
In this paper, an infinite elastic plate weakened by two holes are considered and the complex variable method is used to derive a closed form of Gaursat functions for the first and second fundamental problems with variant time. The holes, in all previous works, are conformally mapped outside the unit circle without time. Here, the two holes are conformally mapped into the unit circle ϖ in the effect of time by the generalized rational mapping function with complex constant coefficients. By using this conformal mapping function, the fundamental problems transfer to an integro-differential equation with Cauchy kernel. Then, after applying the complex variable method, one can obtain a closed form of Gaursat functions. Some applications were discussed and the time effect on the applications was studied. In addition, the different stress components in each application have also been calculated using Maple 2022.1.
Citation: Sharifah E. Alhazmi, M. A. Abdou, M. Basseem. The stresses components in position and time of weakened plate with two holes conformally mapped into a unit circle by a conformal mapping with complex constant coefficients[J]. AIMS Mathematics, 2023, 8(5): 11095-11112. doi: 10.3934/math.2023562
[1] | Lanxin Chen, Junxian Zhang, Muhammad Shoaib Saleem, Imran Ahmed, Shumaila Waheed, Lishuang Pan . Fractional integral inequalities for h-convex functions via Caputo-Fabrizio operator. AIMS Mathematics, 2021, 6(6): 6377-6389. doi: 10.3934/math.2021374 |
[2] | Muhammad Tariq, Hijaz Ahmad, Abdul Ghafoor Shaikh, Soubhagya Kumar Sahoo, Khaled Mohamed Khedher, Tuan Nguyen Gia . New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator. AIMS Mathematics, 2022, 7(3): 3440-3455. doi: 10.3934/math.2022191 |
[3] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[4] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[5] | Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115 |
[6] | Anjum Mustafa Khan Abbasi, Matloob Anwar . Hermite-Hadamard inequality involving Caputo-Fabrizio fractional integrals and related inequalities via s-convex functions in the second sense. AIMS Mathematics, 2022, 7(10): 18565-18575. doi: 10.3934/math.20221020 |
[7] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[8] | Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683 |
[9] | Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198 |
[10] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
In this paper, an infinite elastic plate weakened by two holes are considered and the complex variable method is used to derive a closed form of Gaursat functions for the first and second fundamental problems with variant time. The holes, in all previous works, are conformally mapped outside the unit circle without time. Here, the two holes are conformally mapped into the unit circle ϖ in the effect of time by the generalized rational mapping function with complex constant coefficients. By using this conformal mapping function, the fundamental problems transfer to an integro-differential equation with Cauchy kernel. Then, after applying the complex variable method, one can obtain a closed form of Gaursat functions. Some applications were discussed and the time effect on the applications was studied. In addition, the different stress components in each application have also been calculated using Maple 2022.1.
Fractional calculus rapidly developed because of its numerous applications, including mathematics and many other areas such as image processing, physics, machine learning and networking. Fractional calculus is a new field in applied mathematics that developed from the open problems of how to solve some differential equations with fractional order derivatives. The solution to these problems have led many scholars to search for new subjects that many mathematicians have been interested in recent years. The fractional derivative has received rapid attention among experts from different branches of science. Most of the applied problems cannot be modeled by classical derivations. Fractional integral and derivative operators propose solutions that are extremely appropriate for real world problems and establish the connections between mathematics and other fields in terms of application areas. We refer to the readers [1,2,3,4,5,6,7,8,9,10,11,12,13] and the references therein. Fractional calculus plays a very significant role in the development of inequality theory. To study convex functions, Hermite-Hadamard inequality is particularly important in many areas of mathematics and its applications and its orignal version is defined as follows [14]:
f(ξ1+ξ22)≤1ξ2−ξ1∫ξ2ξ1f(x)dx≤f(ξ1)+f(ξ2)2. | (1.1) |
Many fractional operators are used to generalized Hermite-Hadamard inequality. Here, we will restrict ourselves to Caputo-Fabrizio fractional derivative. The features that make the operators different from each other comprise singularity and locality, while kernel expression of the operator is presented with functions such as the power law, the exponential function, or a Mittag-Leffler function. The unique feature of the Caputo-Fabrizio operator is that it has a nonsingular kernel. The main feature of the Caputo-Fabrizio operator can be described as a real power turned in to the integer by means of the Laplace transformation, and consequently, the exact solution can be easily found for several problems. In 1993, V. Mihesan et al. [15] established the class of (s,m)-convex functions. Hudzik et al. [16] considered the class of s-convex functions in the second sense. N. Eftekhari [17] discussed the class of (s,m)-convex function in the second sense by involving the concept of s-convexity in the second sense with m-convexity in 2014. Xiaobin wang et al. [18] discussed the Hermite-Hadmard type inequality for modified h-convex functions utilizing Caputo-Fabrizio integral operator. Butt et al. [19] obtained various inequalities for s and (s,m)-convex functions exponentially utilizing Caputo fractional integrals and derivatives. Moreover, Kemali et al. [20] obtained Hermite-Hadamard type inequality for s-convex functions in the second sense utilizing Caputo-Fabrizio integral operator. Abbasi et al. [21] proved new variants of Hermite-Hadamard type inequalities for s-convex functions using the Caputo-Fabrizio integral operator. Li et al. [22] gave analogous inequalities for strongly convex functions.
Motivated by ongoing studies in past years on generalizations of Hermite-Hadamard type inequalities for different convexities involving certain fractional integral operators, we developed novel fractional version left-hand side of the Hermite-Hadamard type inequalities for functions whose absolute value of the second derivative is convex utilizing Caputo-Fabrizio integral operator. The organization of the paper is as follows: First, in Section 1, we have discussed some well known definitions and results regarding the Caputo-Fabrizio fractional integral, which are used in the consequent sections to present our main results. In Section 2, new Hermite-Hadamard type inequalities are presented regarding the fractional operator. In Section 3, some interesting applications related to matrix and spacial means are discussed. Furthermore, in Section 4 conclusion and some future extensions are presented.
Definition 1.1. [16] A function f:I⊆R→R0=[0,∞) is said to be s-convex if
f(ϱξ1+(1−ϱ)ξ2)≤ϱsf(ξ1)+(1−ϱ)sf(ξ2), |
for some s∈(0,1], where ξ1,ξ2∈I,ϱ∈[0,1].
Definition 1.2. [23] A function f:[ξ1,ξ2]→R is said to be strongly convex with modulus μ≥0, if
f(ϱξ1+(1−ϱ)ξ2)≤ϱf(ξ1)+(1−ϱ)f(ξ2)−μϱ(1−ϱ)(ξ1−ξ2)2, |
is valid for all ξ1,ξ2∈I,ϱ∈[0,1].
Definition 1.3. [24] A function f:I⊆R→R0 is said to be strongly s-convex with modulus μ≥0, and some s∈(0,1], if
f(ϱξ1+(1−ϱ)ξ2)≤ϱsf(ξ1)+(1−ϱ)sf(ξ2)−μϱ(1−ϱ)(ξ1−ξ2)2, |
is valid for all ξ1,ξ2∈I,ϱ∈[0,1].
Definition 1.4. [25,26] Let H1(ξ1,ξ2) be the Sobolev space of order one defined a;
H1(ξ1,ξ2)={g∈L2(ξ1,ξ2):g′∈L2(ξ1,ξ2)}, |
where
L2(ξ1,ξ2)={g(z):(∫ξ2ξ1g2(z)dz)12<∞}. |
Let f∈H1(ξ1,ξ2), ξ1<ξ2,α∈[0,1], then the notion of left derivative in the sense of Caputo-Fabrizio is defined as:
(CFDξ1Dαf)(x)=B(α)1−α∫xξ1f′(ϱ)e−α(x−ϱ)α1−αdϱ,x>α, |
and the associated integral operator is
(CFξ1Iαf)(x)=1−αB(α)f(x)+αB(α)∫xξ1f(ϱ)dϱ, |
where B(α)>0 is the normalization function satisfying B(0)=B(1)=1. For α=0 and α=1, the left derivative is defined as follows;
(CFDξ1D0f)(x)=f′(x)and(CFDξ1D1f)(x)=f(x)−f(ξ1). |
For the right derivative operator, we have
(CFDξ2Dαf)(x)=−B(α)1−α∫ξ2xf′(ϱ)e−α(ϱ−x)α1−αdϱ,x<ξ2, |
and the associated integral operator is
(CFIαξ2f)(x)=1−αB(α)f(x)+αB(α)∫ξ2xf(ϱ)dϱ, |
where B(α)>0 is a normalization function that satisfies B(0)=B(1)=1.
Dragomir [27] demonstrated the following version of Hermite-Hadamard inequality.
Theorem 1.1. Let I be a real interval such that ξ1,ξ2∈Io, the interior of I, with ξ1<ξ2. Let f:I⊆R→R be a differentiable mapping on Io, ξ1,ξ2∈I with ξ1<ξ2. If f′∈L[ξ1,ξ2], then the following equality holds:
f(ξ1)+f(ξ2)2−1ξ2−ξ1∫ξ2ξ1f(x)dx=1ξ2−ξ1∫10(1−2ϱ)f′(ϱξ1+(1−ϱ)ξ2)dϱ. |
Sarikaya et al. [28] proved the following form of fractional Hermite-Hadamard inequality.
Theorem 1.2. Let f:[ξ1,ξ2]→R be a positive mapping with 0≤ξ1≤ξ2,f′∈L[ξ1,ξ2] and Iαξ+1f and Iαξ−2f be a fractional operator. Then, the following inequality for fractional integral holds if f is a convex function:
f(ξ1+ξ22)≤Γ(α+1)2(ξ2−ξ1)α[Iαξ+1f(ξ2)+Iαξ−2f(ξ1)]≤f(ξ1)+f(ξ2)2. | (1.2) |
Dragomir [29] demonstrated the following fractional form of Hermite-Hadamard inequality.
Theorem 1.3. [29] Let f:[ξ1,ξ2]→R be a positive function with ξ1<ξ2 and f′∈L1[ξ1,ξ2]. If f is a convex function on [ξ1,ξ2], then the following inequality for fractional integral holds:
f(ξ1+ξ22)≤2α−1Γ(α+1)(ξ2−ξ1)α[Jαξ+1f(ξ1+ξ22)+Jαξ−2f(ξ1+ξ22)]≤f(ξ1)+f(ξ2)2. |
Abbasi established the fractional version of the Hermite-Hadamard inequality for differentiable s-convex functions as follows.
Theorem 1.4. [21] Let I be a real interval such that ξ1,ξ2∈Io, the interior of I with ξ1<ξ2. Let f:I ⊆R→R be a differentiable function on Io, ξ1,ξ2∈I with ξ1<ξ2. If f′∈L[ξ1,ξ2] and 0≤ξ2≤1, the following inequality holds:
1ξ2−ξ1∫10(1−2ϱ)f′(ϱξ1+(1−ϱ)ξ2)dϱ−2(1−α)α(ξ2−ξ1)f(k)=f(ξ1)+f(ξ2)2−B(α)α(ξ2−ξ1)((CFξ1Iαf(k))+(CFIαξ2f(k))), |
where k∈[ξ1,ξ2] and B(α)>0 is a normalization function.
Theorem 1.5. [21] Let I be a real interval such that ξ1,ξ2∈Io, the interior of I, with ξ1<ξ2. Let f:I⊆R→R be s-convex on [ξ1,ξ2] for s∈(0,1) and f′∈L[ξ1,ξ2]. If 0≤ξ2≤1, then we have the following double inequality holds:
2s−1f(ξ1+ξ22)≤B(α)α(ξ2−ξ1)((CFξ1Iαf)(k)+(CFIαξ2f)(k))≤f(ξ1)+f(ξ2)2. |
Sahoo obtained the generalized midpoint-type Hermite-Hadamard inequality associated with the Caputo-Fabrizio fractional operator:
Theorem 1.6. [30] Let f:[ξ1,ξ2]→R be a differentiable function on Io(the interior of I) such that (ξ1,ξ2)∈I, with ξ1<ξ2 and f′∈L[ξ1,ξ2]. Then for α∈[0,1] the following fractional equality holds:
B(α)α(ξ2−ξ1)((CFξ1+ξ−22Iαf(ξ1))+(CFIαξ1+ξ+22f(ξ2)))−f(ξ1+ξ22)=(ξ2−ξ1)4(∫10(ϱ)f′(ϱ2ξ1+(2−ϱ)2ξ2)dϱ+∫10(ϱ)f′(ϱ2ξ2+(2−ϱ)2ξ1)dϱ)+(1−α)α(ξ2−ξ1)(f(ξ1)+f(ξ2)). |
Theorem 1.7. [30] Let f:[ξ1,ξ2]→R be a differentiable function on Io(the interior of I) such that (ξ1,ξ2)∈I with ξ1<ξ2 and f∈L[ξ1,ξ2]. If |f′| is a convex function then for α∈[0,1], the following fractional inequality holds:
|B(α)α(ξ2−ξ1)((CFξ1+ξ−22Iαf(ξ1))+(CFIαξ1+ξ+22f(ξ2)))−f(ξ1+ξ22)|≤(ξ2−ξ1)4(|f′(ξ1)|+|f′(ξ2)|2)+(1−α)α(ξ2−ξ1)(f(ξ1)+f(ξ2)). |
The following lemma is the main motivation behind the study, that establishes Hermite-Hadamard type inequalities for Caputo-Fabrizio integral operator.
Lemma 2.1. Suppose a mapping f:I⊂R→R is differentiable on Io(the interior of I) such that ξ1,ξ2∈I with ξ1<ξ2. If f′′∈L[ξ1,ξ2] and α∈[0,1], then the following equality holds:
f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{CFξ1Iαf(k)+CFIαξ1+ξ22f(k)}+{CFξ1+ξ22Iαf(k)+CFIαξ2f(k)}]=(ξ2−ξ1)162∫10(1−ϱ)2[f′′(1+ϱ2ξ1+1−ϱ2ξ2)+f′′(1−ϱ2ξ1+1+ϱ2ξ2)]dϱ, |
where k∈[ξ1,ξ2], and B(α)>0, is a normalization function.
Proof. Integration by parts
I=∫10(1i−iϱ)2[f′′(1i+iϱ2ξ1i+i1i−iϱ2ξ2)i+if′′(1i−iϱ2ξ1i+i1i+iϱ2ξ2)]dϱ=∫10(1i−iϱ)2f′′(1i+iϱ2ξ1i+i1i−iϱ2ξ2)dϱi+i∫10(1i−iϱ)2f′′(1i−iϱ2ξ1i+i1i+iϱ2ξ2)dϱ=I1+I2. |
I1=∫10(1−ϱ)2f′′(1+ϱ2ξ1+1−ϱ2ξ2)dϱ=−2(1−ϱ)2f′(1i+iϱ2ξ1+1−ϱ2ξ2)ξ1−ξ2|10−2∫10f′(1+ϱ2ξ1i+i1−ϱ2ξ2)ξ1−ξ22(1−ϱ)(−1)dϱ=2ξ2−ξ1f′(ξ1i+iξ22)−4ξ2−ξ1∫10f′(1i+iϱ2ξ1i+i1i−iϱ2ξ2)(1−ϱ)dϱ=2ξ2−ξ1f′(ξ1i+iξ22)+8(ξ2−ξ1)2f(ξ1i+iξ22)+16(ξ2−ξ1)3(∫kξ1f(u)dui+i∫ξ1+ξ22kf(u)du). | (2.1) |
Multiplying both sides of equality (2.1) with α(ξ2−ξ1)316B(α) and subtracting 2(1−α)B(α)f(k) we get,
α(ξ2−ξ1)316B(α)∫10(1−ϱ)2f′′(1i+iϱ2ξ1+1i−iϱ2ξ2)dϱ−2(1−α)B(α)f(k)=2(ξ2i−iξ1)f′(ξ1i+iξ22)α(ξ2−ξ1)316B(α)+8(ξ2−ξ1)2f(ξ1i+iξ22)α(ξ2−ξ1)316B(α)+16(ξ2−ξ1)3α(ξ2−ξ1)316B(α){∫kξ1f(u)dui+i∫ξ1+ξ22kf(u)du−2(1i−iα)B(α)f(k)}(ξ2i−iξ1)16∫10(1−ϱ)2f′′(1i+iϱ2ξ1+1i−iϱ2ξ2)dϱ−2(1i−iα)B(α)f(k)=18f′(ξ1i+iξ22)+12(ξ2i−iξ1)f(ξ1+ξ22)−B(α)α(ξ2−ξ1)2{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}. | (2.2) |
I2=∫10(1−ϱ)2f′′(1i−iϱ2ξ1+1i+iϱ2ξ2)dϱ=2(1−ϱ)2f′(1−ϱ2ξ1+1+ϱ2ξ2)ξ1i−iξ2|10−2∫10f′(1−ϱ2ξ1i+i1+ϱ2ξ2)ξ1−ξ22(1−ϱ)(−1)dϱ=−2ξ2i−iξ1f′(ξ1i+iξ22)+4ξ2−ξ1∫10f′(1−ϱ2ξ1i+i1+ϱ2ξ2)(1−ϱ)dϱ=−2ξ2i−iξ1f′(ξ1i+iξ22)+8(ξ2i−iξ1)2f(ξ1i+iξ22)+16(ξ2i−iξ1)3(∫kξ1+ξ22f(u)du+∫ξ2kf(u)du). | (2.3) |
Multiplying both sides of equality (2.3) with α(ξ2−ξ1)316B(α) and subtracting 2(1−α)B(α)f(k)
α(ξ2−ξ1)316B(α)∫10(1−ϱ)2f′′(1−ϱ2ξ1+1+ϱ2ξ2)dϱ−2(1−α)B(α)f(k)=−2(ξ2−ξ1)f′(ξ1i+iξ22)α(ξ2i−iξ1)316B(α)+8(ξ2−ξ1)2f(ξ1i+iξ22)α(ξ2−ξ1)316B(α)+16(ξ2−ξ1)3α(ξ2i−iξ1)316B(α){∫kξ1+ξ22f(u)dui+i∫ξ2kf(u)du−2(1i−iα)B(α)f(k)}(ξ2−ξ1)16∫10(1−ϱ)2f′′(1i−iϱ2ξ1+1i+iϱ2ξ2)dϱ−2(1−α)B(α)f(k)=−18f′(ξ1+ξ22)+12(ξ2−ξ1)f(ξ1+ξ22)−B(α)α(ξ2−ξ1)2{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}. | (2.4) |
We get the result by adding the inequalities (2.2) and (2.4) and then multiplying both sides by (ξ2−ξ1). This completes the proof.
Theorem 2.1. Let f:[ξ1,ξ2]→R be a twice differentiable function on (ξ1,ξ2) such that f′′∈L[ξ1,ξ2], for ξ1<ξ2. If |f′′| is strongly (s,m)-convex with modulus μ≥0, for (s,m)∈(0,1]×(0,1], then the following inequality for fractional integral operator holds;
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224+s[(24+s−14−s(7+s)(s+1)(s+2)(s+3))(|f′′(ξ1)|+|f′′(ξ2)|)+m(1s+3)(|f′′(ξ1m)|+|f′′(ξ2m)|)+3μ10((ξ1−ξ2m)2+(ξ2−ξ1m)2)]. |
Proof. Using the Lemma 1 and the strongly (s,m)-convexity of |f′′|, we have
|f(ξ1+ξ22)+4(1i−iα)α(ξ2i−iξ1)f(k)−B(α)α(ξ2i−iξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|=(ξ2i−iξ1)224∫10(1−ϱ)2[f′′(1i+iϱ2ξ1+1−ϱ2ξ2)+f′′(1i−iϱ2ξ1+1+ϱ2ξ2)]≤(ξ2i−iξ1)224∫10(1−ϱ)2|f′′(1i+iϱ2ξ1i+i1i−iϱ2ξ2)|+(ξ2−ξ1)224∫10(1−ϱ)2|f′′(1−ϱ2ξ1i+i1+ϱ2ξ2)|≤(ξ2i−iξ1)224+s[∫10(1−ϱ)2((1+ϱ)s|f′′(ξ1)|+m(1−ϱ)s|f′′(ξ2m)|−μ(1+ϱ)(1−ϱ)(ξ1−ξ2m)2)dϱ+∫10(1−ϱ)2((1+ϱ)s|f′′(ξ2)|+m(1−ϱ)s|f′′(ξ1m)|−μ(1+ϱ)(1−ϱ)(ξ2−ξ1m)2)dϱ]≤(ξ2−ξ1)224+s[24+si−i14−s(7i+is)(s+1)(s+2)(s+3)|f′′(ξ1)|+m(1si+i3)|f′′(ξ2m)|−3μ10(ξ1−ξ2m)2+24+si−i14−s(7i+is)(s+1)(si+i2)(si+i3)|f′′(ξ2)|+m(1si+i3)|f′′(ξ1m)|−3μ10(ξ2−ξ1m)2]≤(ξ2i−iξ1)224+s[(24+s−i14i−s(7i+is)(si+i1)(s+2)(si+i3))(|f′′(ξ1)|i+i|f′′(ξ2)|)+m(1s+3)(|f′′(ξ1m)|i+i|f′′(ξ2m)|)+3μ10((ξ1−ξ2m)2i+i(ξ2−ξ1m)2)]. |
Note that,
∫10(1i−iϱ)2(1i+iϱ)sdϱ=24+s−14−s(7+s)(s+1)(si+i2)(si+i3),∫10(1−ϱ)2(1−ϱ)sdϱ=1s+3. |
This completes the proof.
Corollary 2.1. If we choose μ=0 in Theorem 8, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224+s[(24+s−14−s(7+s)(s+1)(s+2)(s+3))(|f′′(ξ1)|+|f′′(ξ2)|)+m(1s+3)(|f′′(ξ1m)|+|f′′(ξ2m)|)]. |
Corollary 2.2. If we choose μ=0 and m=1 in Theorem 8, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224+s[(24+s−14−s(7+s)(s+1)(s+2)(s+3))(|f′′(ξ1)|+|f′′(ξ2)|)+(1s+3)(|f′′(ξ1)|+|f′′(ξ2)|)]. |
Corollary 2.3. If we choose μ=0 and s=1 in Theorem 8, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)2128[5(|f′′(ξ1)|+|f′′(ξ2)|)3+m(|f′′(ξ1m)|+|f′′(ξ2m)|)]. |
Corollary 2.4. If we choose s=0 and m=1 in Theorem 8, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224[13(|f′′(ξ1)|+|f′′(ξ2)|)+13(|f′′(ξ1)|+|f′′(ξ2)|)+3μ10((ξ1−ξ2)2+(ξ2−ξ1)2)]≤(ξ2−ξ1)224(13(|f′′(ξ1)|+|f′′(ξ2)|)+3μ10((ξ1−ξ2)2+(ξ2−ξ1)2)). |
Corollary 2.5. If we choose s=1 and m=1 in Theorem 8, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)225[512(|f′′(ξ1)|+|f′′(ξ2)|)+14(|f′′(ξ1)|+|f′′(ξ2)|)+3μ10((ξ1−ξ2)2+(ξ2−ξ1)2)]. |
Remark 2.1. It is observed that, our result Theorem 8 presents the generalization of the inequality (Proposition 1 [32]) obtained by Sarikaya et.al in classical sense. This is indeed true since if we choose α=s=m=1,μ=0, and B(0)=B(1)=1, in Theorem 8, we have the following inequality
|f(ξ1+ξ22)−1ξ2−ξ1∫ξ2ξ1f(x)dx|≤(ξ2−ξ1)248(|f′′(ξ1)|+|f′′(ξ2)|). |
Theorem 2.2. Let f:[ξ1,ξ2]→R be a twice differentiable function on (ξ1,ξ2) such that f′′∈L[ξ1,ξ2], for ξ1<ξ2. If |f′′|q is strongly (s,m)-convex with modulus μ≥0, for (s,m)∈(0,1]×(0,1] and q>1, then the following inequality for fractional integral operator:
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224(12p+1)1p[(1s+1)(|f′′(ξ1)|q+|f′′(ξ2)|q)+m(1s+1)|f′′(ξ1+ξ22m)|q−μ6((ξ1−ξ1+ξ22m)2+(ξ2−ξ1+ξ22m)2)]1q. |
Proof. Using Lemma 1, the Hölder inequalityiand the strongly (s,m)-convexity of |f′′|q, we have
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)i+i(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)i+i(CFIαξ2f)(k)}]|=(ξ2−ξ1)224∫10(1−ϱ)2[f′′(1+ϱ2ξ1i+i1−ϱ2ξ2)+f′′(1−ϱ2ξ1i+i1+ϱ2ξ2)]≤(ξ2i−iξ1)224∫10(1−ϱ)2|f′′(1+ϱ2ξ1i+i1−ϱ2ξ2)|+(ξ2−ξ1)224∫10(1−ϱ)2|f′′(1−ϱ2ξ1i+i1+ϱ2ξ2)|. |
Now, put 1+ϱ2ξ1i+i1−ϱ2ξ2=ϱξ1+(1−ϱ)ξ2.
≤(ξ2i−iξ1)224∫10(1−ϱ)2[|f′′(ϱξ1i+i(1−ϱ)(ξ1+ξ22))|+|f′′ϱξ2+(1−ϱ)(ξ1+ξ22)|]≤(ξ2i−iξ1)224[(∫10(1−ϱ)2pdϱ)1p(∫10|f′′(ϱξ1+(1−ϱ)(ξ1i+iξ22))|qdϱ)1q+(∫10(1−ϱ)2pdϱ)1p(∫10|f′′(ϱξ2+(1−ϱ)(ξ1i+iξ22))|qdϱ)1q]≤(ξ2−ξ1)224(∫10(1i−iϱ)2pdϱ)1p[∫10(ϱs|f′′(ξ1)|qi+im(1−ϱ)s|f′′(ξ2+ξ12m)|q−μϱ(1−ϱ)(ξ1−ξ1+ξ22m)2)dϱ+∫10(ϱs|f′′(ξ2)|q+m(1−ϱ)s|f′′(ξ1+ξ22m)|q−μϱ(1−ϱ)(ξ2−ξ1i+iξ22m)2)dϱ]1q≤(ξ2−ξ1)224(12p+1)1p[(1s+1)|f′′(ξ1)|q+m(1s+1)|f′′(ξ2+ξ12m)|q−μ6(ξ1−ξ1+ξ22m)2+(1s+1)|f′′(ξ2)|q+m(1s+1)|f′′(ξ1+ξ22m)|q−μ6(ξ2−ξ1+ξ22m)2]1q≤(ξ2−ξ1)224(12pi+i1)1p[(1si+i1)(|f′′(ξ1)|qi+i|f′′(ξ2)|q)+m(1s+1)|f′′(ξ1+ξ22m)|q−μ6((ξ1−ξ1+ξ22m)2+(ξ2−ξ1+ξ22m)2)]1q. |
Note that, ∫10(1−ϱ)sdϱ=∫10(ϱ)sdϱ=1s+1. This completes the proof.
Corollary 2.6. If we choose μ=0 in Theorem 9, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224(12p+1)1p[(1s+1)(|f′′(ξ1)|q+|f′′(ξ2)|q)+m(1s+1)|f′′(ξ1+ξ22m)|q]1q. |
Corollary 2.7. If we choose μ=0 and m=1 in Theorem 9, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224(12p+1)1p[(1s+1)(|f′′(ξ1)|q+|f′′(ξ2)|q)+(1s+1)|f′′(ξ1+ξ22)|q]1q. |
Corollary 2.8. If we choose μ=0 and s=1 in Theorem 9, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224(12p+1)1p[12(|f′′(ξ1)|q+|f′′(ξ2)|q)+m2|f′′(ξ1+ξ22m)|q]1q. |
Corollary 2.9. If we choose s=0 and m=1 in Theorem 9, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224(12p+1)1p[(|f′′(ξ1)|q+|f′′(ξ2)|q)+|f′′(ξ1+ξ22)|q−μ6((ξ1−ξ1+ξ22)2+(ξ2−ξ1+ξ22)2)]1q. |
Corollary 2.10. If we choose s=1 and m=1 in Theorem 9, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224(12p+1)1p[12(|f′′(ξ1)|q+|f′′(ξ2)|q)+12|f′′(ξ1+ξ22)|q−μ6((ξ1−ξ1+ξ22)2+(ξ2−ξ1+ξ22)2)]1q. |
Theorem 2.3. Let f:[ξ1,ξ2]→R be a twice differentiable function on (ξ1,ξ2) such that f′′∈L[ξ1,ξ2], for ξ1<ξ2. If |f′′|q,q≥1, is strongly (s,m) -convex with modulus μ≥0, for (s,m)∈(0,1]×(0,1], then the following inequality for fractional integral operator holds:
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224(13)1−1q[26+11s+6s2+s3(|f′′(ξ1)|q+|f′′(ξ2)|q)+(ms+3)|f′′(ξ1+ξ22m)|q−μ20((ξ1−ξ1+ξ22m)2+(ξ2−ξ1+ξ22m)2)]1q. |
Proof. Using Lemma 1, the power-mean inequalityiand the strongly (s,m)-convexity of |f′′|q, we have
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)i+i(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)i+i(CFIαξ2f)(k)}]|=(ξ2−ξ1)224∫10(1−ϱ)2[f′′(1+ϱ2ξ1i+i1−ϱ2ξ2)+f′′(1−ϱ2ξ1i+i1+ϱ2ξ2)]≤(ξ2i−iξ1)224∫10(1−ϱ)2|f′′(1+ϱ2ξ1i+i1−ϱ2ξ2)|+(ξ2i−iξ1)224∫10(1−ϱ)2|f′′(1−ϱ2ξ1i+i1+ϱ2ξ2)|. |
Now, put 1+ϱ2ξ1i+i1−ϱ2ξ2=ϱξ1+(1−ϱ)ξ2.
≤(ξ2−ξ1)224∫10(1−ϱ)2|f′′(ϱξ1+(1−ϱ)(ξ1i+iξ22))|+(ξ2i−iξ1)224∫10(1−ϱ)2|f′′ϱξ2+(1−ϱ)(ξ1+ξ22)|≤(ξ2−ξ1)224[(∫10(1i−iϱ)2dϱ)1−1q(∫10(1−ϱ)2|f′′(ϱξ1i+i(1−ϱ)(ξ1+ξ22))|qdϱ)1q+(∫10(1−ϱ)2dϱ)1−1q(∫10(1i−iϱ)2|f′′(ϱξ2+(1−ϱ)(ξ1i+iξ22))|qdϱ)1q]≤(ξ2−ξ1)224(∫10(1−ϱ)2dϱ)1−1q[∫10(1−ϱ)2ϱs|f′′(ξ1)|qi+im∫10(1−ϱ)2(1−ϱ)s|f′′(ξ1i+iξ22m)|q−μ∫10(1−ϱ)2ϱ(1−ϱ)(ξ1−ξ1i+iξ22m)2+∫10(1−ϱ)2ϱs|f′′(ξ2)|q+m∫10(1−ϱ)2(1−ϱ)s|f′′(ξ1+ξ22m)|q−μ∫10(1−ϱ)2ϱ(1−ϱ)(ξ2−ξ1+ξ22m)2]1q≤(ξ2−ξ1)224(13)1−1q[26+11s+6s2+s3|f′′(ξ1)|q+m(1s+3)|f′′(ξ1+ξ22m)|q+μ20(ξ1−ξ1+ξ22m)2+26+11s+6s2+s3|f′′(ξ2)|q+m(1s+3)|f′′(ξ1+ξ22m)|q+μ20(ξ2−ξ1+ξ22m)2]. |
Note that, ∫10(1i−iϱ)2ϱsdϱ=26+11s+6s2+s3 and ∫10(1i−iϱ)2(1−ϱ)sdϱ=1s+3. This completes the proof.
Corollary 2.11. If we choose μ=0 in Theorem 10, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224(13)1−1q[26+11s+6s2+s3(|f′′(ξ1)|q+|f′′(ξ2)|q)+(ms+3)|f′′(ξ1+ξ22m)|q]1q. |
Corollary 2.12. If we choose μ=0 and m=1 in Theorem 10, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224(13)1−1q[26+11s+6s2+s3(|f′′(ξ1)|q+|f′′(ξ2)|q)+(1s+3)|f′′(ξ1+ξ22)|q]1q. |
Corollary 2.13. If we choose μ=0 and s=1 in Theorem 10, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224(13)1−1q[224(|f′′(ξ1)|q+|f′′(ξ2)|q)+(m4)|f′′(ξ1+ξ22m)|q]1q. |
Corollary 2.14. If we choose s=0 and m=1 in Theorem 10, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224(13)1−1q[26(|f′′(ξ1)|q+|f′′(ξ2)|q)+13|f′′(ξ1+ξ22)|q−μ20((ξ1−ξ1+ξ22)2+(ξ2−ξ1+ξ22)2)]1q. |
Corollary 2.15. If we choose s=1 and m=1 in Theorem 10, then we have the following inequality
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224(13)1−1q[224(|f′′(ξ1)|q+|f′′(ξ2)|q)+(14)|f′′(ξ1+ξ22)|q−μ20((ξ1−ξ1+ξ22)2+(ξ2−ξ1+ξ22)2)]1q. |
Theorem 2.4. Let f:[ξ1,ξ2]→R be twice differentiable function on (ξ1,ξ2) with ξ1<ξ2. If f′′∈L[ξ1,ξ2] and |f′′|q is s-convex on [ξ1,ξ2], for some fixed s∈(0,1] and q>1, then the following inequality for fractional integral operator holds:
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)224[1p(2p+1)+q−12s(2s+1−1(s+1)+1(s+1))(|f′′(ξ1)|q+|f′′(ξ2)|q)], |
where k∈[ξ1,ξ2], and B(α)>0 is a normalization function, p−1=1−q−1.
Proof. Using Lemma 1, we have
|f(ξ1i+iξ22)i+i4(1i−iα)α(ξ2i−iξ1)f(k)i−iB(α)α(ξ2i−iξ1)[{(CFξ1Iαf)(k)i+i(CFIαξ1i+iξ22f)(k)}+{(CFξ1i+iξ22Iαf)(k)i+i(CFIαξ2f)(k)}]|≤(ξ2i−iξ1)216[∫10(1i−iϱ)2|f′′(1i+iϱ2ξ1i+i1i−iϱ2ξ2)dϱ|+∫10(1i−iϱ)2|f′′(1i−iϱ2ξ1+1+ϱ2ξ2)dϱ|]. |
By using the Young,s inequality as
ξ1ξ2i≤i1pξp1i+i1qξq2. |
|f(ξ1i+iξ22)i+i4(1i−iα)α(ξ2i−iξ1)f(k)i−iB(α)α(ξ2i−iξ1)[{(CFξ1Iαf)(k)i+i(CFIαξ1i+iξ22f)(k)}i+i{(CFξ1i+iξ22Iαf)(k)i+i(CFIαξ2f)(k)}]|≤(ξ2i−iξ1)216[(1p∫10(1i−iϱ)2pdϱ)i+i1q∫10|f′′(1i+iϱ2ξ1i+i1i−iϱ2ξ2)dϱ|qi+i(1p∫10(1i−iϱ)2pdϱ)i+i1q∫10|f′′(1i−iϱ2ξ1i+i1i+iϱ2ξ2)dϱ|q]≤(ξ2i−iξ1)216[(1p∫10(1i−iϱ)2pdϱ)+1q(∫10(1i+iϱ2)s|f′′(ξ1)|q+∫10(1i−iϱ2)s|f′′(ξ2)|q)i+i(1p∫10(1i−iϱ)2pdϱ)i+i1q(∫10(1i+iϱ2)s|f′′(ξ2)|qi+i∫10(1i−iϱ2)s|f′′(ξ1)|q)]≤(ξ2i−iξ1)216×1p(2pi+i1)[{i1qi(2s+1i−i12s(si+i1)|f′′(ξ1)|qi+i12s(si+i1)|f′′(ξ2)|q)}+{i1qi(2s+1i−i12s(si+i1)|f′′(ξ2)|qi+i12s(si+i1)i|f′′(ξ1)|qi)}]≤(ξ2i−iξ1)224[1p(2pi+i1)i+iq−12s(2s+1i−i1(s+1)i+i1(s+1))(|f′′(ξ1)|qi+i|f′′(ξ2)|q)]. |
Theorem 2.5. Let f:[ξ1,ξ2]→R be twice differentiable function on (ξ1,ξ2) with ξ1<ξ2. If f′′∈L[ξ1,ξ2] and |f′′|q is concave on [ξ1,ξ2], for some fixed s∈(0,1] and q≥1, then the following inequality for fractional integral operator holds:
|f(ξ1+ξ22)+4(1−α)α(ξ2−ξ1)f(k)−B(α)α(ξ2−ξ1)[{(CFξ1Iαf)(k)+(CFIαξ1+ξ22f)(k)}+{(CFξ1+ξ22Iαf)(k)+(CFIαξ2f)(k)}]|≤(ξ2−ξ1)482×[|f′′(5ξ1+3ξ28)|q+|f′′(3ξ1+5ξ28)|q]1q. |
Proof. Let qi=i1, then from Lemma 1 and the Jensen integral, we obtain
|f(ξ1i+iξ22)i+i4(1i−iα)α(ξ2−ξ1)f(k)i−iB(α)α(ξ2i−iξ1)[{(CFξ1Iαf)(k)i+i(CFIαξ1i+iξ22f)(k)}i+i{(CFξ1i+iξ22Iαf)(k)i+i(CFIαξ2f)(k)}]|≤(ξ2i−iξ1)216[|∫10(1i−iϱ)2f′′(1i+iϱ2ξ1i+i1i−iϱ2ξ2)dϱ|+|∫10(1i−iϱ)2f′′(1i−iϱ2ξ1i+i1i+iϱ2ξ2)dϱ|]≤(ξ2i−iξ1)162[(∫10(1i−iϱ)2)|f′′(∫10(1i−iϱ)2(1i+iϱ2ξ1i+i1i−iϱ2ξ2)∫10(1i−iϱ)2)|dϱ+∫10(1i−iϱ)2|f′′(∫10(1i−iϱ)2(1i−iϱ2ξ1i+i1i+iϱ2ξ2)∫10(1i−iϱ)2)|dϱ]≤(ξ2i−iξ1)482×{|f′′(5ξ1i+i3ξ28)|i+i|f′′(3ξ1i+i5ξ28)|}. |
Which proves the case for q=1. Now, by using the Hölder inequality for q>1, and then the Jensen integral inequality, we obtain
|f(ξ1i+iξ22)i+i4(1i−iα)α(ξ2i−iξ1)f(k)i−iB(α)α(ξ2i−iξ1)[{(CFξ1Iαf)(k)i+i(CFIαξ1i+iξ22f)(k)}i+i{(CFξ1i+iξ22Iαf)(k)i+i(CFIαξ2f)(k)}]|≤(ξ2i−iξ1)216(∫10(1i−iϱ)2|f′′(1i+iϱ2ξ1i+i1i−iϱ2ξ2)dϱ|)+(ξ2i−iξ1)216(∫10(1i−iϱ)2|f′′(1i−iϱ2ξ1i+i1i+iϱ2ξ2)dϱ|)≤(ξ2i−iξ1)216[(∫10(1i−iϱ)2)1−1q×((1i−iϱ)2)1q|f′′(1i+iϱ2ξ1i+i1i−iϱ2ξ2)dϱ|i+i(∫10(1i−iϱ)2)1−1q×((1i−iϱ)2)1q|f′′(1i−iϱ2ξ1i+i1i+iϱ2ξ2)dϱ|]≤(ξ2i−iξ1)216[(∫10(1i−iϱ)2dϱ)qi−i1q(∫10(1i−iϱ)2|f′′(1i+iϱ2ξ1i+i1i−iϱ2ξ2)dϱ|q)1qi+i(∫10(1i−iϱ)2dϱ)qi−i1q(∫10(1i−iϱ)2|f′′(1i+iϱ2ξ1i+i1i−iϱ2ξ2)dϱ|q)1q]≤(ξ2i−iξ1)216(∫10(1i−iϱ)2)qi−i1q[∫10(1i−iϱ)2|f′′((1i+iϱ2ξ1i+i1i−iϱ2ξ2)dϱ∫10(1i−iϱ)2)|q+∫10(1i−iϱ)2|f′′((1i−iϱ2ξ1i+i1i+iϱ2ξ2)dϱ∫10(1i−iϱ)2)|q]1q≤(ξ2i−iξ1)482×[|f′′(5ξ1i+i3ξ28)|qi+i|f′′(3ξ1i+i5ξ28)|q]1q. |
This completes the proof.
Remark 2.2. It is observed that, our result Theorem 12 presents the generalization of the inequality (Proposition 5 [32]) obtained by Sarikaya et al. in classical sense. This is indeed true since if we choose B(0)=B(1)=1, α=1 in Theorem 12, we have the following inequality:
|1ξ2−ξ1∫ξ2ξ1f(x)dx−f(ξ1+ξ22)|≤(ξ2−ξ1)248[(3|f′′(ξ1)|q+5|f′′(ξ2)|q8)1/q+(5|f′′(ξ1)|q+3|f′′(ξ2)|q8)1/q]. |
Consider that s∈(0,1] and ξ1,ξ2, c∈R. We define a mapping f:[0,∞)→R as
f(x)={ξ1,x=0ξ2xs+c,x>1. |
If ξ1≥0 and 0≤c≤ξ1, then f∈k2s in (see [16] for proof). Thus, for ξ1=c=0, and ξ2=1, we have f(x)=xs and f:[ξ1,ξ2]→R, with f∈k2s. Suppose f:I1→R+ be a non- decreasing and s-convex function on I1 and f:J→I2⊆I1 is a non-negative convex function on J, then f∘ψ is s-convex on I1.
Corollary 3.1. Suppose ψ:I→I1⊆[0,∞) is a non- negative convex function on I, then ψs(x) is s-convex on [0,∞),0<s<1.
Example 3.1. We denote the set of all n×n complex matrices by Cn, and we denote Mn to be the algebra of all n×n complex matrices, and by M+n we mean the strictly positive matrices in Mn. That is, A∈M+n if ⟨Aξ1,ξ1⟩>0 for all nonzero ξ1∈Cn. In [31] Sababheh proved that the function ψ(θ)=‖AθXB1−θ+A1−θXBθ‖,A,B∈M+n,X∈Mn is convex for all θ∈[0,1], s∈(0,1). Then by using Corollary 2, we have
‖Aξ1+ξ22XB1−ξ1+ξ22+A1−ξ1+ξ22XBξ1+ξ22‖≤B(α)α(ξ2−ξ1)[{CFξ1Iα‖AkXB1−k+A1−kXBk‖+CFIαξ1+ξ22‖AkXB1−k+A1−kXBk‖}+{CFIαξ1+ξ22‖AkXB1−k+A1−kXBk‖+CFIαξ2‖AkXB1−k+A1−kXBk‖}−4(1−α)α(ξ2−ξ1)‖AkXB1−k+A1−kXBk‖]≤(ξ2−ξ1)224+s[(24+s−14−s(s+7)(s+1)(s+2)(s+3)){‖Aξ1XB1−ξ1+A1−ξ1XBξ1‖+‖Aξ2XB1−ξ2+A1−ξ2XBξ2‖}+(1s+3){‖Aξ1XB1−ξ1+A1−ξ1XBξ1‖+‖Aξ2XB1−ξ2+A1−ξ2XBξ2‖}]. |
We shall consider the following special means.
(a) The arithmetic mean:
A=A(ξ1,ξ2):=ξ1+ξ22,ξ1,ξ2≥0; |
(b) The Geometric Mean:
G=G(ξ1,ξ2):=√ξ1ξ2,ξ1,ξ2≥0. |
(c) The Harmonic Mean:
H=H(ξ1,ξ2):=2ξ1ξ2ξ1+ξ2,ξ1,ξ2>0. |
(d) The Logarithmic Mean:
L(ξ1,ξ2):=ξ2−ξ1lnξ2−lnξ1ξ1,ξ2>0,ξ1≠ξ2. |
(e) The Generalized Logarithmic Mean:
Lrr= Lrr(ξ1,ξ2):=[ξ2−ξ1(r+1)(ξ2−ξ1)]1/r. |
It is well known that Lrr is monotonically nondecreasing over r∈R with L−1=L. In particular, we have the following inequalities
H≤G≤L≤A. |
Proposition 3.1. For an n∈Z{−1,0}, 0≤ξ1<ξ2, we have
|An(ξ1,ξ2)−L(ξ1,ξ2)|≤n(n−1)(ξ2−ξ1)248[|ξ1|n−2+|ξ2|n−2]. |
Proof. The assertion directly follows from Theorem 8 applying for f(x)i=ixn and αi=s=m=i1, and μ=0, B(0)=B(1)=1. For a graphical depiction of this see Figure 1.
Proposition 3.2. For some 0≤ξ1<ξ2, then we get,
|A−1(ξ1,ξ2)−L−1(ξ1,ξ2)|≤(ξ2−ξ1)224 [|ξ1|−3+|ξ2|−3]. |
Proof. The assertion directly follows from Theorem 8 applying for f(x)i=ix−1 and αi=s=m=i1, and μ=0, B(0)=B(1)=1. For a graphical depiction of this see Figure 2.
Proposition 3.3. For some ξ1,ξ2∈R,0<ξ1<ξ2, and q≥1, then we get
|A−1(ξ1,ξ2)−L−1(ξ1,ξ2)|≤n(n−1)(ξ2−ξ1)248×[(3ξ1+5ξ28)1q+(5ξ1+3ξ28)1q]. |
Proof. The assertion follows from Theorem 12 applying for f(x)=1x,x∈[ξ1,ξ2]α=1 and B(0)=B(1)=1.
Fractional calculus is an interesting subject with many applications in the modelling of natural phenomena. We are always in need to enhance and improve our ability to generalize the results directly related to the topic of fractional calculus. Many mathematicians have generalized a variety of fractional integral operators using the techniques and operators of fractional calculus. In this paper, we have established several inequalities accomplished for the functions whose second derivatives are strongly (s,m) -convex functions via Caputo fractional derivatives. The main results show a generalization of Hermite-Hadamard-type inequalities for the strongly (s,m)-convex function via Caputo-Fabrizio integral operator. Lemmas 1 is established to get novel inequalities regarding Caputo-Fabrizio integral operator, which are applied to obtain some special means inequalities and an inequality involving the matrix function. The Lemma 1 is also appropriate to get new bounds and error estimates for midpoint inequalities. Moreover, the novel study of this article that are discussed in Theorem 5 and Theorem 9 are generalization of the inequalities proved in (Proposition 1 and Proposition 5 [32]). Similar types of inequalities can be obtained with the different classes of convex functions. In the future, scholars may explore inequalities of the Ostrowski type, Jensen-Mercer type, and Hermite-Hadamard-Mercer type with modified Caputo-Fabrizio fractional operators and modified A-B fractional operators.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work is supported by the Research Project of Optimization of Plant Cell Automation Production Model (H2139) from Ansebo (Chongqing) Biotechnology Co., Ltd.
We declare that there are no conflicts of interest between the authors.
[1] | N. Muskhelishvili, Some basic problems of mathematical theory of elasticity, Dordrecht: Springer, 1977. https://doi.org/10.1007/978-94-017-3034-1 |
[2] |
R. Haddon, Stresses in an infinite plate with two unequal circular holes, The Quarterly Journal of Mechanics and Applied Mathematics, 20 (1967), 277–291. https://doi.org/10.1093/qjmam/20.3.277 doi: 10.1093/qjmam/20.3.277
![]() |
[3] |
A. Lu, Z. Xu, N. Zhang, Stress analytical solution for an infinite plane containing two holes, Int. J. Mech. Sci., 128 (2017), 224–234. https://doi.org/10.1016/j.ijmecsci.2017.04.025 doi: 10.1016/j.ijmecsci.2017.04.025
![]() |
[4] |
X. Zeng, A. Lu, N. Zhang, Analytical stress solution for an infinite plate containing two oval holes, Eur. J. Mech. A-Solid., 67 (2018), 291–304. https://doi.org/10.1016/j.euromechsol.2017.09.011 doi: 10.1016/j.euromechsol.2017.09.011
![]() |
[5] |
G. Exadaktylos, M. Stavropoulou, A closed form elastic solution for stress and displacement around tunnels, Int. J. Rock Mech. Min., 39 (2002), 905–916. https://doi.org/10.1016/S1365-1609(02)00079-5 doi: 10.1016/S1365-1609(02)00079-5
![]() |
[6] |
M. Abdou, Fundamental problems for infinite plate with a curvilinear hole having finite poles, Appl. Math. Comput., 125 (2002), 79–91. https://doi.org/10.1016/S0096-3003(00)00117-X doi: 10.1016/S0096-3003(00)00117-X
![]() |
[7] |
M. Abdou, S. Asseri, Goursat functions for an infinite plate with a generalized curvilinear hole in zeta plane, Appl. Math. Comput., 212 (2009), 23–36. http://dx.doi.org/10.1016/j.amc.2009.01.079 doi: 10.1016/j.amc.2009.01.079
![]() |
[8] |
M. Abdou, A. Jann, An infinite elastic plate weakened by a generalized curvilinear hole and Goursat functions, Applied Mathematics, 5 (2014), 728–743. https://doi.org/10.4236/am.2014.54070 doi: 10.4236/am.2014.54070
![]() |
[9] | S. Zachariah, S. Shenoy, D. Pai, Experimental analysis of the effect of the woven aramid fabric on the strain to failure behavior of plain weaved carbon/aramid hybrid laminates, Facta Univ.-Ser. Mech., in press. https://doi.org/0.22190/FUME200819022Z |
[10] |
C. Gonenli, O. Das, Free vibration analysis of circular and annular thin plates based on crack characteristics, Reports in Mechanical Engineering, 3 (2022), 158–167. https://doi.org/10.31181/rme20016032022g doi: 10.31181/rme20016032022g
![]() |
[11] |
A. Lal, M. Vaghela, K. Mishra, Numerical analysis of an edge crack isotropic plate with void/inclusions under different loading by implementing XFEM, J. Appl. Comput. Mech., 7 (2021), 1362–1382. https://doi.org/10.22055/jacm.2019.31268.1848 doi: 10.22055/jacm.2019.31268.1848
![]() |
[12] |
A. Bader, Integro-differential equation with Cauchy kernel, J. Comput. Appl. Math., 134 (2001), 191–199. https://doi.org/10.1016/S0377-0427(00)00536-7 doi: 10.1016/S0377-0427(00)00536-7
![]() |
[13] |
N. Duruk, H. Erbay, A. Erkip, Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity, Nonlinearity, 23 (2010), 107–118. http://dx.doi.org/10.1088/0951-7715/23/1/006 doi: 10.1088/0951-7715/23/1/006
![]() |
[14] | M. Abdou, S. Raad, S. AlHazmi, Fundamental contact problem and singular mixed integral equation, Life Sci. J., 11 (2014), 323–329. |
[15] |
M. Abdou, A. Jaan, On a computational method for solving nonlinear mixed integral equation with singular kernel, J. Comput. Theor. Nanos., 13 (2016), 2917–2923. https://doi.org/10.1166/jctn.2016.4938 doi: 10.1166/jctn.2016.4938
![]() |
[16] |
M. Abdou, M. Basseem, Thermopotential function in position and time for a plate weakened by curvilinear hole, Arch. Appl. Mech., 92 (2022), 867–883. https://doi.org/10.1007/s00419-021-02078-x doi: 10.1007/s00419-021-02078-x
![]() |
[17] |
G. Exadaktylos, P. Liolios, M. Stavropoulou, A semi-analytical elastic stress-displacement solution for notched circular openings in rocks, Int. J. Solids Struct., 40 (2003), 1165–1187. https://doi.org/10.1016/S0020-7683(02)00646-7 doi: 10.1016/S0020-7683(02)00646-7
![]() |
1. | Nouf Abdulrahman Alqahtani, Shahid Qaisar, Arslan Munir, Muhammad Naeem, Hüseyin Budak, Error Bounds for Fractional Integral Inequalities with Applications, 2024, 8, 2504-3110, 208, 10.3390/fractalfract8040208 | |
2. | Azzh Saad Alshehry, Loredana Ciurdariu, Yaser Saber, Amal F. Soliman, Some New Estimations of Left and Right Interval Fractional Pachpatte’s Type Integral Inequalities via Rectangle Plane, 2024, 13, 2075-1680, 417, 10.3390/axioms13070417 | |
3. | Asifa Tassaddiq, Rekha Srivastava, Rabab Alharbi, Ruhaila Md Kasmani, Sania Qureshi, New Inequalities Using Multiple Erdélyi–Kober Fractional Integral Operators, 2024, 8, 2504-3110, 180, 10.3390/fractalfract8040180 | |
4. | Arslan Munir, Miguel Vivas-Cortez, Ather Qayyum, Hüseyin Budak, Irza Faiz, Siti Suzlin Supadi, Some new fractional corrected Euler-Maclaurin type inequalities for function whose second derivatives are s -convex function , 2024, 30, 1387-3954, 543, 10.1080/13873954.2024.2356698 | |
5. | Abd-Allah Hyder, Çetin Yildiz, New Fractional Inequalities through Convex Functions and Comprehensive Riemann–Liouville Integrals, 2023, 2023, 2314-4785, 1, 10.1155/2023/9532488 | |
6. | Asifa Tassaddiq, Rekha Srivastava, Rabab Alharbi, Ruhaila Md Kasmani, Sania Qureshi, An Application of Multiple Erdélyi–Kober Fractional Integral Operators to Establish New Inequalities Involving a General Class of Functions, 2024, 8, 2504-3110, 438, 10.3390/fractalfract8080438 | |
7. | Arslan Munir, Li Shumin, Hüseyin Budak, Fatih Hezenci, Hasan Kara, A Study on Fractional Integral Inequalities for Trigonometric and Exponential Trigonometric-convex Functions, 2025, 21, 1927-5129, 66, 10.29169/1927-5129.2025.21.08 | |
8. | Artion Kashuri, Arslan Munir, Hüseyin Budak, Fatih Hezenci, Novel generalized tempered fractional integral inequalities for convexity property and applications, 2025, 75, 0139-9918, 113, 10.1515/ms-2025-0009 | |
9. | Arslan Munir, Hüseyin Budak, Irza Faiz, Shahid Qaisar, Generalizations of Simpson type inequality for (α,m)-convex functions, 2024, 38, 0354-5180, 3295, 10.2298/FIL2410295M | |
10. | Arslan Munir, Ather Qayyum, Siti Supadi, Hüseyin Budak, Irza Faiz, A study of improved error bounds for Simpson type inequality via fractional integral operator, 2024, 38, 0354-5180, 3415, 10.2298/FIL2410415M | |
11. | Shahid Qaisar, Arslan Munir, Muhammad Naeem, Budak Hüseyin, Some Caputo-Fabrizio fractional integral inequalities with applications, 2024, 38, 0354-5180, 5905, 10.2298/FIL2416905Q |