+1)+r(1−2β)]Ψ(k). |
Here,
Ψ(k)=(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1). |
Proof. In the view of Theorem 2.1 it suffices to prove that
∞∑k=2βk(§+1)+§(1−2β)2§−1Ψ(k)bk,1bk,2≤1, |
where § is defined by Theorem 2.1 under the hypothesis it follows from Theorem 2.1 and the Cauchy-Schwarz inequality that
∞∑k=2[βk(s+1)+s(1−2β)]12[βk(r+1)+r(1−2β)]12√(2s−1)(2r−1)Ψ(k)√bk,1bk,2≤1. | (4.1) |
To find largest § such that
∞∑n=2βk(§+1)+§(1−2β)2§−1Ψ(k)bk,1bk,2≤∞∑k=2[βk(s+1)+s(1−2β)]12[βk(r+1)+r(1−2β)]12√(2s−1)(2r−1)Ψ(k)√bk,1bk,2≤1, |
or equivalently that
√bk,1bk,2≤[βk(s+1)+s(1−2β)]12[βk(r+1)+r(1−2β)]12√(2s−1)(2r−1)×2§−1βk(§+1)+§(1−2β). |
From (2.10) we have,
√bk,1bk,2≤√(2s−1)(2r−1)[βk(s+1)+s(1−2β)]12[βk(r+1)+r(1−2β)]12Ψ(k). |
It is sufficient to find the largest Ψ such that
√(2s−1)(2r−1)[βk(s+1)+s(1−2β)]12[βk(r+1)+r(1−2β)]12Ψ(k)≤[βk(s+1)+s(1−2β)]12[βk(r+1)+r(1−2β)]12√(2s−1)(2r−1)×2§−1βk(§+1)+§(1−2β), |
which implies to
§=βk(s+1)+s(1−2β)[1−βk(r+1)+r(1−2β)](2s−1)(2r−1)[β(k−2)+1]−2[βk(s+1)+s(1−2β)][βk(r+1)+r(1−2β)]Ψ(k). |
Here,
Ψ(k)=(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1). |
This completes the proof.
A distortion property for the functions in the class Σ(δ,Φ,β,s,t,m) is given as follows.
Theorem 5.1. If the function F∈Σt,mβ,s then,
R−(2s−1)2(2β+s)R2≤|Σt,mβ,s(ζ)|≤R+(2s−1)2(2β+s)R2 |
with equality for
Σt,mβ,s(ζ)=ζ−(2s−1)2(2β+s)ζ2. |
Proof. If F∈Σt,mβ,s, Theorem 2.1 yields the inequality,
∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(βk(s+1)+s(1−2β)s)bk≤2s−1s. |
Therefore, we have
∞∑k=2bk=2s−1(mm−1)t(1−t)m4(δ+1)(2β(s+1)+s(1−2β)). |
Thus,
|Σt,mβ,s|≤ζ+∞∑k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk≤R+R2(mm−1)t(1−t)m2(δ+1)∞∑k=2bk≤R+R2(mm−1)t(1−t)m2(δ+1)×2s−1(mm−1)t(1−t)m4(δ+1)(2β(s+1)+s(1−2β))≤R+(2s−1)2(2β+s)R2. |
Similarly,
|Σt,mβ,s|≥ζ−∞∑k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk≥R−R2(mm−1)t(1−t)m2(δ+1)∞∑k=2bk≥R−R2(mm−1)t(1−t)m2(δ+1)×2s−1(mm−1)t(1−t)m4(δ+1)(2β(s+1)+s(1−2β))≥R−(2s−1)2(2β+s)R2. |
Theorem 5.2. If the function F∈Σt,mβ,s then,
1−(2s−1)(2β+s)R≤|(Σt,mβ,s(ζ))′|≤1+(2s−1)(2β+s)R |
with equality for
Σt,mβ,s(ζ)=1−(2s−1)2(2β+s)ζ. |
Proof. If F∈Σt,mβ,s, Theorem 2.1 yields the inequality,
∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(βk(s+1)+s(1−2β)s)bk≤2s−1s. |
Therefore, we have
∞∑k=2kbk=2s−1(mm−1)t(1−t)m2(δ+1)(2β(s+1)+s(1−2β)). |
Thus,
|(Σt,mβ,s)′|≤1+∞∑k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkkζk−1≤1+R(mm−1)t(1−t)m2(δ+1)∞∑k=2kbk≤1+R(mm−1)t(1−t)m2(δ+1)×2s−1(mm−1)t(1−t)m2(δ+1)(2β(s+1)+s(1−2β))≤1+(2s−1)(2β+s)R. |
Similarly,
|(Σt,mβ,s)′|≥1−∞∑k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkkζk−1≥1−R(mm−1)t(1−t)m2(δ+1)∞∑k=2kbk≥1−R(mm−1)t(1−t)m2(δ+1)2s−1(mm−1)t(1−t)m2(δ+1)(2β(s+1)+s(1−2β))≥1−(2s−1)(2β+s)R. |
Theorem 5.3. The class F∈Σ(δ,Φ,β,s,t,m) is closed under convex linear combinations.
Proof. Suppose that the functions Σt,mβ,sF1(ζ), Σt,mβ,sF2(ζ) defined by
Σ(δ,Φ,β,s,t,m)Fi(ζ)=ζ+∞∑k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk,(i=1,2..,F∈G) |
by set
Σt,mβ,sF(ζ)=ℓΣt,mβ,sF1(ζ)+(1−ℓ)Σt,mβ,sF2(ζ). |
we find from (2.7) that,
Σt,mβ,sF(ζ)=ζ+∞∑k=2{ℓck,1+(1−ℓ)ck,2}ζk(0≤ℓ≤1),ζ∈G. |
In view of Theorem 2.1 we have,
∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(βk(s+1)+s(1−2β)s){ℓck,1+(1−ℓ)ck,2}=ℓ∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(βk(s+1)+s(1−2β)s){ℓck,1+(1−ℓ)ck,2}+(1−ℓ)∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(βk(s+1)+s(1−2β)s){ℓck,1+(1−ℓ)ck,2}≤ℓ(2s−1s)+2s−1s−ℓ(2s−1s)=2s−1s. |
Theorem 6.1. (i) If the function F∈G be defined by (1.1) is in the class Σ(δ,Φ,β,s,t,m), then F is starlike of order ρ in the disk |ζ|<r1 (i.e) ℜ(ζ(Σt,mβ,sF(ζ))′Σt,mβ,sF(ζ))>ρ(|ζ|<r1;0≤ρ≤1) where,
r1=(1−ρρ+k−2)(1k−1)(k(αk(s+1)+s(1−2α))2s−1)(1k−1). |
(ii) If the function F∈G be defined by (1.1) is in the class Σ(δ,Φ,β,s,t,m), then F is convex of order ρ in the disk |ζ|<r2 (i.e) ℜ(ζΣt,mβ,sF(ζ)″Σt,mβ,sF(ζ)′)>ρ(|ζ|<r2;0≤ρ≤1) where,
r2=(1−ρρ+k−2)(1k−1)((δk−δ+1)(αk(s+1)+s(1−2α))2s−1)(1k−1). |
Proof. Let F∈G is starlike of order ρ we have,
|ζ(Σt,mβ,sF(ζ))′Σt,mβ,sF(ζ−1|<1−ρ. | (6.1) |
Thus,
|∑∞k=2(k−1)(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζkζ+∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk|≤1−ρ. | (6.2) |
Hence, (2.9) holds true if
∞∑k=2(k−1)(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk≤(1−ρ)(ζ+∞∑k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk).∞∑k=2(ρ+k−2)(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−1≤1−ρ.∞∑k=2(ρ+k−21−ρ)(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−1≤1. |
From Theorem 2.1, we have
∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(βk(s+1)+s(1−2β)s)bk≤2s−1s. |
∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(2s−1s)(βk(s+1)+s(1−2β)s)bk≤1. |
We say that,
∞∑k=2(ρ+k−21−ρ)(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−1≤∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(2s−1s)(βk(s+1)+s(1−2β)s)bk. |
Equivalently,
|ζ|k−1=k(βk(s+1)+s(1−2β))(1−ρ)(2s−1)(ρ+k−2). |
Therefore,
|ζ|=(1−ρρ+k−2)(1k−1)(k(αk(s+1)+s(1−2α))2s−1)(1k−1). |
Hence F∈G is starlike of order ρ.
(ⅱ) Let F∈G is convex of order ρ we have,
|ζΣt,mβ,sF(ζ)″Σt,mβ,sF(ζ)′|<1−ρ. | (6.3) |
|ζ(∑∞k=2(k−1)(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)bkζk−2)1+∑∞k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)bkζk−1|≤1−ρ. | (6.4) |
Hence (2.9) holds true if
∞∑k=2(k−1)(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)bkζk−1≤(1−ρ)(ζ+∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)bkζk−1).∞∑k=2(ρ+k−2)(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)bkζk−1≤1−ρ.∞∑k=2(ρ+k−21−ρ)(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)bkζk−1≤1. |
From Theorem 2.1, we have
∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(βk(s+1)+s(1−2β)s)bk≤2s−1s. |
∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(2s−1s)(βk(s+1)+s(1−2β)s)bk≤1. |
We say that,
∞∑k=2(ρ+k−21−ρ)(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)bkζk−1≤∞∑k=2(k+m−2m−1)tk−1(1−t)mk2(δk−δ+1)(2s−1s)(βk(s+1)+s(1−2β)s)bk. |
Equivalently,
|ζ|k−1=k(β(s+1)+s(1−2β))(1−ρ)(2s−1)(ρ+k−2). |
Therefore,
|ζ|=(1−ρρ+k−2)(1k−1)((αk(s+1)+s(1−2α))2s−1)(1k−1). |
Hence F∈G is convex of order ρ.
Partial sum is defined by Silverman [16]
Σt,mβ,sF1(ζ)=ζ,Σt,mβ,sFγ(ζ)=ζ+γ∑k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk. |
In this paragraph, in the class Σt,mβ,sF(ζ), partial function sums can be considered and sharp lower limits can be reached for the function. For other investigation involving partial sum, one refer to [4,5,8,14].
Theorem 7.1. Let F∈Σt,mβ,s is defined by (1.7), then
ℜ{Σt,mβ,sF(ζ)Σt,mβ,sFγ(ζ)}>1−1hγ+1,ζ∈U, |
where
Fk=(2s−1βk2(s+1)+ks(1−2β)). |
Proof.
Fd+1>Fd>1,d=2,3,.... |
Thus by Theorem 2.1, we obtain
∞∑k=2|(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bk|+Fd+1∞∑k=2|(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bk|≤Fm∞∑k=2|(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bk|≤1. | (7.1) |
By set
U(Σt,mβ,sF(ζ))=Fd+1{Σt,mβ,sF(ζ)Σt,mβ,sFd(ζ)−(1−1Fd+1)}=1+Fd+1(Σt,mβ,sF(ζ)Σt,mβ,sFd(ζ)−1)=1+Fd+1(∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζkz−∑dk=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk)=1+Fd+1(∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−11−∑dk=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−1).U(Σt,mβ,sF(ζ))−1=Fd+1(∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−11−∑dk=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−1).U(Σt,mβ,sF(ζ))+1=2+Fd+1(∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−11−∑dk=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−1). |
And it is enough to show ℜ(Σt,mβ,sF(ζ))>0,ζ∈U applying (2.5) we find
|U(Σt,mβ,sF(ζ))−1U(Σt,mβ,sF(ζ))+1|=|Fd+1(∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−11−∑dk=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−1)2+Fd+1(∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−11−∑dk=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−1)|≤(Fd+1∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)|bk|2−2∑dk=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)|bk|+Fd+1∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)|bk|)≤1, |
which gives
ℜ{Σt,mβ,sF(ζ)Σt,mβ,sFγ(ζ)}>1−1hγ+1,ζ∈U. |
Theorem 7.2. Let F∈Σt,mβ,s is defined by (1.7), then
ℜ{Σt,mβ,sFk(ζ)Σt,mβ,sF(ζ)}>Fn+11+Fn+1,ζ∈U, |
where
Fk=(2s−1βk2(s+1)+ks(1−2β)). |
Proof.
Fd+1>Fd>1,d=2,3,.... |
Thus by Theorem 2.1, we obtain
∞∑k=2|(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bk|+Fd+1∞∑k=2|(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bk|≤Fm∞∑k=2|(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bk|≤1. | (7.2) |
By set
V(Σt,mβ,sF(ζ))=1+Fd+1{Σt,mβ,sFγ(ζ)Σt,mβ,sF(ζ)−(dγ+11+dγ+1)}=1+Fd+1(∑γk=2z−(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζkz−∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk)=1+((1+dγ+1)∑∞k=γ+1(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζkz−∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk)=1+((1+Fd+1)∑∞k=γ+1(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−11−∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−1).V(Σt,mβ,sF(ζ))−1=((1+Fd+1)∑∞k=γ+1(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−11−∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−1).V(Σt,mβ,sF(ζ))+1=2+((1+Fd+1)∑∞k=γ+1(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−11−∑∞k=2(k+m−2m−1)tk−1(1−t)mk(δk−δ+1)bkζk−1). |
And it is enough to show ℜ(Σt,mβ,sF(ζ))>0,ζ∈U applying (7.2) we find
|V(Σt,mβ,sF(ζ))−1V(Σt,mβ,sF(ζ))+1|≤1, |
which gives
ℜ{Σt,mβ,sFk(ζ)Σt,mβ,sF(ζ)}>Fk+11+Fn+1,ζ∈U. |
Every aspect of human endeavours depends on probability and statistics which are particularly Pascal distribution may be helpful in building models for inverse scattering problems and play a role in inferring the shape and physical properties of obstacles. Works are related to their study may refer [6,20,21,22].
This paper deals with the application of Pascal distribution. The purpose of this article is to investigate the geometric properties of leaf-like domain, including co-efficient inequality, radius of starlikeness, convolution properties and partial sums of the class Σ(δ,Φ,β,s,t,m) that involve Pascal distribution series. In addition, several theorems are presented which provide necessary and sufficient conditions for a function F∈Σ(δ,Φ,β,s,t,m). Many interesting particular cases of main theorems are emphazied in the form of geometric properties. Furthermore to illustrate the results of application in various classes of analytic function. We anticipate the Pascal distribution may be helpful in building models for inverse scattering problems and play a role in inferring the shape and physical properties of obstacles. Pascal distribution will be important in several fields related to Mathematics, science and technology.
The authors are very much thankful to the esteemed referees for their careful reading and valuable suggestions, which improved the paper.
The authors declare no conflicts of interest.
[1] |
R. M Ali, N. E Cho, V. Ravichandran, S. S. Kumar, Differential subordination foe functions associated with the lemniscate of Bernoulli, Taiwan. J. Math., 16 (2012), 469–474. https://doi.org/10.11650/twjm/1500406676 doi: 10.11650/twjm/1500406676
![]() |
[2] | W. G. Atshan, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivativ Ⅱ, Surv. Math. Appl., 3 (2008), 67–77. |
[3] | W. G. Atshan, S. R. Kulkarni, Neighborhoods and partial sums of subclass of k-uniformly convex functions and related class of k-starlike functions with negative o-efficient based on integral operator, SE Asian Bull. Math., 33 (2009), 623–637. |
[4] |
B. A. Frasin, Generalization of partial sums of certain analytic and univalent functions, Appl. Math. Lett., 21 (2008), 735–741. https://doi.org/10.1016/j.aml.2007.08.002 doi: 10.1016/j.aml.2007.08.002
![]() |
[5] | B. A. Frasin, Partial sums of certain analytic and univalent functions, Acta Math. Acad., 21 (2005), 135–145. |
[6] |
Y. Gao, H. Liu, X. Wang, K. Zhang, On an artificial neural network for inverse scattering problems, J. Comput. Phys., 448 (2022), 110771. https://doi.org/10.1016/j.jcp.2021.110771 doi: 10.1016/j.jcp.2021.110771
![]() |
[7] | A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8 (1957), 598–601. |
[8] | R. W. Ibrahim, M. Darus, Partial sums for certain classes of meromorphic functions, Tamkang J. Math., 41 (2010), 39–49. |
[9] | W. Janowski, External problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23 (1970), 159–177. |
[10] | S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, New York: Marcel Dekker, 2000. |
[11] |
M. Kamali, S. Akbulut, On a subclass of certain convex functions with negative coefficients, Appl. Math. Comput., 145 (2003), 341–350. https://doi.org/10.1016/S0096-3003(02)00491-5 doi: 10.1016/S0096-3003(02)00491-5
![]() |
[12] | E. Paprocki, J. Sokół, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 20 (1996), 89–94. |
[13] | S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (1981), 521–527. |
[14] |
T. Sheil-Smal, A note on the partial sums of convex schlicht function, Bull. Lond. Math. Soc., 2 (1970), 165168. https://doi.org/10.1112/blms/2.2.165 doi: 10.1112/blms/2.2.165
![]() |
[15] | S. M. El-Deep, T. Bulboaca, J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59 (2019), 301–314. |
[16] |
H. Silverman, Partial sums of starlike and convex function, J. Math. Anal. Appl., 209 (1997), 221–227. https://doi.org/10.1006/jmaa.1997.5361 doi: 10.1006/jmaa.1997.5361
![]() |
[17] | J. Sokół, On sufficient condition for starlikeness of certain integral of analytic functions defined by subordination, J. Math. Appl., 28 (2006), 127–130. |
[18] |
J. Sokół, On some subclass of strongly starlike functions, Demonstr. Math., 31 (1998), 81–86. https://doi.org/10.1515/dema-1998-0111 doi: 10.1515/dema-1998-0111
![]() |
[19] | W. G. Atshan, A. H. Majeed, K. A. Jassim, Some geometric properties of a certain subclass of univalent functions defined by differential subordination property, Gen. Math. Notes, 20 (2014), 79–94. |
[20] |
W. Yin, W. Yang, H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless for field data, J. Comput. Phys., 417 (2020), 109594. https://doi.org/10.1016/j.jcp.2020.109594 doi: 10.1016/j.jcp.2020.109594
![]() |
[21] |
Y. Yin, W. Yin, P. Meng, H. Liu, The interior inverse scattering problem for a two layeral cavity using the Bayesian method, Inverse Probl. Imag., 16 (2022), 673–690. http://dx.doi.org/10.3934/ipi.2021069 doi: 10.3934/ipi.2021069
![]() |
[22] |
P. Zhang, P. Meng, W. Yin, H. Liu, A neural networks method for time dependent inverse source problem with limited-aperture data, J. Comput. Appl. Math., 421 (2023), 114842. https://doi.org/10.1016/j.cam.2022.114842 doi: 10.1016/j.cam.2022.114842
![]() |