Research article

Clustering property for quantum Markov chains on the comb graph

  • Received: 28 September 2022 Revised: 10 January 2023 Accepted: 14 January 2023 Published: 31 January 2023
  • MSC : 46L53, 46L60, 82B10, 81Q10

  • Quantum Markov chains (QMCs) on graphs and trees were investigated in connection with many important models arising from quantum statistical mechanics and quantum information. These quantum states generate many important properties such as quantum phase transition and clustering properties. In the present paper, we propose a construction of QMCs associated with an XX-Ising model over the comb graph N0Z. Mainly, we prove that the QMC associated with the disordered phase, enjoys a clustering property.

    Citation: Abdessatar Souissi, El Gheteb Soueidy, Mohamed Rhaima. Clustering property for quantum Markov chains on the comb graph[J]. AIMS Mathematics, 2023, 8(4): 7865-7880. doi: 10.3934/math.2023396

    Related Papers:

    [1] Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073
    [2] Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang . The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357
    [3] N. E. Cho, G. Murugusundaramoorthy, K. R. Karthikeyan, S. Sivasubramanian . Properties of λ-pseudo-starlike functions with respect to a boundary point. AIMS Mathematics, 2022, 7(5): 8701-8714. doi: 10.3934/math.2022486
    [4] Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618
    [5] Mohammad Faisal Khan, Jongsuk Ro, Muhammad Ghaffar Khan . Sharp estimate for starlikeness related to a tangent domain. AIMS Mathematics, 2024, 9(8): 20721-20741. doi: 10.3934/math.20241007
    [6] Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad . Sufficiency criteria for a class of convex functions connected with tangent function. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906
    [7] Sadaf Umar, Muhammad Arif, Mohsan Raza, See Keong Lee . On a subclass related to Bazilevič functions. AIMS Mathematics, 2020, 5(3): 2040-2056. doi: 10.3934/math.2020135
    [8] Aoen, Shuhai Li, Tula, Shuwen Li, Hang Gao . New subclass of generalized close-to-convex function related with quasi-subordination. AIMS Mathematics, 2025, 10(5): 12149-12167. doi: 10.3934/math.2025551
    [9] Huo Tang, Gangadharan Murugusundaramoorthy, Shu-Hai Li, Li-Na Ma . Fekete-Szegö and Hankel inequalities for certain class of analytic functions related to the sine function. AIMS Mathematics, 2022, 7(4): 6365-6380. doi: 10.3934/math.2022354
    [10] Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423
  • Quantum Markov chains (QMCs) on graphs and trees were investigated in connection with many important models arising from quantum statistical mechanics and quantum information. These quantum states generate many important properties such as quantum phase transition and clustering properties. In the present paper, we propose a construction of QMCs associated with an XX-Ising model over the comb graph N0Z. Mainly, we prove that the QMC associated with the disordered phase, enjoys a clustering property.



    Let A denote the class of functions of the form:

    f(z)=z+n=2anzn, (1.1)

    which are analytic in the open unit disk U={z:|z|<1}. Also let S denote the subclass of A consisting of univalent functions in U. It is well-known that for fS, |a3a22|1. A classical theorem of Fekete-Szegö [8] states that for fS given by (1.1)

    |a3ηa22|{34η,ifη0,1+2exp(2η1η),if0<η<1,4η3,ifη1.

    The latter inequality is sharp in the sense that for each η there exists a function in S such that the equality holds. Later, Pfluger [24] has considered the complex values of η and provided the inequality

    |a3ηa22|1+2|exp(2η1η)|.

    Indeed, many authors have considered the Fekete-Szegö problem for various subclasses of A, the upper bound for |a3ηa22| is investigated by various authors [1,5,6,13,16,17], see also recent investigations on this subject by [7,11,21,22,23].

    A function fA is said to be in the class S of starlike functions in U, if

    (zf(z)f(z))>0  (zU).

    On the other hand, a function fA is said to be in the class of convex functions in U, denoted by C, if

    (1+zf(z)f(z))>0  (zU).

    A function fA is said to be in the class of starlike functions of complex order b(bC{0}), denoted by S(b), provided that

    {1+1b(zf(z)f(z)1)}>0  (zU).

    Furthermore, a function fC(b) is convex functions of complex order b(bC{0}) if it satisfies the inequality

    {1+1b(zf(z)f(z))}>0 (zU).

    Note that S(1)=S and C(1)=C.

    The class S(b) of starlike functions of complex order b(bC{0}) was introduced by Nasr and Aouf [19] while the class C(b) of convex functions of complex order b(bC{0}) was presented earlier by Wiatrowski [28].

    Sãlãgean [26] introduced the following differential operator for f(z)A which is called the Sãlãgean differential operator:

    D0f(z)=f(z)D1f(z)=Df(z)=zf(z)Dkf(z)=D(Dk1f(z))(kN=1,2,3,...).

    We note that,

    Dkf(z)=z+n=2nkanzn(kN0=N{0}). (1.2)

    Recently, Komatu [14] introduced a certain integral operator Lδa defined by

    Lδaf(z)=aδΓ(δ)10ta2(log1t)δ1f(zt)dt(a>0, δ0, f(z)A, zU). (1.3)

    Thus, if f(z)A is of the form (1.1), it is easily seen from (1.3) that [14]

    Lδaf(z)=z+n=2(aa+n1)δanzn(a>0, δ0). (1.4)

    We note that:

    L0af(z)=f(z);

    L11f(z)=A[f](z) known as Alexander operator [2];

    L12f(z)=L[f](z) known as Libera operator [15];

    L1c+1f(z)=Lc[f](z) called generalized Libera operator or Bernardi operator [3];

    ● For a=1 and δ=k (k is any integer), the multiplier transformation Lk1f(z)=Ikf(z) was studied by Flett [9] and Sãlãgean [26];

    ● For a=1 and δ=k (kN0=N{0}), the differential operator Lk1f(z)=Dkf(z) was studied by Sãlãgean [26];

    ● For a=2 and δ=k (k is any integer), the operator Lk2f(z)=Lkf(z) was studied by Uralegaddi and Somanatha [27];

    ● For a=2, the multiplier transformation Lδ2f(z)=Iδf(z) was studied by Jung et al. [10].

    For Dkf(z) given by (1.2) and Lδaf(z) is given by (1.4), we define the differential operator DkLδaf(z) as follows:

    DkLδaf(z)=z+n=2nk(aa+n1)δanzn. (1.5)

    Note that, by taking δ=0 and k=0 in (1.5), the differential operator DkLδaf(z) reduces to Sãl ãgean differential operator and Komatu integral operator, respectively.

    Using the operator DkLδaf, we now introduce a new subclass of analytic functions as follows:

    Definition 1. A function fA is said to be in the class Nk,δa(λ,b) if satisfies the inequality

    (1+1b(z(DkLδaf(z))+λz2(DkLδaf(z))(1λ)DkLδaf(z)+λz(DkLδaf(z))1))>0
    (a>0, bC{0}, δ0, 0λ1, kN=1,2,3,..., zU).

    Note that, N0,0a(0,b)=S(b) and N0,0a(1,b)=C(b).

    By giving specific values to the parameters and a,b,k,δ and λ, we obtain the following important subclasses studied by various authors in earlier works, for instance; N0,δa(0,b) and N0,δa(1,b) (Bulut [4]), N0,δa(λ,1) (Mohapatra and Panigrahi [18]), N0,0a(0,b)=S(b) (Nars and Aouf [19]), N0,0a(1,b)=C(b) (Wiatrowski [28], Nars and Aouf [20]).

    In this paper, we find an upper bound for the functional |a3ηa22| for the functions f belongs to the class Nk,δa(λ,b).

    We denote by P a class of analytic function in U with p(0)=1 and p(z)>0. In order to derive our main results, we have to recall here the following lemma [25].

    Lemma 1. Let pP with p(z)=1+c1z+c2z2+...., then

    |cn|2forn1.

    If |c1|=2 then p(z)p1(z)=(1+γ1z)/(1γ1z) with γ1=c1/2. Conversely, if p(z)p1(z) for some |γ1|=1, then c1=2γ1 and |c1|=2. Furthermore, we have

    |c2c212|2|c1|22.

    If |c1|<2 and |c2c212|2|c1|22, then p(z)p2(z), where p2(z)=1+zγ2z+γ11+¯γ1γ2z1zγ2z+γ11+¯γ1γ2z, and γ1=c1/2, γ2=2c2c214|c1|2. Conversely, if p(z)p2(z) for some |γ1|<1 and |γ2|=1 then γ1=c1/2, γ2=2c2c214|c1|2 and |c2c212|2|c1|22.

    Now, consider the functional |a3ηa22| for bC{0} and ηC.

    Theorem 1. Let bC{0} and 0λ1, ηC, a>0, δ0. If f of the form (1.1) is in Nk,δa(λ,b), then

    |a2|2|b|(λ+1)Aδ12k, (2.1)
    |a3||b|(2λ+1)Aδ23kmax{1,|1+2b|} (2.2)

    and

    |a3ηa22||b|(2λ+1)Aδ23kmax{1,|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|} (2.3)

    where A1=(aa+1) and A2=(aa+2). Consider the functions

    z(Fk,δλ,a(z))Fk,δλ,a(z)=1+b[p1(z)1] (2.4)
    z(Fk,δλ,a(z))Fk,δλ,a(z)=1+b[p2(z)1] (2.5)

    where p1, p2 are given in Lemma 1. Equality in (2.1) holds if (2.4); in (2.2) if (2.4) and (2.5); for each η in (2.3) if (2.4) and (2.5).

    Proof. Denote Fk,δλ,a(z)=(1λ)DkLδaf(z)+λz(DkLδaf(z))=z+β2z2+β3z3+...., then

    β2=(λ+1)Aδ12ka2,β3=(2λ+1)Aδ23ka3. (2.6)

    By the definition of the class Nk,δa(λ,b), there exists pP such that z(Fk,δλ,a(z))Fk,δλ,a(z)=1+b(p(z)1), so that

    (z(1+2β2z+3β3z2+...)z+β2z2+β3z3+....)=1b+b(1+c1z+c2z2+...),

    which implies the equality

    z+2β2z2+3β3z3+...=z+(bc1+β2)z2+(bc2+β2bc1+β3)z3+....

    Equating the coefficients of both sides of the latter, we have

    β2=bc1, β3=b2c212+bc22, (2.7)

    so that, on account of (2.6) and (2.7)

    a2=bc1(λ+1)Aδ12k,a3=b2(2λ+1)Aδ23k(bc21+c2). (2.8)

    Taking into account (2.8) and Lemma 1, we obtain

    |a2|=|b(λ+1)Aδ12kc1|2|b|(λ+1)Aδ12k (2.9)

    and

    |a3|=|b2(2λ+1)Aδ23k[c2c212+1+2b2c21]||b|2(2λ+1)Aδ23k[2|c21|2+|1+2b||c21|2]=|b|(2λ+1)Aδ23k[1+|c1|2+|1+2b|12]|b|(2λ+1)Aδ23kmax{1,[1+|1+2b|1]}.

    Thus, we have

    |a3||b|(2λ+1)Aδ23kmax{1,|1+2b|}.

    Then, with the aid of Lemma 1, we obtain

    |a3ηa22|=|b2(2λ+1)Aδ23k(bc21+c2)ηb2c21(λ+1)2A2δ122k||b|2(2λ+1)Aδ23k[|c2c212|+|c21|2|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]|b|2(2λ+1)Aδ23k[2|c21|2+|c21|2|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]=|b|(2λ+1)Aδ23k[1+|c21|4(|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|1)]|b|(2λ+1)Aδ23kmax{1,|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|}. (2.10)

    We now obtain sharpness of the estimates in (2.1), (2.2) and (2.3).

    Firstly, in (2.1) the equality holds if c1=2. Equivalently, we have p(z)p1(z)=(1+z)/(1z). Therefore, the extremal functions in Nk,δa(λ,b) is given by

    z(Fk,δλ,a(z))Fk,δλ,a(z)=1+(2b1)z1z. (2.11)

    Next, in (2.2), for first case, the equality holds if c1=c2=2. Therefore, the extremal functions in Nk,δa(λ,b) is given by (2.11) and for the second case, the equality holds if c1=0, c2=2. Equivalently, we have p(z)p2(z)=(1+z2)/(1z2). Therefore, the extremal functions in Nk,δa(λ,b) is given by

    z(Fk,δλ,a(z))Fk,δλ,a(z)=1+(2b1)z21z2. (2.12)

    Finally, in (2.3), the equality holds. Obtained extremal functions for (2.2) is also valid for (2.3).

    Thus, the proof of Theorem 1 is completed.

    Taking k=0 and λ=0 in Theorem 1, we have

    Corollary 1. [4] Let bC{0}, ηC, a>0 and δ0. If f of the form (1.1), is in N0,δa(0,b), then

    |a2|2|b|Aδ1,
    |a3||b|Aδ2max{1,|1+2b|}

    and

    |a3ηa22||b|Aδ2max{1,|1+2b4ηbAδ2A2δ1|}

    where A1=(aa+1) and A2=(aa+2).

    If we choose k=0 and λ=1 in Theorem 1, we get

    Corollary 2. [4] Let bC{0}, ηC, a>0 and δ0. If f of the form (1.1), is in N0,δa(1,b), then

    |a2||b|Aδ1,
    |a3||b|3Aδ2max{1,|1+2b|}

    and

    |a3ηa22||b|3Aδ2max{1,|1+2b3ηbAδ2A2δ1|}

    where A1=(aa+1) and A2=(aa+2).

    For k=0, δ=0, λ=0 and b=1 in (2.3), we obtain

    Corollary 3. [12] Let ηC. If f of the form (1.1), is in S(1), then

    |a3ηa22|max{1,|4η3|}.

    Taking k=0, δ=0, λ=1 and b=1 in (2.3), we have

    Corollary 4. [12] Let ηC. If f of the form (1.1), is in C(1), then

    |a3ηa22|max{13,|η1|}

    We next consider the case, when η and b are real. In this case, the following theorem holds.

    Theorem 2. Let b>0 and let Nk,δa(λ,b). Then for ηR, we have

    |a3ηa22|{b(2λ+1)Aδ23k{1+2b[12η(2λ+1)Aδ23k(λ+1)2A2δ122k]},ηM1,b(2λ+1)Aδ23k,M1ηM2,b(2λ+1)Aδ23k[4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k2b1],ηM2,

    where A1=(aa+1), A2=(aa+2), M1=(λ+1)2A2δ122k2(2λ+1)Aδ23k and M2=(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. For each η, the equality holds for the functions given in equations (2.4) and (2.5).

    Proof. First, let η(λ+1)2A2δ122k2(2λ+1)Aδ23k(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. In this case it follows from (2.8) and Lemma 1 that

    |a3ηa22|b2(2λ+1)Aδ23k[2|c21|2+|c21|2(1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k)]b(2λ+1)Aδ23k[1+2b(12η(2λ+1)Aδ23k(λ+1)2A2δ122k)].

    Let, now (λ+1)2A2δ122k2(2λ+1)Aδ23kη(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. Then, using the estimations obtained above we arrived

    |a3ηa22|b(2λ+1)Aδ23k.

    Finally, if η(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k, then

    |a3ηa22|b2(2λ+1)Aδ23k[2|c21|2+|c21|2(4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k12b)]=b2(2λ+1)Aδ23k[2+|c21|2(4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k22b)]b(2λ+1)Aδ23k[4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k2b1].

    Thus, the proof of Theorem 2 is completed.

    Taking k=0 and λ=0 in Theorem 2, we have

    Corollary 5. [4] Let b>0 and let N0,δa(0,b). Then for ηR, we have

    |a3ηa22|{bAδ2{1+2b(12ηAδ2A2δ1)},ηA2δ12Aδ2,bAδ2,A2δ12Aδ2η(1+2b)A2δ14bAδ2,bAδ2[4ηbAδ2A2δ12b1],η(1+2b)A2δ14bAδ2,

    where A1=(aa+1) and A2=(aa+2).

    Finally, considering the case of bC{0} and ηR, we obtain

    Theorem 3. Let bC{0} and let fNk,δa(λ,b). For ηR, we have

    |a3ηa22|{4|b|2(λ+1)2A2δ122k[(k1)η]+|b||sinθ|(2λ+1)Aδ23k,ifηT1,|b|(2λ+1)Aδ23k,ifT1ηT2,4|b|2(λ+1)2A2δ122k[η(k1)]+|b||sinθ|(2λ+1)Aδ23k,ifηT2,

    where A1=(aa+1) and A2=(aa+2), |b|=beiθ, k1=(λ+1)2A2δ122k2(2λ+1)Aδ23k+(λ+1)2A2δ122keiθ4|b|(2λ+1)Aδ23k, l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k, T1=(k1)l1(1|sinθ|) and T2=(k1)+l1(1|sinθ|). For each η there is a function in Nk,δa(λ,b) such that the equality holds.

    Proof. From inequality (2.10), we may write

    |a3ηa22|=|b|2(2λ+1)Aδ23k[|c2c212|+|c21|2|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]|b|2(2λ+1)Aδ23k[2|c21|2+|c21|2|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]=|b|2(2λ+1)Aδ23k[|c21|2(|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|1)+2]=|b|(2λ+1)Aδ23k+|b|4(2λ+1)Aδ23k[|4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k2b1|1]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k×[|η(λ+1)2A2δ122k2(2λ+1)Aδ23k(λ+1)2A2δ122k4b(2λ+1)Aδ23k|(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k]|c21|.

    If we write |b|=beiθ (or b=|b|eiθ), k1=(λ+1)2A2δ122k2(2λ+1)Aδ23k+(λ+1)2A2δ122keiθ4|b|(2λ+1)Aδ23k and l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in the last inequality, we get

    |a3ηa22||b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|ηk1|l1]|c21||b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|η(k1)|+l1|sinθ|l1]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|η(k1)|l1(1|sinθ|)]|c21|. (2.13)

    We consider the following cases for (2.13). Suppose η(k1). Then 

    |a3ηa22||b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[(k1)l1(1|sinθ|)η]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[T1η]|c21|. (2.14)

    Let ηT1=(k1)l1(1|sinθ|). On using Lemma 1 and l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in inequality (2.14), we get

    |a3ηa22||b|(2λ+1)Aδ23k+4|b|2(λ+1)2A2δ122k((k1)η)|b|(2λ+1)Aδ23k(1|sinθ|)=4|b|2(λ+1)2A2δ122k((k1)η)+|b||sinθ|(2λ+1)Aδ23k.

    If we take T1=(k1)l1(1|sinθ|)η(k1), then (2.14) gives

    |a3ηa22||b|(2λ+1)Aδ23k.

    Let η(k1). It then follows, from (2.13), that

    |a3ηa22||b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[η(k1)+l1(1|sinθ|)]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[ηT1]|c21|. (2.15)

    Let  ηT2=(k1)+l1(1|sinθ|). On using (2.15) we obtain

    |a3ηa22||b|(2λ+1)Aδ23k.

    Let ηT2=(k1)+l1(1|sinθ|). Employing Lemma 1 together with l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in equality (2.15), we obtain

    |a3ηa22||b|(2λ+1)Aδ23k+4|b|2(λ+1)2A2δ122k(η(k1))|b|(2λ+1)Aδ23k(1|sinθ|)4|b|2(λ+1)2A2δ122k(η(k1))+|b||sinθ|(2λ+1)Aδ23k.

    Therefore, the proof is completed.

    Corollary 6. If we take a=1 in Theorems 2.1-2.3, we have the following results, respectively:

    1. Let bC{0} and fNk,δ1(λ,b). Then, for ηC, we have

    |a2||b|(λ+1)2kδ1,
    |a3||b|(2λ+1)3kδmax{1,|1+2b|}

    and

    |a3ηa22||b|(2λ+1)3kδmax{1,|1+2b4ηb(2λ+1)(λ+1)2(34)kδ|}.

    Equality holds for the cases a=1 of (2.4) and (2.5) in Theorem 2.1.

    2. Let b>0 and fNk,δ1(λ,b).Then, for ηR, we have

    |a3ηa22|{b(2λ+1)3kδ{1+2b[12η(2λ+1)(λ+1)2(34)kδ]},ifηY1,b(2λ+1)3kδ,ifY1ηY2,b(2λ+1)3kδ[4ηb(2λ+1)(λ+1)2(34)kδ2b1],ifηY2,

    where Y1=(λ+1)22(2λ+1)(43)kδ and Y2=(1+2b)(λ+1)24b(2λ+1)(43)kδ. For each η, the equality holds for the cases a=1 of (2.4) and (2.5).

    3. Let bC{0} and fNk,δ1(λ,b). Then, for ηR, we have

    |a3ηa22|{|b|2(λ+1)24kδ1[(k1)η]+|b||sinθ|(2λ+1)3kδ,ifηT1,b(2λ+1)3kδ,ifT1ηT2,|b|2(λ+1)24kδ1[η(k1)]+|b||sinθ|(2λ+1)3kδ,ifηT2,

    where |b|=beiθ, k1=(λ+1)22(2λ+1)(43)kδ(43)kδ(λ+1)2eiθ4|b|(2λ+1), l1=(43)kδ(λ+1)24|b|(2λ+1), T1=(k1)l1(1|sinθ|) and T2=(k1)+l1(1|sinθ|). For each η there is a function in Nk,δ1(λ,b) such that the equality holds.

    The authors would like to thank the anonymous referees for the useful improvements suggested.

    All authors declare no conflicts of interest.



    [1] L. Accardi, Noncommutative Markov chains, Proc. Int. Sch. Math. Phys., 1974,268–295.
    [2] L. Accardi, A. Frigerio, Markovian cocycles, Proc. R. Ir. Acad., 83 (1983), 251–263.
    [3] L. Accardi, F. Mukhamedov, A. Souissi, Construction of a new class of quantum Markov fields, Adv. Oper. Theory, 1 (2016), 206–218. https://doi.org/10.22034/aot.1610.1031 doi: 10.22034/aot.1610.1031
    [4] L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree Ⅰ: niqueness of the associated chain with XY-model on the Cayley tree of order two, Inf. Dimens. Anal., 14 (2011), 443–463. https://doi.org/10.1142/S021902571100447X doi: 10.1142/S021902571100447X
    [5] L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree Ⅱ: phase transitions for the associated chain with XY-model on the Cayley tree of order three, Ann. Henri Poincaré, 12 (2011), 1109–1144. https://doi.org/10.1007/s00023-011-0107-2 doi: 10.1007/s00023-011-0107-2
    [6] L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree Ⅲ: Ising model, J. Stat. Phys., 157 (2014), 303–329. https://doi.org/10.1007/s10955-014-1083-y doi: 10.1007/s10955-014-1083-y
    [7] L. Accardi, A. Souissi, E. G. Soueidy, Quantum Markov chains: a unification approach, Inf. Dimens. Anal., 23 (2020), 2050016. https://doi.org/10.1142/S0219025720500162 doi: 10.1142/S0219025720500162
    [8] L. Accardi, Y. G. Lu, A. Souissi, A Markov–Dobrushin inequality for quantum channels, Open Sys. Inf. Dyn., 28 (2021), 2150018. https://doi.org/10.1142/S1230161221500189 doi: 10.1142/S1230161221500189
    [9] L. Accardi, H. Ohno, F. Mukhamedov, Quantum Markov fields on graphs, Inf. Dimens. Anal., 13 (2010), 165–189. https://doi.org/10.1142/S0219025710004000 doi: 10.1142/S0219025710004000
    [10] L. Accardi, F. Fagnola, Quantum interacting particle systems, World Scientific, 2002.
    [11] S. Attal, F. Petruccione, C. Sabot, I. Sinayskiy, Open quantum random walks, J. Stat. Phys., 147 (2012), 832–852. https://doi.org/10.1007/s10955-012-0491-0 doi: 10.1007/s10955-012-0491-0
    [12] O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics I, Springer Verlag, 1987.
    [13] A. Barhoumi, A. Souissi, Recurrence of a class of quantum Markov chains on trees, Chaos Solitons Fract., 164 (2022), 112644. https://doi.org/10.1016/j.chaos.2022.112644 doi: 10.1016/j.chaos.2022.112644
    [14] R. Carbone, Y. Pautrat, Open quantum random walks: reducibility, period, ergodic properties, Ann. Henri Poincaré, 17 (2016), 99–135.
    [15] J. I. Cirac, D. Perez-Garcia, N. Schuch, F. Verstraete, Matrix product unitaries, structure, symmetries, and topological invariants, J. Stat. Mech. Theory Exp., 2017 (2017), 083105. https://doi.org/10.1088/1742-5468/aa7e55 doi: 10.1088/1742-5468/aa7e55
    [16] A. Dhahri, F. Mukhamedov, Open quantum random walks, quantum Markov chains and recurrence, Rev. Math. Phys., 31 (2019), 1950020. https://doi.org/10.1142/S0129055X1950020X doi: 10.1142/S0129055X1950020X
    [17] F. Fidaleo, Fermi Markov states, J. Oper. Theory, 66 (2011), 385–414.
    [18] F. Fidaleo, F. Mukhamedov, Diagonalizability of non homogeneous quantum Markov states and associated von Neumann algebras, arXiv, 24 (2004), 401–418. https://doi.org/10.48550/arXiv.math/0411200 doi: 10.48550/arXiv.math/0411200
    [19] M. Fannes, B. Nachtergaele, R. F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys., 144 (1992), 443–490. https://doi.org/10.1007/BF02099178 doi: 10.1007/BF02099178
    [20] M. Fannes, B. Nachtergaele, R. F. Werner, Ground states of VBS models on Cayley trees, J. Stat. Phys., 66 (1992), 939–973. https://doi.org/10.1007/BF01055710 doi: 10.1007/BF01055710
    [21] Y. Feng, N. Yu, M. Ying, Model checking quantum Markov chains, J. Comput. Sys. Sci., 79 (2013), 1181–1198. https://doi.org/10.1016/j.jcss.2013.04.002 doi: 10.1016/j.jcss.2013.04.002
    [22] J. A. Hartigan, Statistical theory in clustering, J. Classif., 2 (1985), 63–76. https://doi.org/10.1007/BF01908064 doi: 10.1007/BF01908064
    [23] V. Liebscher, Markovianity of quantum random fields, Quantum Probab. White Noise Anal., 15 (2003), 151–159. https://doi.org/10.1142/9789812704290-0011 doi: 10.1142/9789812704290-0011
    [24] A. Mohari, Spontaneous SU2(C) symmetry breaking in the ground states of quantum spin chain, J. Math. Phys., 59 (2018), 111701. https://doi.org/10.1063/1.5078597 doi: 10.1063/1.5078597
    [25] F. Mukhamedov, S. El Gheteb, Uniqueness of quantum Markov chain associated with XY-Ising model on the Cayley tree of order two, Open Syst. Inf. Dyn., 24 (2017), 175010. https://doi.org/10.1142/S123016121750010X doi: 10.1142/S123016121750010X
    [26] F. Mukhamedov, S. El Gheteb, Clustering property of quantum Markov chain associated to XY-model with competing Ising interactions on the Cayley tree of order two, Math. Phys. Anal. Geom., 22 (2019), 10. https://doi.org/10.1007/s11040-019-9308-6 doi: 10.1007/s11040-019-9308-6
    [27] F. Mukhamedov, S. El Gheteb, Factors generated by XY-model with competing Ising interactions on the Cayley tree, Ann. Henri Poincaré, 21 (2020), 241–253. https://doi.org/10.1007/s00023-019-00853-9 doi: 10.1007/s00023-019-00853-9
    [28] F. Mukhamedov, A. Barhoumi, A. Souissi, Phase transitions for quantum Markov chains associated with Ising type models on a Cayley tree, J. Stat. Phys., 163 (2016), 544–567. https://doi.org/10.1007/s10955-016-1495-y doi: 10.1007/s10955-016-1495-y
    [29] F. Mukhamedov, A. Barhoumi, A. Souissi, On an algebraic property of the disordered phase of the Ising model with competing interactions on a Cayley tree, Math. Phys. Anal. Geom., 19 (2016), 21. https://doi.org/10.1007/s11040-016-9225-x doi: 10.1007/s11040-016-9225-x
    [30] F. Mukhamedov, A. Barhoumi, A. Souissi, S. El Gheteb, A quantum Markov chain approach to phase transitions for quantum Ising model with competing XY-interactions on a Cayley tree, J. Math. Phys., 61 (2020), 093505. https://doi.org/10.1063/5.0004889 doi: 10.1063/5.0004889
    [31] F. Mukhamedov, U. Rozikov, On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras, J. Stat. Phys., 114 (2004), 825–848. https://doi.org/10.1023/B:JOSS.0000012509.10642.83 doi: 10.1023/B:JOSS.0000012509.10642.83
    [32] F. Mukhamedov, U. A. Rozikov, On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras Ⅱ, J. Stat. Phys., 119 (2005), 427–446. https://doi.org/10.1007/s10955-004-2056-3 doi: 10.1007/s10955-004-2056-3
    [33] F. Mukhamedov, A. Souissi, Types of factors generated by quantum Markov states of Ising model with competing interactions on the Cayley tree, Inf. Dimens. Anal., 23 (2020), 2050019. https://doi.org/10.1142/S0219025720500198 doi: 10.1142/S0219025720500198
    [34] F. Mukhamedov, A. Souissi, Quantum Markov states on Cayley trees, J. Math. Anal. Appl., 473 (2019), 313–333. https://doi.org/10.1016/j.jmaa.2018.12.050 doi: 10.1016/j.jmaa.2018.12.050
    [35] F. Mukhamedov, A. Souissi, Diagonalizability of quantum Markov states on trees, J. Stat. Phys., 182, (2021), 9. https://doi.org/10.1007/s10955-020-02674-1 doi: 10.1007/s10955-020-02674-1
    [36] F. Mukhamedov, A. Souissi, Refinement of quantum Markov states on trees, J. Stat. Mech., 2021 (2021), 083103. https://doi.org/10.1088/1742-5468/ac150b doi: 10.1088/1742-5468/ac150b
    [37] F. Mukhamedov, A. Souissi, Entropy for quantum Markov states on trees, J. Stat. Mech., 2022 (2022), 093101. https://doi.org/10.1088/1742-5468/ac8740 doi: 10.1088/1742-5468/ac8740
    [38] F. Mukhamedov, A. Souissi, T. Hamdi, Quantum Markov chains on comb graphs: Ising model, Proc. Steklov Inst. Math., 313 (2021), 178–192. https://doi.org/10.1134/S0081543821020176 doi: 10.1134/S0081543821020176
    [39] F. Mukhamedov, A. Souissi, T. Hamdi, Open quantum random walks and quantum Markov chains on trees Ⅰ: phase transitions, Open Syst. Inf. Dyn., 29 (2022), 2250003. https://doi.org/10.1142/S1230161222500032 doi: 10.1142/S1230161222500032
    [40] F. Mukhamedov, A. Souissi, T. Hamdi, A. A. Andolsi, Open quantum random walks and quantum Markov chains on trees Ⅱ: the recurrence, arXiv, 2022. https://doi.org/10.48550/arXiv.2208.04320 doi: 10.48550/arXiv.2208.04320
    [41] R. Orús, A practical introduction of tensor networks: matrix product states and projected entangled pair states, Ann. Phys., 349 (2014), 117–158. https://doi.org/10.1016/j.aop.2014.06.013 doi: 10.1016/j.aop.2014.06.013
    [42] S. Rommer, S. Ostlund, A class of ansatz wave functions for 1D spin systems and their relation to DMRG, Phys. Rev., 55 (1997), 2164. https://doi.org/10.1103/PhysRevB.55.2164 doi: 10.1103/PhysRevB.55.2164
    [43] P. Singh, S. S. Bose, A quantum-clustering optimization method for COVID-19 CT scan image segmentation, Expert Syst. Appl., 185 (2021), 115637. https://doi.org/10.1016/j.eswa.2021.115637 doi: 10.1016/j.eswa.2021.115637
    [44] A. Souissi, A class of quantum Markov fields on tree-like graphs: Ising-type model on a Husimi tree, Open Syst. Inf. Dyn., 28 (2021), 2150004. https://doi.org/10.1142/S1230161221500049 doi: 10.1142/S1230161221500049
    [45] A. Souissi, On stopping rules for tree-indexed quantum Markov chains, Inf. Dim. Anal., (2022). https://doi.org/10.1142/S0219025722500308 doi: 10.1142/S0219025722500308
    [46] A. Souissi, M. Mukhamedov, A. Barhoumi, Tree-homogeneous quantum Markov chains, Int. J. Theor. Phys., 62 (2023), 19. https://doi.org/10.1007/s10773-023-05276-1 doi: 10.1007/s10773-023-05276-1
    [47] O. R. Zaïane, A. Foss, C. H. Lee, W. Wang, On data clustering analysis: scalability, constraints, and validation, Adv. Knowl. Discovery Data Min., 28 (2022), 2030. https://doi.org/10.1007/3-540-47887-6-4 doi: 10.1007/3-540-47887-6-4
  • This article has been cited by:

    1. Kolade M. Owolabi, Sonal Jain, Edson Pindza, Eben Mare, Comprehensive Numerical Analysis of Time-Fractional Reaction–Diffusion Models with Applications to Chemical and Biological Phenomena, 2024, 12, 2227-7390, 3251, 10.3390/math12203251
    2. Lin Qiu, Yanjie Wang, Yan Gu, Qing-Hua Qin, Fajie Wang, Adaptive physics-informed neural networks for dynamic coupled thermo-mechanical problems in large-size-ratio functionally graded materials, 2024, 0307904X, 115906, 10.1016/j.apm.2024.115906
    3. Lin Qiu, Fajie Wang, Wenzhen Qu, Ji Lin, Yan Gu, Qing‐Hua Qin, A Hybrid Collocation Method for Long‐Time Simulation of Heat Conduction in Anisotropic Functionally Graded Materials, 2025, 126, 0029-5981, 10.1002/nme.70002
    4. Lin Qiu, Fajie Wang, Yingjie Liang, Qing-Hua Qin, Physics-informed radial basis function network based on Hausdorff fractal distance for solving Hausdorff derivative elliptic problems, 2025, 183, 08981221, 271, 10.1016/j.camwa.2025.02.012
    5. Chih-Yu Liu, Cheng-Yu Ku, Wei-Da Chen, Ying-Fan Lin, Jun-Hong Lin, Solving Inverse Wave Problems Using Spacetime Radial Basis Functions in Neural Networks, 2025, 13, 2227-7390, 725, 10.3390/math13050725
    6. Hao Chang, Fajie Wang, Xingxing Yue, Lin Qiu, Linlin Sun, A 2.5D Generalized Finite Difference Method for Elastic Wave Propagation Problems, 2025, 13, 2227-7390, 1249, 10.3390/math13081249
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1558) PDF downloads(76) Cited by(6)

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog