Processing math: 100%
Research article Special Issues

System decomposition-based stability criteria for Takagi-Sugeno fuzzy uncertain stochastic delayed neural networks in quaternion field

  • Received: 01 January 2023 Revised: 04 March 2023 Accepted: 09 March 2023 Published: 16 March 2023
  • MSC : 92B20, 93D05, 93D20, 37H30, 03E72

  • Stochastic disturbances often occur in real-world systems which can lead to undesirable system dynamics. Therefore, it is necessary to investigate stochastic disturbances in neural network modeling. As such, this paper examines the stability problem for Takagi-Sugeno fuzzy uncertain quaternion-valued stochastic neural networks. By applying Takagi-Sugeno fuzzy models and stochastic analysis, we first consider a general form of Takagi-Sugeno fuzzy uncertain quaternion-valued stochastic neural networks with time-varying delays. Then, by constructing suitable Lyapunov-Krasovskii functional, we present new delay-dependent robust and global asymptotic stability criteria for the considered networks. Furthermore, we present our results in terms of real-valued linear matrix inequalities that can be solved in MATLAB LMI toolbox. Finally, two numerical examples are presented with their simulations to demonstrate the validity of the theoretical analysis.

    Citation: R. Sriraman, R. Samidurai, V. C. Amritha, G. Rachakit, Prasanalakshmi Balaji. System decomposition-based stability criteria for Takagi-Sugeno fuzzy uncertain stochastic delayed neural networks in quaternion field[J]. AIMS Mathematics, 2023, 8(5): 11589-11616. doi: 10.3934/math.2023587

    Related Papers:

    [1] Hongjie Li . Event-triggered bipartite consensus of multi-agent systems in signed networks. AIMS Mathematics, 2022, 7(4): 5499-5526. doi: 10.3934/math.2022305
    [2] Zuo Wang, Hong Xue, Yingnan Pan, Hongjing Liang . Adaptive neural networks event-triggered fault-tolerant consensus control for a class of nonlinear multi-agent systems. AIMS Mathematics, 2020, 5(3): 2780-2800. doi: 10.3934/math.2020179
    [3] Kairui Chen, Yongping Du, Shuyan Xia . Adaptive state observer event-triggered consensus control for multi-agent systems with actuator failures. AIMS Mathematics, 2024, 9(9): 25752-25775. doi: 10.3934/math.20241258
    [4] Le You, Chuandong Li, Xiaoyu Zhang, Zhilong He . Edge event-triggered control and state-constraint impulsive consensus for nonlinear multi-agent systems. AIMS Mathematics, 2020, 5(5): 4151-4167. doi: 10.3934/math.2020266
    [5] Meraa Arab, Aasma Zaman, Azmat Ullah Khan Niazi, Marwa Balti . Impulsive fault-tolerant control for multi-agent systems with stochastic disturbances. AIMS Mathematics, 2025, 10(3): 7414-7429. doi: 10.3934/math.2025340
    [6] Asad Khan, Azmat Ullah Khan Niazi, Saadia Rehman, Sidra Ahmed . Hostile-based bipartite containment control of nonlinear fractional multi-agent systems with input delays: a signed graph approach under disturbance and switching networks. AIMS Mathematics, 2024, 9(5): 12678-12699. doi: 10.3934/math.2024620
    [7] Jiaqi Liang, Zhanheng Chen, Zhiyong Yu, Haijun Jiang . Fixed-time consensus of second-order multi-agent systems based on event-triggered mechanism under DoS attacks. AIMS Mathematics, 2025, 10(1): 1501-1528. doi: 10.3934/math.2025070
    [8] Xiaohang Su, Peng Liu, Haoran Jiang, Xinyu Yu . Neighbor event-triggered adaptive distributed control for multiagent systems with dead-zone inputs. AIMS Mathematics, 2024, 9(4): 10031-10049. doi: 10.3934/math.2024491
    [9] Shahid Zaman, Fouad A. Abolaban, Ali Ahmad, Muhammad Ahsan Asim . Maximum H-index of bipartite network with some given parameters. AIMS Mathematics, 2021, 6(5): 5165-5175. doi: 10.3934/math.2021306
    [10] Xing Zhang, Lei Liu, Yan-Jun Liu . Adaptive NN control based on Butterworth low-pass filter for quarter active suspension systems with actuator failure. AIMS Mathematics, 2021, 6(1): 754-771. doi: 10.3934/math.2021046
  • Stochastic disturbances often occur in real-world systems which can lead to undesirable system dynamics. Therefore, it is necessary to investigate stochastic disturbances in neural network modeling. As such, this paper examines the stability problem for Takagi-Sugeno fuzzy uncertain quaternion-valued stochastic neural networks. By applying Takagi-Sugeno fuzzy models and stochastic analysis, we first consider a general form of Takagi-Sugeno fuzzy uncertain quaternion-valued stochastic neural networks with time-varying delays. Then, by constructing suitable Lyapunov-Krasovskii functional, we present new delay-dependent robust and global asymptotic stability criteria for the considered networks. Furthermore, we present our results in terms of real-valued linear matrix inequalities that can be solved in MATLAB LMI toolbox. Finally, two numerical examples are presented with their simulations to demonstrate the validity of the theoretical analysis.



    The transmission eigenvalue problem appears in inverse scattering theory and has attracted wide attention recently (see, e.g., [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] and the references therein). It is non-self-adjoint and irregular in the Birkhoff (and even the Stone) sense [17]. According to the incident fields and the measuring positions, the transmission eigenvalue problem can be divided into the interior transmission eigenvalue problem and the exterior transmission eigenvalue problem. The subject matter of this paper is the latter problem which plays a central role in many important physical problems, such as the inverse scattering problems of determining the shape of underground reservoirs or nuclear reactors [18].

    The exterior transmission eigenvalue problem for spherically stratified media in R3 (see [19,20]) is to find functions w,vC2(R3¯D) such that

    Δw+k2n(r)w=0 in R3¯D, (1.1)
    Δv+k2v=0 in R3¯D, (1.2)
    w=v on D, (1.3)
    wν=vν on D, (1.4)
    limrr(wrikw)=0, (1.5)
    limrr(vrikv)=0, (1.6)

    where r:=|x|, xR3, D:={x:|x|<a}, ν is the unit outward normal to D, nW22(a,b), n(r)>0 for a<r<b and n(r)=1 for r>b. Values of kC such that there exists a nontrivial solution to (1.1)–(1.6) are called exterior transmission eigenvalues.

    In this paper, not all the exterior transmission eigenvalues but a subset consisting of those eigenvalues for which the corresponding eigenfunctions are spherically symmetric are considered. Let

    w(r)=a0y(r)r,v(r)=b0y0(r)r,

    then the relations (1.1)–(1.6) become the following ordinary differential equations

    y+k2n(r)y=0, r(a,), (1.7)
    y0+k2y0=0, r(a,), (1.8)
    a0y(a)=b0y0(a), (1.9)
    a0y(a)=b0y0(a), (1.10)

    and

    y(r)=y0(r)=eikr, r>b. (1.11)

    It is known that the transmission eigenvalues carry information about the refractive index and are used in sampling type methods for the reconstruction of the support of an inhomogeneous medium (for details, see [21,22]). The interesting and important questions are the distribution of the transmission eigenvalues. For the interior transmission eigenvalue problems, Xu and his collaborators gave the asymptotics of non-real transmission eigenvalues in [23,24]. For the exterior transmission eigenvalue problems, Chen [25] described a asymptotic eigenvalue density for each scattered angle. In [15], we showed that there are infinitely many non-real eigenvalues and gave the asymptotics of exterior transmission eigenvalues without the description of the subscript numbers. Recently, several intrinsic local and global geometric patterns of the transmission eigenfunctions have been revealed. The local geometric property was first discovered and investigated in [26,27], and was further studied in [28,29,30,31] for different geometric and physical setups. The global geometric property was first discovered and investigated in [32], and was further studied in [33,34,35] for different geometric and physical setups.

    In this paper, we continue to study the asymptotic behavior which is more accurate than that in [15]. Furthermore, the asymptotic behavior in this paper is described by the subscript numbers. The asymptotics of eigenvalues with the description of the subscript numbers is more difficult to investigate (due to the non-self-adjointness), but it has important applications in the inverse spectral problems, especially in the inverse spectral problem with the mixed spectral data and the stability of the inverse spectral problem [5,14,17,36,37,38].

    The paper is organized as follows. In Section 2, we study the asymptotics of the characteristic function and give the asymptotic solution of a transcendental equation. Then, we concern the counting results and the asymptotic behavior of exterior transmission eigenvalues for the case when n(a)1, n(b)1 in Section 3 and for the case when n(a)=1,n(b)1 and the case when n(a)1,n(b)=1 in Section 4.

    Firstly, we reduce the eigenvalue problem (1.7)–(1.11) to a problem of finding roots of a relative function, which is referred to as the characteristic function in the following. It appears in [15] and we give it without proof.

    Lemma 2.1. The exterior transmission eigenvalues coincide with the zeros of the function D(k), where

    D(k)=ikY(a,k)Y(a,k), (2.1)

    and Y(r,k) is the unique solution of the initial value problem

    {Y+k2n(r)Y=0,r(a,b),Y(b,k)=1,Y(b,k)=ik. (2.2)

    In order to look for the properties of the characteristic function D(k), we now give the behaviours of Y(r,k) and Y(r,k). Make use of the modified Liouville transformation

    ξ=ξ(r):=brn(t)dt, (2.3)
    z(ξ):=n(r)14Y(r,k), (2.4)

    and define the quantity

    γ:=ξ(a)=ban(t)dt (2.5)

    which has a physical meaning as the travel time for a wave to move from r=a to r=b in the corresponding wave scattering problem. The problem (2.2) is transformed in the following form [15]

    z+[k2p(ξ)]z=0,ξ(0,γ), (2.6)
    z(0)=n(b)14, z(0)=n(b)14[n(b)4n(b)+ik], (2.7)

    where

    p(ξ):=14n(r)n(r)2516n(r)2n(r)3. (2.8)

    Let z1(ξ) and z2(ξ) be the solutions of (2.6) which satisfy z1(0)=1,z1(0)=0 and z2(0)=0, z2(0)=1. Then z(ξ) can be represented in the form

    z(ξ)=z(0)z1(ξ)+z(0)z2(ξ)=n(b)14z1(ξ)n(b)14[n(b)4n(b)+ik]z2(ξ). (2.9)

    By using (2.4) and (2.1), we calculate that

    Y(a,k)=n(a)14z(γ)=1Bz1(γ)1A(D4+ik)z2(γ), (2.10)
    Y(a,k)=14n(a)54n(a)z(γ)n(a)14z(γ)=C4Bz1(γ)+C4A(D4+ik)z2(γ)Az1(γ)+B(D4+ik)z2(γ), (2.11)

    and then

    D(k)=1B(ik+C4)z1(γ)1A(k2+C+D4ik+CD16)z2(γ)+Az1(γ)B(ik+D4)z2(γ), (2.12)

    where

    A=[n(a)n(b)]14,B=[n(a)n(b)]14,C=n(a)n(a),D=n(b)n(b). (2.13)

    From the basic estimates in Chapter 1 of [39], we know that if pL2[0,γ],

    z1(γ)=cos(kγ)+O(e|Im(k)|γk),z2(γ)=sin(kγ)k+O(e|Im(k)|γk2),

    if pW12[0,γ],

    z1(γ)=cos(kγ)+sin(kγ)2kQ+O(e|Im(k)|γk2), (2.14)
    z2(ξ)=sin(kγ)kcos(kγ)2k2Q+O(e|Im(k)|γk3), (2.15)

    and if pW22[0,γ],

    z1(γ)=cos(kγ)+sin(kγ)2kQ+cos(kγ)4k2(p(γ)p(0)12Q2)+O(e|Im(k)|γk3), (2.16)
    z2(γ)=sin(kγ)kcos(kγ)2k2Q+sin(kγ)4k3(p(γ)+p(0)12Q2)+O(e|Im(k)|γk4), (2.17)

    where

    Q=γ0p(s)ds.

    A straightforward computation yields the following asymptotic expansions for D(k),

    D(k)k=c1sinkγ+c2icoskγ+O(e|Im(k)|γk),pL2[0,γ], (2.18)
    D(k)k=c1sinkγ+c2icoskγ+1k(d1isinkγ+d2coskγ)+O(e|Imk|γk2),pW12[0,γ], (2.19)

    and

    D(k)k=c1sinkγ+c2icoskγ+1k(d1isinkγ+d2coskγ)+1k2(e1sinkγ+e2icoskγ)+O(e|Imk|γk3),pW22[0,γ], (2.20)

    where

    c1=1AA, (2.21)
    c2=1BB, (2.22)
    d1=(1BB)Q2C+D4A, (2.23)
    d2=(A1A)Q2+14(CBBD), (2.24)
    e1=p(γ)+p(0)4(A+1A)+Q28(A1A)+Q8(CBBD)CD16A, (2.25)
    e2=p(γ)p(0)4(1B+B)+Q28(B1B)+Q8A(D+C). (2.26)

    Note that (2.20) can be rewritten as

    D(k)k=i(c1+c22eikγc1c22eikγ)+1k(d1+d22eikγd1d22eikγ)+ik2(e1+e22eikγe1e22eikγ)+O(e|Imk|γk3), k.

    To get the asymptotics of the non-real exterior transmission eigenvalues, we introduce the following transcendental equation:

    zκlnz=w, (2.27)

    where κ is a constant in C and lnz=ln|z|+iargz with π<argzπ.

    Lemma 2.2. The transcendental Eq (2.27) has a unique solution

    z(w)=w+κlnw+κ2lnww+O(ln2|w||w|2)

    for any sufficiently large |w|.

    Proof. The proof can be found in [24].

    Based on our previous results about the asymptotics of the exterior transmission eigenvalues [15], we continue to focus on more precise asymptotics with the description of the subscript numbers. When we count the exterior transmission eigenvalues, we always count the multiple zeros (if there exist) with their multiplicities. Below, the standard notation

    p=(γ0|p(t)|2dt)12

    is used for the norm on L2[0,γ].

    Define

    g1(k):=i(c2c12eikγ+c1+c22eikγ). (3.1)

    The conditions n(a)1 and n(b)1 imply that

    c1+c2=[n(a)14n(a)14][n(b)14+n(b)14]=[n(a)n(b)]14[1n(a)][1+n(b)]0,c1c2=[n(a)14+n(a)14][n(b)14n(b)14]=[n(a)n(b)]14[1+n(a)][1n(b)]0,

    and

    c1c2c1+c2=[1+n(a)][1n(b)][1n(a)][1+n(b)]=n(b)1n(a)1[n(a)+1n(b)+1]2.

    It follows that the function g1(k) has zeros in C. Since c1c2c1+c2>0 if [n(a)1][n(b)1]>0 and c1c2c1+c2<0 if [n(a)1][n(b)1]<0, then the zeros of g1(k) are

    k0j=x0j+iy0,jZ, (3.2)

    where

    y0=12γln|c1c2c1+c2|,

    and

    x0j={jπγ, if [n(a)1][n(b)1]>0,jπγπ2γ, if [n(a)1][n(b)1]<0. (3.3)

    Note that as k,

    D(k)k=g1(k)+O(e|Im(k)|γk), if pL2[a,b], (3.4)

    and

    D(k)k=g1(k)+1k(d1isinkγ+d2coskγ)+O(e|Imk|γk2), if pW12[a,b]. (3.5)

    Lemma 3.1. Suppose nW22(a,b) and n(a)1, n(b)1. Then

    |D(k)kg1(k)|K|k|exp(pγ32)exp(|Imk|γ),

    where A,B,C,D are defined as in (2.13), and

    K=1γ(A+B+1A+1B)+|C|4B+|C+D|4A+|CD|γ16A+|BD|4. (3.6)

    Proof. With the use of the Picard iteration method [39], we know that for ξ[0,γ],

    z1(ξ)=n=0Cn(ξ,k,p), (3.7)
    z2(ξ)=n=0Sn(ξ,k,p), (3.8)

    where

    C0(ξ,k,p)=coskξ,Cn(ξ,k,p)=ξ0sink(ξs)kp(s)Cn1(s)ds, n=1,2,, (3.9)

    and

    S0(ξ,k,p)=sinkξk,Sn(ξ,k,p)=ξ0sink(ξs)kp(s)Sn1(s)ds, n=1,2,. (3.10)

    Using (3.7) and (3.8) in (2.1) we obtain that

    D(k)kg1(k)=iBn=1Cn(γ,k,p)+kAn=1Sn(γ,k,p)+Akn=1Cn(γ,k,p)iBn=1Sn(γ,k,p)+C4Bkn=0Cn(γ,k,p)C+D4Ain=0Sn(γ,k,p)CD16Akn=0Sn(γ,k,p)BD4kn=0Sn(γ,k,p). (3.11)

    Recall the elementary inequalities

    |coskγ|=12|eikγ+eikγ|exp(|Imkγ|),|sinkγ|=12|eikγeikγ|exp(|Imkγ|),
    |sinkγk|=|γ0cosktdt|γ0exp(|Imkt|)dtγexp(|Imkγ|), (3.12)

    and

    |sinkγk|exp(|Imkγ|)|k|. (3.13)

    Then the terms on the right-hand side of (3.11) can be majorized as follows,

    |iBn=1Cn(γ,k,p)|1Bn=10t1tn+1=γ|coskt1|n1j=1|sink(tj+1tj)kp(tj)||sink(tn+1tn)kp(tn)|dt1dtn1Bn=1exp(|Imk|γ)γn1|k|0t1tn+1=γnj=1|p(tj)|dt1dtn.

    The value of the integral in the last line does not change under permutation of t1,,tn, and the union of all the permuted regions of integration is [0,γ]n. It follows that

    0t1tn+1=γnj=1|p(tj)|dt1dtn=1n![0,γ]nnj=1|p(tj)|dt1dtn=1n![γ0|p(t)|dt]n1n!(pγ)n

    by the Schwarz inequality. Thus,

    |iBn=1Cn(γ,k,p)|1Bexp(|Imk|γ)|k|γn=11n!(pγ32)n<1Bγ|k|exp(|Imk|γ+pγ32).

    The same reasoning applies to the other terms and yields, for kC, pL2[0,γ],

    |kAn=1Sn(γ,k,p)|<1Aγ|k|exp(|Imk|γ+pγ32),
    |Akn=1Cn(γ,k,p)|<Aγ|k|exp(|Imk|γ+pγ32),
    |iBn=1Sn(γ,k,p)|<B|k|γexp(|Imkγ|+pγ32),
    |C4Bkn=0Cn(γ,k,p)||C|4B|k|exp(|Imk|γ+pγ32),
    |C+D4Ain=0Sn(γ,k,p)||C+D|4A|k|exp(|Imk|γ+pγ32),
    |CD16Akn=0Sn(γ,k,p)||CD|γ16A|k|exp(|Imk|γ+pγ32),
    |BD4kn=0Sn(γ,k,p)||BD|4|k|exp(|Imk|γ+pγ32).

    Therefore,

    |D(k)kg1(k)|(Aγ+Bγ+1Aγ+1Bγ+|C|4B+|C+D|4A+|CD|γ16A+|BD|4)×exp(|Imk|γ+pγ32)|k|.

    This completes the proof.

    The following lemma can be obtained for arbitrary sine-type functions (see Lemma 1 on page 163 in [40]). In order to facilitate the readers, we show the proof.

    Lemma 3.2. Suppose nW22(a,b) and n(a)1, n(b)1. Let k0j, jZ, be the zeros of g1(k) defined in (3.2). For any ε>0, if |kk0j|ε for all integers j, then there exists a number Mε>0, such that

    |g1(k)|>Mεexp|Imkγ|. (3.14)

    Proof. We only prove the inequality (3.14) in the case when [n(a)1][n(b)1]>0, i.e., c1c2c1+c2>0, the proof in the case when [n(a)1][n(b)1]<0 can be completed similarly.

    Denote G1(k):=|g1(k)|2exp(2|Imk|γ). Let k=x+iy. By a direct calculation, we have

    |g1(k)|2=(c1c2)24e2γy[1+(c1+c2c1c2)2e4γy2c1+c2c1c2e2γycos2γx]. (3.15)

    Then if y0,

    G1(k)=(c1+c2)24[1+(c1c2c1+c2)2e4γy2c1c2c1+c2e2γycos2γx], (3.16)

    and if y0,

    G1(k)=(c1c2)24[1+(c1+c2c1c2)2e4γy2c1+c2c1c2e2γycos2γx]. (3.17)

    By use of the periodicity of the cosine function, we just need to prove that G1(k) has a positive lower bound when kDε, where

    Dε:={k=x+iy:x[π2γ,π2γ],|kiy0|ε}. (3.18)

    Choose δ0(0,ε) such that

    1+e4γδ02cos2γε2δ20>0. (3.19)

    Firstly, let us consider the case when 0<|c1c2c1+c2|<1, i.e., y0<0.

    (a) For y0, we get e2yγ1 and then

    G1(k)(c1+c2)24(1|c1c2c1+c2|e2γy)2(c1+c2)24(1|c1c2c1+c2|)2=14(|c1+c2||c1c2|)2>0. (3.20)

    (b) For y(,y0δ0], we have e2γye2γy0e2γδ0=|c1c2c1+c2|e2γδ0 and

    G1(k)(c1c2)24(1|c1+c2c1c2|e2γy)2(c1c2)24(1e2γδ0)2>0. (3.21)

    (c) For y(y0δ0,y0], i.e., |c1c2c1+c2|e2γδ0<e2γy|c1c2c1+c2|, the assumption |kiy0|ε implies that

    |x|ε2(yy0)2>ε2δ20.

    Hence

    G1(k)>(c1c2)24(1+e4γδ02cos2γε2δ20)>0. (3.22)

    (d) We now consider the remaining case y(y0,0). If δ0<y0, then (y0,0)=(y0,y0+δ0)[y0+δ0,0). For y(y0,y0+δ0)(y0,0), we get |c1c2c1+c2|<e2γy<1. Then

    G1(k)>(c1c2)22(1|c1+c2c1c2|cos2γε2δ20)>(c1c2)22(1cos2γε2δ20)>0. (3.23)

    For y[y0+δ0,0), we obtain that |c1c2c1+c2|e2γδ0e2γy<1, and then

    G1(k)(c1c2)24(1e2γδ0)2>0. (3.24)

    If δ0y0,then y(y0,0)(y0,y0+δ0), |c1c2c1+c2|<e2γy<1, and

    G1(k)>(c1c2)22(1|c1+c2c1c2|cos2γε2δ20)>(c1c2)22(1cos2γε2δ20)>0. (3.25)

    Then, using the similar steps above, we can estimate the lower bound of G1(k) in the case when |c1c2c1+c2|>1. More specifically,

    G1(k)14(|c1c2||c1+c2|)2>0, y(,0],G1(k)>(c1+c2)24(1+e4γδ02cos2γε2δ20)>0,y[y0,y0+δ0),G1(k)(c1+c2)24(1e2γδ0)2>0, y[y0+δ0,+),

    and for the interval (0,y0),

    G1(k)(c1+c2)24(1e2γδ0)2>0,y(0,y0δ0],G1(k)>(c1+c2)22(1cos2γε2δ20)>0,y(y0δ0,y0),

    or

    G1(k)>(c1+c2)22(1cos2γε2δ20)>0,y(0,y0).

    Lastly, for |c1c2c1+c2|=1, we similarly conclude that

    G1(k)(c1c2)24(1e2γδ0)2>0, y(,δ0],G1(k)(c1c2)24(1+e4γδ02cos2γε2δ20)>0y(δ0,0),G1(k)(c1+c2)24(1+e4γδ02cos2γε2δ20)>0y[0,δ0),G1(k)(c1+c2)24(1e2γδ0)2>0y>[δ0,+).

    To sum up, there exists a number Mε>0 such that G1(k)>M2ε for kDε, i.e.,

    |g1(k)|>Mεexp(|Imk|γ), for |kk0j|ε.

    This completes the proof.

    Remark 3.1. If ε=π4γ, we can take δ0=π8γ to make the condition (3.19) true.

    In this case, |1e2γδ0|>|1e2γδ0|>12, 1+e4γδ02cos2γε2δ20>12, and 1cos2γε2δ20>12. Then Mε can be taken as follows:

    M={min{|c1|,|c2|,|c1c24|,|c1+c24|},if|c1c2||c1+c2|,|c1|4,ifc1c2=c1+c2,|c2|4,ifc2c1=c1+c2. (3.26)

    For jN+, consider the rectangle contour Γ(1)j=I(1)1,jI(1)2,jI(1)3,jI(1)4,j, where

    I(1)1,j:={k:x=jπ+π4γ|y|},I(1)2,j:={k:|x|jπ+π4γ=y},I(1)3,j:={k:x=jπ+π4γ|y|},I(1)4,j:={k:|x|jπ+π4γ=y}.

    Fix j>12π|ln|c1c2c1+c2||, then for all kΓ(1)j, we have that |kk0j|π4γ, jZ. By Lemma 3.2 and Remark 3.1, we get that, if kΓ(1)j, j>12π|ln|c1c2c1+c2||, then

    |g1(k)|>Mexp(|Imkγ|). (3.27)

    Theorem 3.1. Suppose nW22(a,b), n(a)1, n(b)1. The values γ, K, M, c1,c2 appear in (2.5), (3.6), (2.21), (2.22) and (3.26) respectively. Let

    N>max{Kγexp(pγ32)Mπ,12π|ln|c1c2c1+c2||} (3.28)

    be an integer. Then, if [n(a)1][n(b)1]>0, there are exactly 2N+2 exterior transmission eigenvalues, counted with multiplicities, inside Γ(1)N, if [n(a)1][n(b)1]<0, there are exactly 2N+1 exterior transmission eigenvalues, counted with multiplicities, inside Γ(1)N, and for each j>N, exactly one simple root in the circular region

    |kk0j|<π4γ,

    where k0j are defined as in (3.2). There are no other roots.

    Proof. Fix N be an integer that satisfies (3.28), and let LN be an integer. Consider the contours Γ(1)L and the contours

    |kk0j|=π4γ,j>N.

    By Lemma 3.2 and Remark 3.1, the estimate |g1(k)|>Mexp(|Imkγ|) holds on all of them. Therefore, by the estimate for D(k) in Lemma 3.1,

    |D(k)kg1(k)|K|k|exp(pγ32)exp(|Imk|γ)<1|k|Kexp(pγ32)M|g1(k)|<Nπ|kγ||g1(k)|<|g1(k)|

    also holds on them since |kγ|Nπ+π4 on them. Hence, by Rouché's theorem, D(k) has as many roots, counted with multiplicities, as kg1(k) in each of the bounded regions. Since g1(k) has only the simple roots

    k0j={jπγ+i2γln|c1c2c1+c2|, if [n(a)1][n(b)1]>0,j12γπ+i2γln|c1c2c1+c2|, if [n(a)1][n(b)1]<0,

    and LN can be chosen arbitrarily large, the theorem follows.

    Since [g1(k)]=g1(k), where k denotes the conjugate of k, then the distribution of the zeros of g1(k) is symmetrical with respect to the imaginary axes. Denote the zeros of D(k) by {kj}j0{kj}j0 if [n(a)1][n(b)1]>0; by {kj}n0{kj}n1 if [n(a)1][n(b)1]<0. Moreover, it follows from Lemma 3.2 that

    kj=k0j+ϵj, ϵj=o(1), j. (3.29)

    Let us estimate ϵj, j0. Substituting (3.29) into (2.18), by a direct calculation, we have

    0=2ic2c1D(kj)kjeikjγ=(1+c1+c2c2c1e2ikjγ)+αj,

    where αj=O(1j). Since e2ikjγ=c1c2c1+c2e2iϵjγ, we have that isin2ϵjγ+αj=0, and hence ϵj=O(1j).

    If pW12[0,γ], then we can obtain the more accurate expression of ϵj. Indeed, substituting (3.29) into (2.19), we obtain

    0=2ic2c1D(kj)kjeikjγ=(1+c1+c2c2c1e2ikjγ)ikj(d1+d2c2c1+d2d1c2c1e2ikjγ)+βjkj,

    and then

    e2iϵjγ1=ik0j+ϵj(d1+d2c2c1+d1d2c1+c2e2iϵjγ)+βjj,

    where βj=O(1j).

    By use of the expansions

    e2iϵjγ=12iϵjγ+O(1j2), 1k0j+ϵj=γjπ[1+O(1j)],

    we get that

    ϵj=12jπ(d1+d2c2c1+d1d2c1+c2)+O(1j2).

    Then, under the conditions n(a)1,n(b)1, the exterior transmission eigenvalues can be numbered and estimated as follows.

    Theorem 3.2. Assume nW22(a,b), n(a)1,n(b)1. Denote the exterior transmission eigenvalues by {kj}j0{kj}j0 if [n(a)1][n(b)1]>0; by {kj}j0{kj}j1 if [n(a)1][n(b)1]<0. Then the sequence {kj}j0 has the following asymptotics:

    kj=k0j+O(1j),j,

    where k0j, jZ, is the sequence defined as in (3.2). If we further assume pW12[0,γ], then the sequence {kj}j0 has the following asymptotics:

    kj=k0j+12jπ(d1+d2c2c1+d1d2c1+c2)+O(1j2),j,

    where the numbers c1,c2,d1,d2 appear in (2.21)–(2.24).

    In this subsection, we first study the distribution of zeros of the function g2(k) defined in (3.30) below. And then, we get a counting lemma and the asymptotics of the exterior transmission eigenvalues. Note that c1+c2=0,c1c20 if n(a)=1,n(b)1, and c1+c20,c1c2=0 if n(a)1,n(b)=1. In both cases, the function g1(k) has no zeros at all.

    If n(a)=1,n(b)1, then

    d1d2c1c2=18n(a)n(b)1[1+n(b)]2.

    Define

    g2(k):=ic2c12eikγ+1k(d1+d22eikγ+d2d12eikγ). (3.30)

    Then as k, if pW12[0,γ],

    D(k)=kg2(k)+O(e|Imk|γk),  (3.31)

    and if pW12[0,γ],

    D(k)=kg2(k)+ik(e2e12eikγ+e1+e22eikγ)+O(e|Imk|γk2). (3.32)

    Since the function g2(k) has only one zero k=d1+d2c1c2i if d1=d2, we further assume that d1d20, i.e., n(a)0.

    Lemma 3.3. If n(a)=1,n(b)1 and n(a)0, then all zeros of g2(k), excepting one imaginary one, are simple algebraically.

    Proof. Assume k0 be some zero of g2 with multiplicities at least two. Then we have from g2(k0)=0 and g2(k0)=0 that

    k0=i(12γd1+d2c1c2)

    which implies that the function g2(k) has only one multiple zero. The proof is complete.

    Now, let z=2ikγ in (3.30). Then the equation 2ic1c2keikγg2(k)=0 is equivalent to

    zez=2γd1d2c1c2(1d1+d2d1d2ez)

    which implies

    zlnz=wj, wj=2jπiln(2γd1d2c1c2)ln(1d1+d2d1d2ez), jZ.

    By Lemma 2.2, we have

    z=wj+lnwj+lnwjwj+O(ln2|wj||wj|2),j±. (3.33)

    It follows that Rez=lnj+O(1), which implies

    ln(1d1+d2d1d2ez)={O(1j), if d1+d20,0, if d1+d2=0. (3.34)

    Since g2(k)=[g2(k)], then the distribution of the zeros of g2(k) is symmetrical with respect to the imaginary axes. Let us consider the zeros of g2(k) with Rek>0, namely, assume j>0. Going back to (3.33), we have

    lnwj=ln{2jπi[1+12jπiln(2γd1d2c1c2)+O(1j2)]}=ln(2jπ)πi2i2jπln(2γd1d2c1c2)+O(1j2) (3.35)

    and

    lnwjwj=iln(2jπ)2jπ+14j+O(lnjj2). (3.36)

    Therefore, substituting (3.34)–(3.36) into (3.33), we have

    z=2jπi+ln(2jπ)πi2ln(2γd1d2c1c2)+iln(2jπ)2jπ+O(1j). (3.37)

    Hence

    ln(1d1+d2d1d2ez)=d1+d2c1c2γjπ[i+ln(2jπ)2jπ]+O(1j2),

    and then

    wj=2jπiln(2γd1d2c1c2)+d1+d2c1c2γijπ+O(lnjj2).

    Hence we can obtain the expression of z which is more accurate than (3.37),

    z=wj+lnwj+lnwjwj+O(ln2|wj||wj|2)=ln(2jπ)ln(2γd1d2c1c2)+14ji2jπln(2γd1d2c1c2)2jπiπi2+iln(2jπ)2jπ+d1+d2c1c2γijπ+O(ln2jj2).

    Denote the zeros of g2(k) by {μj}. Let μj=σj+iτj. Since z=2ikγ, we have that if d1d2c1c2>0,

    {σj=jπγ+π4γln(2jπ)4jπγd1+d2c1c212jπ+14jπγln(2γd1d2c1c2)+O(ln2jj2),τj=12γ[ln(2jπ)ln(2γd1d2c1c2)+14j]+O(ln2jj2); (3.38)

    and if d1d2c1c2<0,

    {σj=jπγ+3π4γln(2jπ)4jπγd1+d2c1c212jπ+14jπγln(2γd1d2c1c2)+O(ln2jj2),τj=12γ[ln(2jπ)ln(2γd1d2c1c2)+34j]+O(ln2jj2). (3.39)

    Let k=x+iy. Then

    2eikγkg2(k)c1c2=y+d1+d2c1c2d1d2c1c2e2γycos2γxi(xd1d2c1c2e2γysin2γx). (3.40)

    For sufficiently large jN+, consider the rectangle contour Γ(2)j=I(2)1,jI(2)2,jI(2)3,jI(2)4,j, where

    I(2)1,j:={k:x=(j+1)πγ|y|}, I(2)2,j:={k:|x|(j+1)πγ=y},I(2)3,j:={k:x=(j+1)πγ|y|}, I(2)4,j:={k:|x|(j+1)πγ=y}.

    Letting k start from the point ((j+1)πγ,(j+1)πγi) and travel round Γ(2)j by the counterclockwise, and using (3.40), one can easily obtain that, for large enough j, if d1d2c1c2>0, i.e., n(a)n(b)1>0, then the variations

    ΔI(2)1,jarg2eikγkg2(k)c1c2=θ1,ΔI(2)2,jarg2eikγkg2(k)c1c2=4(j+1)πθ2,ΔI(2)3,jarg2eikγkg2(k)c1c2=θ3,ΔI(2)4,jarg2eikγkg2(k)c1c2=θ4,

    where θ1,θ2,θ3,θ4(0,π), and θ4=θ2+θ2+θ3; if d1d2c1c2<0, i.e., n(a)n(b)1<0, then the variations

    ΔI(2)1,jarg2eikγkg2(k)c1c2=θ5,ΔI(2)2,jarg2eikγkg2(k)c1c2=4(j+1)π+θ6,ΔI(2)3,jarg2eikγkg2(k)c1c2=θ7,ΔI(2)4,jarg2eikγkg2(k)c1c2=θ8,

    where θ5,θ6,θ7,θ8(0,π), and θ5+θ6+θ7+θ8=2π. Thus, ΔΓ(2)narg2eikγkg2(k)c1c2=4(j+1)π if n(a)n(b)1>0; ΔΓ(2)narg2eikγkg2(k)c1c2=(4j+6)π if n(a)n(b)1<0. By the argument principal of entire functions, the number of zeros of the function kg2(k) inside Γ(2)j equals 2j+2 if n(a)n(b)1>0; equals 2j+3 if n(a)n(b)1<0. Therefore, the zeros of kg2(k) can be numbered as follows.

    Lemma 3.4. If n(a)n(b)1>0, then the zeros of kg2(k), denoted by {μj}j0{μj}j0 with Reμj0, satisfy the asymptotic formula (3.38). If n(a)n(b)1<0, then the zeros of kg2(k), denoted by {μj}j0{μj}j1 with Reμj0, satisfy the asymptotic formula (3.39).

    Next, we study the asymptotics of exterior transmission eigenvalues under the assumption pW12[0,γ] or pW22[0,γ]. In the latter case, we obtain the more accurate estimate for the asymptotics of exterior transmission eigenvalues. For arbitrary small ε>0 and large j, consider the rectangle contour Δj:=Δ±σjΔ±τj, where

    Δ±σj:={k:x=σj±ε,|yτj|ε}, Δ±τj:={k:y=τn±ε,|xσn|ε}.

    Lemma 3.5. If n(a)=1,n(b)1 and n(a)0, then for sufficiently large j>0, and small ε>0, the function g2(k) satisfies

    |kg2(k)|Cεe|Imk|γ,kΓ(2)jΔj,

    where Cε>0 does not depend on j.

    Proof. Denote G2(k):=|kg2(k)|2e2|Imk|γ. Recall k=x+iy. By a direct calculation, we have

    |kg2(k)|2=(c1c2)24e2γy(x2+y2)+(d1+d2)24e2γy+(d1d2)24e2γy+(c1c2)(d1+d2)2ye2γy+(c1c2)(d1+d2)2xe2γysin2γxd21d222cos2γx(c1c2)(d1d2)2(ycos2γx+xsin2γx).

    It follows that if Imk0,

    G2(k)=(c1c2)24e4γy(x2+y2)+(d1+d2)24e4γy+(d1d2)24+(c1c2)(d1+d2)2ye4γy+(c1c2)(d1+d2)2xe4γysin2γxd21d222e2γycos2γx(c1c2)(d1d2)2e2γy(ycos2γx+xsin2γx), (3.41)

    and if Imk<0,

    G2(k)=(c1c2)24(x2+y2)+(c1c2)(d1+d2)2y+(c1c2)(d1+d2)2xsin2γx+(d1+d2)24+(d1d2)24e4γy(c1c2)(d1d2)2e2γy(ycos2γx+xsin2γx)d21d222e2yγcos2γx.

    Let us first consider the case kΔj. From (3.38) and (3.39), we have Imμj>0, σje2τjγ|d1d2c1c2| as j. It follows that when kΔ±τj,

    xe2γy=(σj+t)e2γ(τj±ε)|d1d2c1c2|e2γε,j, (3.42)

    and

    sin2γx=sin2γ(σj+t)=±cos2γt+o(1), when ±d1d2c1c2>0, (3.43)

    here t[ε,ε]. Substituting (3.42) and (3.43) to (3.41), we have that

    G2(k)=(d1d2)24(1+e4γε2e2γεcos2γt)+o(1), kΔ±τj, j. (3.44)

    Denote q1(t):=1+e4γε2e2γεcos2tγ. It is easy to see that q1(t) has minimum value at t=0. Thus, we have

    G2(k)(d1d2)24(1e2γε)2+o(1), kΔ±τj, j. (3.45)

    Similar to (3.44), we can obtain that for kΔ±σj,

    G2(k)=(d1d2)24(1+e4γt2e2γtcos2γε)+o(1), j, (3.46)

    where t[ε,ε]. Denote q2(t):=1+e4γt2e2γtcos2γε. Easily, q2(t)>0 for cos2γε>e2γt and q2(t)<0 for e2γt>cos2γε. Thus, it follows that

    G2(k)(d1d2)24sin22γε+o(1), kΔ±σj, j. (3.47)

    Together with (3.45) and (3.47), we have proved that there exists η1>0 that is dependent only on ε, such that G2(k)>η1 for kΔj.

    Now, let up pay attention to the case kΓ(2)j. Because g2(k) satisfies g2(k)=[g2(k)], we only need to consider kΓ(2)j{k:Rek0}.

    For k{k:0xj+1γπ,y=j+1γπ}, we have

    G2(k)=(d1d2)24+o(1). (3.48)

    For k{k:x=j+1γπ,12γlnj<yj+1γ}, i.e., x=σj+j+1γπσj and y=τj+t with t[12γlnjτj,j+1γτj], similar to (3.46), and using (3.38) and (3.39), we have

    G2(k)=(d1d2)24(1+e4γt)+o(1), j. (3.49)

    For k{k:x=j+1γπ,0y12γlnj}, we get

    G2(k)=(c1c2)2(j+1)2π24γ2e4τγ[1+O(1)], j. (3.50)

    For k{k:x=j+1γπ,j+1γy<0}{k:0xj+1γπ,y=j+1γπ}, we have

    G2(k)(c1c2)2(j+1)2π24γ2[1+o(1)], j. (3.51)

    Together with (3.48)–(3.51), we obtain that there exists η2>0 that is independent on j, such that G2(k)>η2 for kΓ(2)j. Taking Cε=min{η1,η2}, we complete the proof.

    Using Lemma 3.5 and (3.31), we get that |kg2(k)|>|D(k)kg2(k)| for kΓ(2)jΔj for large j. By the Rouche's theorem, we conclude that the number of zeros of the function D(k) coincides with the number of kg2(k) inside Γ(2)j or Δj. It follows from Lemma 3.3 that all sufficiently large zeros of D(k) are simple. By Lemma 3.4, the zeros of the function D(k) can be numbered as follows: when n(a)n(b)1>0 denote the zeros of D(k) by {kj}j0{kj}j0; when n(a)n(b)1<0 denote the zeros of D(k) by {kj}j0{kj}j1. Moreover,

    kj=μj+ϵj,ϵj=o(1),j. (3.52)

    Furthermore, we estimate ϵj. Substituting (3.52) into (3.31), we get

    0=2c1c2eikjγD(kj)=ikje2ikjγd1+d2c1c2e2ikjγ+d1d2c1c2+αj,

    where {αj}l2. Noting g2(μj)=0, i.e., iμje2iμjγd1+d2c1c2e2iμjγ+d1d2c1c2=0. Then

    (1e2iϵjγ)d1d2c1c2+αj=0.

    Using the asymptotics of μj, we get e2iμjγ=O(1j). Then

    e2iϵjγ1=c1c2d1d2iϵje2iμjγe2iϵjγ+αj=O(1j), (3.53)

    and then ϵj=O(1j).

    If pW22[0,γ], then we can substitute (3.52) into (3.32) and obtain that

    0=2c1c2D(kj)eikjγ=ikje2ikjγd1+d2c1c2e2ikjγ+d2d1c1c2ikj(e2e1c1c2e2ikjγ+e1+e2c1c2)+βjkj, 

    where βj=O(1j). The fact g2(μj)=0 implies that

    0=(iϵje2iμjγd1d2c1c2)e2iϵjγ+d1d2c1c2iμj+ϵj(e2e1c1c2e2iμjγe2iϵjγ+e1+e2c1c2)+βjμj+ϵj,

    i.e.,

    e2iϵjγ1=c1c2d1d2iϵje2iμjγe2iϵjγiμj+ϵj(e2e1d1d2e2iμjγe2iϵjγ+e1+e2d1d2)+βjμj+ϵj.

    Since

    1μj+ϵj=γjπ[1iln(2jπ)2jπ+O(1j)],

    then

    e2iϵjγ1=e1+e2d1d2iμj+ϵj+βjj=e1+e2d1d2γijπ[1iln(2jπ)2jπ]+βjj,

    hence,

    ϵj=12πe1+e2d1d2[1ji2πln(2jπ)j2]+O(1j2).

    Let us summarize what we have proved.

    Theorem 3.3. Assume n(a)=1, n(b)1, n(a)0, and pW12[0,γ]. Denote the exterior transmission eigenvalues by {kj}j0{kj}j0 if n(a)n(b)1>0; by {kj}j0{kj}j1 if n(a)n(b)1<0. Then the sequence {kj}j0 has the following asymptotics:

    kj=μj+O(1j),j.

    If we further assume pW22[0,γ], then the sequence {kj}j0 has the following asymptotics:

    kj=μj12πe1+e2d1d2[1ji2πln(2jπ)j2]+O(1j2),j.

    Here, the asymptotics of {μj} is given in (3.38) and (3.39), the numbers d1,d2,e1,e2 and the function p appear in (2.23)–(2.26) and (2.8).

    When n(a)1, n(b)=1, n(b)0, the asymptotics of exterior transmission eigenvalues can be studied similarly. Let

    μj=σj+iτj, (3.54)

    where

    σj={12γ[2jπ3π2+γjπd1d2c1+c212jπln(2γd1+d2c1+c2)+ln(2jπ)2jπ], if n(b)n(a)1>0,12γ[2jππ2+γjπd1d2c1+c212jπln(2γd1+d2c1+c2)+ln(2jπ)2jπ], if n(b)n(a)1<0,

    and

    τj={12γ[ln(2jπ)ln(2γd1+d2c1+c2)+34j], if n(b)n(a)1>0,12γ[ln(2jπ)ln(2γd1+d2c1+c2)+14j], if n(b)n(a)1<0.

    We provide the following theorem without proving it.

    Theorem 3.4. Assume n(a)1, n(b)=1, n(b)0 and pW12[0,γ]. Denote the exterior transmission eigenvalues by {kj}j0{kj}j2 if n(b)n(a)1>0; by {kj}j0{kj}j1 if n(b)n(a)1<0. Then the sequence {kj}j0 has the following asymptotics:

    kj=μj+O(1j),j.

    If we further assume pW22[0,γ], then the sequence {kj}j0 has the following asymptotics:

    kj=μj12πe1e2d1+d2[1ji2πln(2jπ)j2]+O(1j2),j,

    where {μj} is given in (3.54), the numbers d1,d2,e1,e2 and the function p appear in (2.23)–(2.26) and (2.8).

    Remark 3.2. When n(a)=1 and n(b)=1, the asymptotics of the exterior transmission eigenvalues can be studied similarly according to whether n(a) and n(b) are zeros.

    Example 3.1. If n(r)=1r4,a=12,b=32, then n(a)=241, n(b)=(23)41, γ=ban(t)dt=43, p(ξ)=14n(r)n(r)2516n(r)2n(r)3=0, and

    D(k)=(83ik+43)cos4k3(712k2i+1k)sin4k3.

    By use of Theorem 3.2, we have

    kj=3π8(2j1)1jπ176195+3i8ln2539+O(1j2),j, (3.55)

    and they are near the line z=3i8ln25390.166757i for k large enough. Figure 1 shows the numerical distribution of the zeros of D(k), which are the eigenvalues in (3.55).

    Figure 1.  Example 3.1.

    This work was supported by the National Natural Science Foundation of China (12201460 and 12001153).

    The authors declare no conflict of interest.



    [1] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. U.S.A, 79 (1982), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554 doi: 10.1073/pnas.79.8.2554
    [2] M. A. Cohen, S. Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Syst. Man Cybern., 13 (1983), 815–826. https://doi.org/10.1109/TSMC.1983.6313075 doi: 10.1109/TSMC.1983.6313075
    [3] L. Chua, L. Yang, Cellular neural networks: Applications, IEEE Trans. Circuits Syst., 35 (1988), 1273–1290. https://doi.org/10.1109/31.7601 doi: 10.1109/31.7601
    [4] H. Huang, J. Cao, On global asymptotic stability of recurrent neural networks with time-varying delays, Appl. Math. Comput., 142 (2003), 143–154. https://doi.org/10.1016/S0096-3003(02)00289-8 doi: 10.1016/S0096-3003(02)00289-8
    [5] B. Kosko, Bidirectional associative memories, IEEE Trans. Syst. Man Cybern., 18 (1988), 49–60. https://doi.org/10.1109/21.87054 doi: 10.1109/21.87054
    [6] S. Blythe, X. R. Mao, X. X. Liao, Stability of stochastic delay neural networks, J. Franklin Inst., 338 (2001), 481–495. https://doi.org/10.1016/S0016-0032(01)00016-3 doi: 10.1016/S0016-0032(01)00016-3
    [7] R. Yang, Z. Zhang, P. Shi, Exponential stability on stochastic neural networks with discrete interval and distributed delays, IEEE Trans. Neural Netw., 21 (2010), 169–175. https://doi.org/10.1109/TNN.2009.2036610 doi: 10.1109/TNN.2009.2036610
    [8] X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, (1997).
    [9] L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York, (1972).
    [10] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, (1976).
    [11] D. Yang, X. Li, Robust stability analysis of stochastic switched neural networks with parameter uncertainties via state-dependent switching law, Neurocomputing, 452 (2021), 813–819. https://doi.org/10.1016/j.neucom.2019.11.120 doi: 10.1016/j.neucom.2019.11.120
    [12] G. Liu, S. X. Yang, Y. Chai, W. Feng, W. Fu, Robust stability criteria for uncertain stochastic neural networks of neutral-type with interval time-varying delays, Neural Comput. Appl., 22 (2013), 349–359. https://doi.org/10.1007/s00521-011-0696-1 doi: 10.1007/s00521-011-0696-1
    [13] Z. Meng, Z. Xiang, Stability analysis of stochastic memristor-based recurrent neural networks with mixed time-varying delays, Neural Comput. Appl., 28 (2017), 1787–1799. https://doi.org/10.1007/s00521-015-2146-y
    [14] W. Xie, Q. Zhu, F. Jiang, Exponential stability of stochastic neural networks with leakage delays and expectations in the coefficients, Neurocomputing, 173 (2016), 1268–1275. https://doi.org/10.1016/j.neucom.2015.08.086 doi: 10.1016/j.neucom.2015.08.086
    [15] K. Zhong, S. Zhu, Q. Yang, Further results for global exponential stability of stochastic memristor-based neural networks with time-varying delays, Int. J. Syst. Sci., 47 (2016), 3573–3580. https://doi.org/10.1080/00207721.2015.1095955 doi: 10.1080/00207721.2015.1095955
    [16] G. Sun, Y. Zhang, Exponential stability of impulsive discrete-time stochastic BAM neural networks with time-varying delay, Neurocomputing, 131 (2014), 323–330. https://doi.org/10.1016/j.neucom.2013.10.010 doi: 10.1016/j.neucom.2013.10.010
    [17] Q. Song, Z. Zhao, Y. Liu, F. E. Alsaadi, Mean-square input-to-state stability for stochastic complex-valued neural networks with neutral delay, Neurocomputing, 470 (2022), 269–277. https://doi.org/10.1016/j.neucom.2021.10.117 doi: 10.1016/j.neucom.2021.10.117
    [18] Y. Cao, R. Sriraman, N. Shyamsundarraj, R. Samidurai, Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays, Math. Comput. Simul., 171 (2020), 207–220. https://doi.org/10.1016/j.matcom.2019.05.011 doi: 10.1016/j.matcom.2019.05.011
    [19] R. Sriraman, Y. Cao, R. Samidurai, Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays, Math. Comput. Simul., 171 (2020), 103–118. https://doi.org/10.1016/j.matcom.2019.04.001 doi: 10.1016/j.matcom.2019.04.001
    [20] D. Liu, S. Zhu, W. Chang, Mean square exponential input-to-state stability of stochastic memristive complex-valued neural networks with time varying delay, Int. J. Syst. Sci., 48 (2017), 1966–1977. https://doi.org/10.1080/00207721.2017.1300706 doi: 10.1080/00207721.2017.1300706
    [21] W. Gong, J. Liang, X. Kan, L. Wang, A. M. Dobaie, Robust state estimation for stochastic complex-valued neural networks with sampled-data, Neural Comput. Appl., 31 (2019), 523–542. https://doi.org/10.1007/s00521-017-3030-8 doi: 10.1007/s00521-017-3030-8
    [22] D. L. Lee, Relaxation of the stability condition of the complex-valued neural networks, IEEE Trans. Neural Netw., 12 (2001), 1260–1262. https://doi.org/10.1109/72.950156 doi: 10.1109/72.950156
    [23] B. Zhou, Q. Song, Boundedness and complete stability of complex-valued neural networks with time delay, IEEE Trans. Neural Netw. Learn. Syst., 24 (2013), 1227–1238. https://doi.org/10.1109/TNNLS.2013.2247626 doi: 10.1109/TNNLS.2013.2247626
    [24] A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Philos. Soc., 85 (1979), 199–225. https://doi.org/10.1017/S0305004100055638
    [25] T. Isokawa, T. Kusakabe, N. Matsui, F. Peper, Quaternion neural network and its application, Knowl. Based Intell. Eng. Syst., 2774 (2003), 318–324. https://doi.org/10.1007/978-3-540-45226-3-44 doi: 10.1007/978-3-540-45226-3-44
    [26] Y. Liu, Y. Zheng, J. Lu, J. Cao, L. Rutkowski, Constrained quaternion-variable convex optimization: A quaternion-valued recurrent neural network approach, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 1022–1035. https://doi.org/10.1109/TNNLS.2019.2916597 doi: 10.1109/TNNLS.2019.2916597
    [27] A. B. Greenblatt, S. S. Agaian, Introducing quaternion multi-valued neural networks with numerical examples, Inf. Sci., 423 (2018), 326–342. https://doi.org/10.1016/j.ins.2017.09.057 doi: 10.1016/j.ins.2017.09.057
    [28] Q. Song, X. Chen, Multistability analysis of quaternion-valued neural networks with time delays, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 5430–5440. https://doi.org/10.1109/TNNLS.2018.2801297 doi: 10.1109/TNNLS.2018.2801297
    [29] J. Wang, T. Li, X. Luo, Y. Q. Shi, S. K. Jha, Identifying computer generated images based on quaternion central moments in color quaternion wavelet domain, IEEE Trans. Circuits Syst. Video Technol., 29 (2018), 2775–2785. https://doi.org/10.1109/TCSVT.2018.2867786 doi: 10.1109/TCSVT.2018.2867786
    [30] Y. Liu, D. Zhang, J. Lou, J. Lu, J. Cao, Stability analysis of quaternion-valued neural networks: Decomposition and direct approaches, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 4201–4211. https://doi.org/10.1109/TNNLS.2017.2755697 doi: 10.1109/TNNLS.2017.2755697
    [31] Z. Xia. Y. Liu, J. Lu, J. Cao, L. Rutkowski, Penalty method for constrained distributed quaternion-variable optimization, IEEE Trans. Cybern., 51 (2021), 5631–5636. https://doi.org/10.1109/TCYB.2020.3031687 doi: 10.1109/TCYB.2020.3031687
    [32] Y. Wang, K. I. Kou, C. Zou, Y. Y. Tang, Robust sparse representation in quaternion space, IEEE Trans. Image Process., 30 (2021), 3637–3649. https://doi.org/10.1109/TIP.2021.3064193 doi: 10.1109/TIP.2021.3064193
    [33] H. Chen, T. Wang, J. Cao, P. P. Vidal, Y. Yang, Dynamic quaternion extreme learning machine, IEEE Trans. Circuits Syst. II: Exp. Briefs, 68 (2021), 3012–3016. https://doi.org/10.1109/TCSII.2021.3067014 doi: 10.1109/TCSII.2021.3067014
    [34] R. Sriraman, G. Rajchakit, C. P. Lim, P. Chanthorn, R. Samidurai, Discrete-time stochastic quaternion-valued neural networks with time delays: An asymptotic stability analysis, Symmetry, 12 (2020), 936. https://doi.org/10.3390/sym12060936 doi: 10.3390/sym12060936
    [35] J. Shu, B. Wu, L. Xiong, Stochastic stability criteria and event-triggered control of delayed Markovian jump quaternion-valued neural networks, Appl. Math. Comput., 420 (2022), 126904. https://doi.org/10.1016/j.amc.2021.126904 doi: 10.1016/j.amc.2021.126904
    [36] Q. Song, R. Zeng, Z. Zhao, Y. Liu, F. E. Alsaadi, Mean-square stability of stochastic quaternion-valued neural networks with variable coefficients and neutral delays, Neurocomputing, 471 (2022), 130–138. https://doi.org/10.1016/j.neucom.2021.11.033 doi: 10.1016/j.neucom.2021.11.033
    [37] C. Li, J. Cao, A. Kashkynbayev, Synchronization in quaternion-valued neural networks with delay and stochastic impulses, Neural Process. Lett., 54 (2022), 691–708. https://doi.org/10.1007/s11063-021-10653-0 doi: 10.1007/s11063-021-10653-0
    [38] U. Humphries, G. Rajchakit, P. Kaewmesri, P. Chanthorn, R. Sriraman, R. Samidurai, C. P. Lim, Stochastic memristive quaternion-valued neural networks with time delays: An analysis on mean square exponential input-to-state stability, Mathematics, 8 (2020), 815. https://doi.org/10.3390/math8050815 doi: 10.3390/math8050815
    [39] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern., 15 (1985), 116–132. https://doi.org/10.1109/TSMC.1985.6313399 doi: 10.1109/TSMC.1985.6313399
    [40] K. Tanaka, H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, Wiley, New York, (2001).
    [41] C. K. Ahn, Delay-dependent state estimation for T-S fuzzy delayed Hopfield neural networks, Nonlinear Dyn., 61 (2010), 483–489. https://doi.org/10.1007/s11071-010-9664-z doi: 10.1007/s11071-010-9664-z
    [42] R. Li, J. Cao, Passivity and dissipativity of fractional-order quaternion-valued fuzzy memristive neural networks: Nonlinear scalarization approach, IEEE Trans. Cybern., 52 (2022), 2821–2832. https://doi.org/10.1109/TCYB.2020.3025439 doi: 10.1109/TCYB.2020.3025439
    [43] B. Liu, P. Shi, Delay-range-dependent stability for fuzzy BAM neural networks with time-varying delays, Phys. Lett. A, 373 (2009), 1830–1838. https://doi.org/10.1016/j.physleta.2009.03.044 doi: 10.1016/j.physleta.2009.03.044
    [44] R. Sriraman, P. Vignesh, V. C. Amritha, G. Rachakit, P. Balaji, Direct quaternion method-based stability criteria for quaternion-valued Takagi-Sugeno fuzzy BAM delayed neural networks using quaternion-valued Wirtinger-based integral inequality, AIMS Math., 8 (2023), 10486–10512. https://doi.org/10.3934/math.2023532 doi: 10.3934/math.2023532
    [45] J. Jian, P. Wan, Global exponential convergence of fuzzy complex-valued neural networks with time-varying delays and impulsive effects, Fuzzy Sets Syst., 338 (2018), 23–39. https://doi.org/10.1016/j.fss.2017.12.001 doi: 10.1016/j.fss.2017.12.001
    [46] R. Sriraman, N. Asha, Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses, Kybernetika, 58 (2022), 498–521. https://doi.org/10.14736/kyb-2022-4-0498 doi: 10.14736/kyb-2022-4-0498
    [47] Y. Cao, S. Ramajayam, R. Sriraman, R. Samidurai, Leakage delay on stabilization of finite-time complex-valued BAM neural network: Decomposition approach, Neurocomputing, 463 (2021), 505–513. https://doi.org/10.1016/j.neucom.2021.08.056
    [48] R. Samidurai, R. Sriraman, S. Zhu, Leakage delay-dependent stability analysis for complex-valued neural networks with discrete and distributed time-varying delays, Neurocomputing, 338 (2021), 262–273. https://doi.org/10.1016/j.neucom.2019.02.027
    [49] F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl., 251 (1997), 21–57. https://doi.org/10.1016/0024-3795(95)00543-9 doi: 10.1016/0024-3795(95)00543-9
    [50] C. Pradeep, A. Chandrasekar, R. Murugesu, R. Rakkiyappan, Robust stability analysis of stochastic neural networks with Markovian jumping parameters and probabilistic time-varying delays, Complexity, 21 (2016), 59–72. https://doi.org/10.1002/cplx.21630 doi: 10.1002/cplx.21630
    [51] X. Chen, Z. Li, Q. Song, J. Hu, Y. Tan, Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties, Neural Netw., 91 (2017), 55–65. https://doi.org/10.1016/j.neunet.2017.04.006 doi: 10.1016/j.neunet.2017.04.006
    [52] P. G. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
  • This article has been cited by:

    1. Sabyasachi Mondal, Antonios Tsourdos, Bipartite Consensus of Nonlinear Agents in the Presence of Communication Noise, 2022, 22, 1424-8220, 2357, 10.3390/s22062357
    2. Chenglin Han, Mengji Shi, Rui Li, Jiaqi Lu, Zhiqiang Li, Kaiyu Qin, 2022, Robust Bipartite Consensus Tracking for Multi-Agent Systems under Acuator Faults, 978-1-6654-8508-1, 584, 10.1109/ICET55676.2022.9824238
    3. Rong Sun, Yuntao Han, Yingying Wang, Design of generalized fault diagnosis observer and active adaptive fault tolerant controller for aircraft control system, 2022, 19, 1551-0018, 5591, 10.3934/mbe.2022262
    4. Sabyasachi Mondal, Antonios Tsourdos, Asymmetric Bipartite Consensus of Nonlinear Agents with Communication Noise, 2023, 109, 0921-0296, 10.1007/s10846-023-01941-z
    5. Dun Ao, Zixiang Luo, 2024, Robust fixed-time consensus tracking control for multiple wheeled mobile robots, 979-8-3503-8778-0, 3496, 10.1109/CCDC62350.2024.10587907
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1950) PDF downloads(69) Cited by(4)

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog