Starting from a 3×3 matrix spectral problem and the characteristic polynomial of the Lax matrix, we propose a trigonal curve, the associated meromorphic functions and three kinds of Abelian differentials. By discussing the asymptotic properties for the Baker-Akhiezer functions and their Riemann theta function expressions, we get quasi-periodic solutions of the three-component Burgers hierarchy. Finally, we straighten out the three-component Burgers flows.
Citation: Wei Liu, Xianguo Geng, Bo Xue. Quasi-periodic solutions of three-component Burgers hierarchy[J]. AIMS Mathematics, 2023, 8(11): 27742-27761. doi: 10.3934/math.20231420
[1] | Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426 |
[2] | Haihua Lu, Tianjue Shi . Multiple periodic solutions of parameterized systems coupling asymmetric components and linear components. AIMS Mathematics, 2025, 10(4): 8988-9010. doi: 10.3934/math.2025412 |
[3] | Ayman Elsharkawy, Clemente Cesarano, Abdelrhman Tawfiq, Abdul Aziz Ismail . The non-linear Schrödinger equation associated with the soliton surfaces in Minkowski 3-space. AIMS Mathematics, 2022, 7(10): 17879-17893. doi: 10.3934/math.2022985 |
[4] | Min Zhang, Yi Wang, Yan Li . Reducibility and quasi-periodic solutions for a two dimensional beam equation with quasi-periodic in time potential. AIMS Mathematics, 2021, 6(1): 643-674. doi: 10.3934/math.2021039 |
[5] | Liangying Miao, Zhiqian He . Reversed S -shaped connected component for second-order periodic boundary value problem with sign-changing weight. AIMS Mathematics, 2020, 5(6): 5884-5892. doi: 10.3934/math.2020376 |
[6] | Baiying He, Siyu Gao . The nonisospectral integrable hierarchies of three generalized Lie algebras. AIMS Mathematics, 2024, 9(10): 27361-27387. doi: 10.3934/math.20241329 |
[7] | Zhongqian Wang, Dan Liu, Mingliang Song . Existence of three periodic solutions for a quasilinear periodic boundary value problem. AIMS Mathematics, 2020, 5(6): 6061-6072. doi: 10.3934/math.2020389 |
[8] | Xin Liu, Yan Wang . Averaging principle on infinite intervals for stochastic ordinary differential equations with Lévy noise. AIMS Mathematics, 2021, 6(5): 5316-5350. doi: 10.3934/math.2021314 |
[9] | Junjie Li, Gurpreet Singh, Onur Alp İlhan, Jalil Manafian, Yusif S. Gasimov . Modulational instability, multiple Exp-function method, SIVP, solitary and cross-kink solutions for the generalized KP equation. AIMS Mathematics, 2021, 6(7): 7555-7584. doi: 10.3934/math.2021441 |
[10] | Asif Khan, Tayyaba Akram, Arshad Khan, Shabir Ahmad, Kamsing Nonlaopon . Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with nonsingular kernels. AIMS Mathematics, 2023, 8(1): 1251-1268. doi: 10.3934/math.2023063 |
Starting from a 3×3 matrix spectral problem and the characteristic polynomial of the Lax matrix, we propose a trigonal curve, the associated meromorphic functions and three kinds of Abelian differentials. By discussing the asymptotic properties for the Baker-Akhiezer functions and their Riemann theta function expressions, we get quasi-periodic solutions of the three-component Burgers hierarchy. Finally, we straighten out the three-component Burgers flows.
It is well known that quasi-periodic solutions of integrable dynamical systems can not only describe periodic nonlinear behavior, but they can also show characteristics of Liouville integrability [1,2,3,4,5]. Therefore, constructing quasi-periodic solutions for integrable nonlinear equations is a hot topic in the field of modern mathematical and theoretical physics. In the past decades, several systematic approaches have been used to study quasi-periodic solutions for nonlinear integrable models [6,7,8,9,10,11,12]. The successful idea is to use the hyperelliptic curves, and finite-genus solutions of nonlinear equations related to 2×2 matrix spectral problems have been derived [2,3,6,7,8,9,10,11,12,13,14,15,16,17]. But, this method is invalid to solve higher-order matrix spectral problems. In Refs. [18,19], a unified work was given to study the algebro-geometric solutions to the Boussinesq equations associated with a third-order spectral problem. After that, according to the characteristic polynomial of the Lax matrix, Geng and colleagues [20,21] developed a general approach to handle the case of the 3×3 matrix spectral problem by introducing trigonal curves. Using this method, quasi-periodic solutions for some famous equations, such as the Manakov, the cmKdV, the modified Boussinesq, the coupled Sasa-Satsuma, the Dym-type equations and so on [22,23,24,25,26], were successfully generalized.
Recently, in Ref. [27], three-component Burgers hierarchy was derived, and its bi-Hamiltonian structures were discussed. The first member in the whole hierarchy is
ut=3wxx−uwx−uxw+2vx,vt=2wxxx−2uwxx+vxx−vxw−2vwx−uvx,wt=−wxx−uwx−uxw−4wwx, | (1.1) |
which can be reduced to the well-known Burgers equation [28]
ut=uxx−uux. |
During the past few decades, there have been some remarkable works on the Burgers equation due to its prominent mathematical structures and physical properties. The Darboux transformation for the generalized Burgers equation was constructed based on the Lax pairs [29]. Quasi-periodic solutions for the 2+1 dimensional discrete Burgers equation were proposed in view of the Jacobi inversion [30]. The Cole-Hopf transformation were used to generate the multiple-front solutions for the coupled Burgers equation [31].
The purpose of this paper is to study quasi-periodic solutions of three-component Burgers flows. By means of the asymptotic expansions and Abelian differentials, we deduce the theta function expressions of the potential functions. In Section 2, we first list the recursion relations of the three-component Burgers equation; then, we define a trigonal curve Km−2 based on the characteristic polynomial of the Lax matrix. By adding two different infinite points, the curve Km−2 is compactified. In Section 3, we discuss the asymptotic behaviors of the meromorphic functions ϕ2 and ϕ3. Section 4 is devoted to discussing the divisors of ϕ2,ϕ3, which can reveal essential singularities. In Section 5, we derive the theta function solutions of ψ1,ϕ2,ϕ3 by using the Abelian differentials inferred in Section 3. Especially, we generate the quasi-periodic solutions of the three-component Burgers hierarchy.
The main idea of this section is to define a trigonal curve Km−2 related to the three-component Burgers hierarchy. We first list some necessary results from Ref. [27] to make this paper easier to read. We define the Lenard recurrence relations
Kˆgj=Jˆgj+1, Kˇgj=Jˇgj+1, j≥0, | (2.1) |
and K,J are two 3×3 operators
K=(∂u−3∂22∂v+2u∂2+2ux∂−2∂30K21K220∂w+2w∂K32∂3+∂u∂−v∂),J=(0−2∂−3∂−2∂J222u∂00∂), | (2.2) |
ˆg0=(−w,1,0)T,ˇg0=(1,0,0)T, | (2.3) |
where
K21=vx+2v∂+2u∂2−2∂3,K22=∂2u∂+u∂3−u∂u∂+∂2v−uv∂−uvx−∂4,K32=w∂2−2uw∂−(uw)x−∂2w,J22=−∂2−w∂−2∂w+u∂. |
The recursion relations given by (2.1) can be uniquely solved. So, we have
ˆg1=(ˆg(1)1,3w2+2uw−v,−(wx+uw+2w2))T,ˇg1=(ˇg(1)1,−12u−32w,w)T, | (2.4) |
with
ˆg(1)1=−wxx−uwx−uxw+2vw−3uw2−3wwx−4w3, |
ˇg(1)1=34uw−12v+34wx+14ux−18u2+158w2. |
Now, we discuss the zero-curvature equation
Vx−[U,V]=0, | (2.5) |
where
U=(010λ+vuλw00),V=(Vij)3×3=(V11V12λV13V21V22λV23V31V32λV33), |
with λ as a constant spectral parameter; also, u(x,t),v(x,t) and w(x,t) are three potentials. Each entry Vij(a,b,c) is defined as follows:
V11=−2∂a+(v+u∂−∂2)b+λ(b+c),V12=a,V13=b,V21=(v−2∂2)a+(∂v+∂u∂−∂3)b+λ(a+wb+∂b+∂c),V22=(u−∂)a+(v+u∂−∂2)b+λ(b+c),V23=a+∂b,V31=wa−(uw+∂w)b+(u∂+∂2)c,V32=wb−∂c,V33=c. | (2.6) |
From (2.5) and (2.6), we obtain
KG=λJG,G=(a,b,c)T. | (2.7) |
Set
G=∑j≥0Gjλ−j,Gj=(aj,bj,cj)T; | (2.8) |
then,
Gj=α0ˆgj+β0ˇgj+α1ˆgj−1+β1ˇgj−1+⋯+αjˆg0+βjˇg0+γjˉg0,j≥0, | (2.9) |
satisfies
KGj=JGj+1,JG0=0, | (2.10) |
for ˉg0=(0,0,1)T∈kerK∩kerJ; also, αj,βj and γj are arbitrary constants.
In order to generate the three-component Burgers hierarchy, we set
˜Gj=˜α0ˆgj+˜β0ˇgj+˜α1ˆgj−1+˜β1ˇgj−1+⋯+˜αjˆg0+˜βjˇg0≜(˜aj,˜bj,˜cj)T,j≥0, |
and give the following Lax pairs
{ψx=Uψ,ψ=(ψ1,ψ2,ψ3)T,ψtr=(Vij(˜a(r),˜b(r),˜c(r)))3×3ψ, | (2.11) |
where
˜a(r)=r∑j=0˜ajλr−j,˜b(r)=r∑j=0˜bjλr−j,˜c(r)=r∑j=0˜cjλr−j, | (2.12) |
with ˜αj,˜βj as arbitrary constants independent of αj,βj. The compatible condition of (2.11) implies that Utr−˜V(r)x+[U,˜V(r)]=0 is equivalent to the following three-component Burgers equations:
(utr,vtr,wtr)T=K˜Gr=J˜Gr+1,r≥0. | (2.13) |
Next, we define a Lax matrix V(n)=(λnV)+=(V(n)ij(aj,bj,cj))3×3, and
V(n)x−[U,V(n)]=0, | (2.14) |
V(n)tr−[˜V(r),V(n)]=0. | (2.15) |
So, the characteristic polynomial of Vn is independent of (x,tr). Moreover, we have
det(yI−V(n))=y3−y2Rm(λ)+ySm(λ)−Tm(λ), | (2.16) |
where Rm,Sm, Tm are polynomials of λ:
Rm=V(n)11+V(n)22+λV(n)33=(2α0+3γ0)λn+1+(2α1+3γ1)λn+⋯,Sm=|V(n)11V(n)12V(n)21V(n)22|+|V(n)11λV(n)13V(n)31λV(n)33|+|V(n)22λV(n)23V(n)32λV(n)33|=(α20+4α0γ0+3γ20)λ2n+2+⋯,Tm=det(V(n))=λ[(α0+γ0)2γ0λ3n+2+⋯]. | (2.17) |
Hence, (2.16) leads to a trigonal curve Km−2:
Km−2:Fm(λ,y)=y3−y2Rm+ySm−Tm=0. | (2.18) |
The discriminant of (2.18) is
Δ(λ)=4S3m−R2mS2m−18RmSmTm+27T2m+4R3mTm=−4α40β20λ6n+5+⋯; |
here, we assume that α0β0γ0(α0+γ0)≠0 and Km−2 is nonsingular. So Km−2 can be compactified by adding the infinite point P∞1 and the double branch point P∞2. In our paper, the compactification of Km−2 is still expressed by this symbol. Then, Km−2 becomes a three-sheeted Riemann surface, and its genus is 3n+1. Each point P=(λ,y)∈Km−2 satisfies (2.18), along with P∞1 and P∞2.
We asumme that P,P∗,P∗∗ are three points on three different sheets of Km−2. Set yi(λ), i=0,1,2 to satisfy
(y−y0(λ))(y−y1(λ))(y−y2(λ))=y3−y2Rm+ySm−Tm=0. | (2.19) |
Using (2.19), we obtain
y0+y1+y2=Rm,y0y1+y1y2+y0y2=Sm,y20+y21+y22=R2m−2Sm,y0y1y2=Tm,y30+y31+y32=R3m−3RmSm+3Tm,y20y21+y20y22+y21y22=S2m−2RmTm. | (2.20) |
We shall discuss the asymptotic expansions of two associated meromorphic functions. Meanwhile, we introduce Abelian differentials to represent quasi-periodic solutions of the three-component Burgers hierarchy. First, the Baker-Akhiezer function ψ(P,x,x0,tr,t0,r) satisfies
V(n)(u(x,tr),v(x,tr),w(x,tr);λ(P))ψ(P,x,x0,tr,t0,r)=y(P)ψ(P,x,x0,tr,t0,r),ψx(P,x,x0,tr,t0,r)=U(u(x,tr),v(x,tr),w(x,tr);λ(P))ψ(P,x,x0,tr,t0,r),ψtr(P,x,x0,tr,t0,r)=˜V(r)(u(x,tr),v(x,tr),w(x,tr);λ(P))ψ(P,x,x0,tr,t0,r),ψ1(P,x0,x0,t0,r,t0,r)=1, x,tr∈C. | (3.1) |
And the meromorphic functions ϕ2(P,x,tr), ϕ3(P,x,tr) on Km−2 are respectively introduced as follows:
ϕ2(P,x,tr)=ψ2(P,x,x0,tr,t0,r)ψ1(P,x,x0,tr,t0,r),P∈Km−2, | (3.2) |
ϕ3(P,x,tr)=ψ3(P,x,x0,tr,t0,r)ψ1(P,x,x0,tr,t0,r),P∈Km−2. | (3.3) |
Expressions (3.1)–(3.3) imply that ϕ2 and ϕ3 satisfy the following Riccati-type equations
ϕ2,x+ϕ22−uϕ2−λϕ3−v−λ=0, | (3.4) |
ϕ3,x+ϕ2ϕ3−w=0. | (3.5) |
So, we can get the following lemma.
Lemma 3.1. Let P∈Km−2∖{P∞1,P∞2}; then,
ϕ2(P,x,tr)=ζ→0{−w+κ1,1ζ+O(ζ2), P→P∞1, ζ=λ−1,ζ−1+κ2,0+κ2,1ζ+κ2,2ζ2+O(ζ3), P→P∞2, ζ=λ−12, | (3.6) |
ϕ3(P,x,tr)=ζ→0{−1+χ1,1ζ+O(ζ2), P→P∞1, ζ=λ−1,wζ+χ2,2ζ2+χ2,3ζ3+O(ζ4), P→P∞2, ζ=λ−12, | (3.7) |
where
κ1,1=3wwx+(uw)x−wxx−vx−w3−uw2+vw,κ2,0=u+w2,κ2,1=v2−ux4−3wx4+(u+w)(u−3w)8,κ2,2=uxx8−vx4+7wxx8−uux8+5(uw)x8+15wwx8−wv2+w2(u+w)2,χ1,1=w2+uw−v−wx,χ2,2=−wx−uw+w22,χ2,3=wxx+uwx+3uxw4+9wwx4−wv2+w(u+w)(u+5w)8. |
Proof. Substituting the hypotheses
(1) ϕ2=ζ→0κ1,0+κ1,1ζ+O(ζ2),ϕ3=ζ→0χ1,0+χ1,1ζ+O(ζ2);(2) ϕ2=ζ→0κ1,−1ζ−1+κ2,0+κ2,1ζ+κ2,2ζ2+O(ζ3),ϕ3=ζ→0χ2,1ζ+χ2,2ζ2+χ2,3ζ3+O(ζ4); |
into (3.4) and (3.5), and by analyzing the coefficients of ζ, we prove the lemma.
Next, we study the asymptotic properties of ψ1 near P∞1 and P∞2. By means of the first two expressions of (3.1), we obtain
ψ1(P,x,x0,tr,t0,r)=exp(∫xx0ϕ2(P,x′,tr)dx′+∫trt0,rIr(P,x0,t′)dt′), | (3.8) |
with
Ir(P,x,tr)=˜V(r)11+˜V(r)12ϕ2+λ˜V(r)13ϕ3, | (3.9) |
which can imply the essential singularities of ψ1. We use the following symbols to represent the corresponding homogeneous case of ˜V(r)ij, that is to say,
ˉ˜V(r,1)ij=˜V(r)ij∣˜α0=1,˜α1=⋯=˜αr=˜β0=⋯=˜βr=0, | (3.10) |
ˉ˜V(r,2)ij=˜V(r)ij∣˜β0=1,˜α0=⋯=˜αr=˜β1=⋯=˜βr=0. | (3.11) |
So, we have
ˉI(ϵ)r(P,x,tr)=ˉ˜V(r,ϵ)11+ˉ˜V(r,ϵ)12ϕ2+λˉ˜V(r,ϵ)13ϕ3, ϵ=1,2. | (3.12) |
Especially,
ˉI(1)r(P,x,tr)={−ˆcr+1+O(ζ),P→P∞1,ζ−2r−2−ˆbr+1−ˆcr+1+O(ζ),P→P∞2. | (3.13) |
ˉI(2)r(P,x,tr)={−ˇcr+1+O(ζ),P→P∞1,ζ−2r−1−ˇbr+1−ˇcr+1+O(ζ),P→P∞2. | (3.14) |
In fact, consider that (r,ϵ)=(0,1), ˉ˜a(0,1)=−w,ˉ˜b(0,1)=1,ˉ˜c(0,1)=0, λ=ζ−1 denotes the local coordinate near P∞1 and λ=ζ−2 denotes the local coordinate near P∞2. When P→P∞1,
ˉI(1)0(P,x,tr)=−2ˉ˜a(0,1)x−ˉ˜b(0,1)xx+uˉ˜b(0,1)x+vˉ˜b(0,1)+ζ−1(ˉ˜b(0,1)+ˉ˜c(0,1))+ˉ˜a(0,1)ϕ2+ζ−1ˉ˜b(0,1)ϕ3=wx+2w2+uw+O(ζ)=−ˆc1+O(ζ), | (3.15) |
and, when P→P∞2,
ˉI(1)0(P,x,tr)=−2ˉ˜a(0,1)x−ˉ˜b(0,1)xx+uˉ˜b(0,1)x+vˉ˜b(0,1)+ζ−2(ˉ˜b(0,1)+ˉ˜c(0,1))+ˉ˜a(0,1)ϕ2+ζ−2ˉ˜b(0,1)ϕ3=ξ−2+wx+v−uw−w2+O(ζ)=ξ−2−ˆb1−ˆc1+O(ζ). | (3.16) |
So, as P→P∞1, one infers the following:
ˉI(1)r(P,x,tr)=∞∑j=0σjζj; | (3.17) |
as P→P∞1, we assume
ˉI(1)r(P,x,tr)=ζ−2r−2+∞∑j=0δjζj, | (3.18) |
and {σj(x,tr)},{δj(x,tr)},j∈N are some coefficients. Using (3.1), we obtain
ψ1,xψ1=ϕ2, | (3.19) |
ψ1,trψ1=˜V(r)11+˜V(r)22ϕ2+λ˜V(r)13ϕ3. | (3.20) |
Furthermore, we have
(ϕ2)tr=(˜V(r)11+˜V(r)22ϕ2+λ˜V(r)13ϕ3)x. | (3.21) |
When ˜α0=1,˜α1=⋯=˜αr=0 and ˜β0=⋯=˜βr=0, we arrive at
σ0,x=(κ1,0)tr,σj,x=(κ1,j)tr,δ0,x=(κ2,0)tr,δj,x=(κ2,j)tr,j=1,2,3…. | (3.22) |
Combining (2.5), (2.13) and Lemma 3.1, one gets
σ0,x=(−ˆcr+1)x,σ1,x=(wˆar+1+2ˆar+1,x+ˆbr+1,xx+wxˆbr+1−uwˆbr+1−w2ˆbr+1−ˆcr+2−uˆbr+1,x)x,δ0,x=−ˆbr+1,x−ˆcr+1,x,δ1,x=−ˆar+1,x−wxˆbr+1−wˆbr+1,x,δ2,x=(12ˆar+1,x−12wˆar+1+wxˆbr+1+12uwˆbr+1+12w2ˆbr+1+12ˆcr+2)x, | (3.23) |
from which it can be inferred that
σ0=−ˆcr+1,σ1=wˆar+1+2ˆar+1,x+ˆbr+1,xx+wxˆbr+1−uˆbr+1,x−uwˆbr+1−w2ˆbr+1−ˆcr+2,δ0=−ˆbr+1−ˆcr+1,δ1=−ˆar+1−wˆbr+1,δ2=12ˆar+1,x−12wˆar+1+wxˆbr+1+12uwˆbr+1+12w2ˆbr+1+12ˆcr+2. | (3.24) |
Furthermore,
ˉI(1)r+1=ˉ˜V(r+1,1)11+ˉ˜V(r+1,1)12ϕ2+λˉ˜V(r+1,1)13ϕ3=ζ−1ˉIr−2ˆar+1,x−ˆbr+1,xx+uˆbr+1,x+vˆbr+1+ζ−1(ˆbr+1+ˆcr+1)+ˆar+1ϕ2+ζ−1ˆbr+1ϕ3=−ˆcr+2+O(ζ),P→P∞1,ˉI(1)r+1=ˉ˜V(r+1,1)11+ˉ˜V(r+1,1)12ϕ2+λˉ˜V(r+1,1)13ϕ3=ζ−2ˉIr−2ˆar+1,x−ˆbr+1,xx+uˆbr+1,x+vˆbr+1+ζ−2(ˆbr+1+ˆcr+1)+ˆar+1ϕ2+ζ−2ˆbr+1ϕ3=ζ−2r−4−ˆbr+2−ˆcr+2+O(ζ),P→P∞2, | (3.25) |
so (3.13) holds. Equation (3.14) can be proved by using the same method.
By considering (3.13), (3.14) and (2.12), one infers the following:
Ir(P,x,tr)={−˜cr+1+O(ζ),P→P∞1,r∑l=0(˜αr−lζ−2l−2+˜βr−lζ−2l−1)−˜br+1−˜cr+1+˜αr+1+O(ζ),P→P∞2. | (3.26) |
Given those above preparations, the asymptotic expansions of ψ1 near P∞1 and P∞2 read as follows.
Lemma 3.2. Let P∈Km−2∖{P∞1, P∞2} and let (x,x0,tr,t0,r)∈C4; so,
ψ1(P,x,x0,tr,t0,r)=ζ→0{exp(Δ1+O(ζ)), P→P∞1,exp(ζ−1(x−x0)+(r∑l=0(˜αr−lζ−2(1+l)+˜βr−lζ−(1+2l))+˜αr+1)×(tr−t0,r)−12(Δ1+Δ2)+O(ζ)), P→P∞2, | (3.27) |
where
Δ1=∂−1w(x0,t0,r)−∂−1w(x,tr),Δ2=∂−1u(x0,t0,r)−∂−1u(x,tr), |
are two functions independent of variable x.
Regarding Km−2, one can choose the basis {aj,bj}m−2j=1 with the intersection numbers
aj∘ak=0,bj∘bk=0,aj∘bk=δj,k,j,k=1,…,m−2, |
Our basis is as follows
ϖl(P)=13y2−2yRm+Sm{λl−1dλ,1≤l≤1+2n,(y−13Rm)λl−2n−2dλ,2+2n≤l≤m−2. | (3.28) |
Let us construct the matrices A=(Ajk) and B=(Bjk) by respectively applying the following:
Ajk=∫akϖj,Bjk=∫bkϖj. | (3.29) |
Then, τ=A−1B is a symmetric matrix [32,33,34] and we denote C=A−1. If ϖl(P) takes the normalized basis ω_=(ω1,…,ωm−2) with
ωj=m−2∑l=1Cjlϖl, | (3.30) |
then ∫akωj=δjk and ∫bkωj=τjk, j,k=1,2,…,m−2. Utilizing (3.1) and (3.6)–(3.7), one gets the asymptotic properties of y(P):
y(P)=ζ→0{ζ−n−1(γ0+γ1ζ+O(ζ2)),as P→P∞1,ζ−2n−2(α0+γ0+β0ζ+(α1+γ1)ζ2+O(ζ3)),as P→P∞2. | (3.31) |
So,
ωj=ζ→0{(d(∞1)j,0+O(ζ))dζ, P→P∞1,(d(∞2)j,0+O(ζ))dζ, P→P∞2, | (3.32) |
where
d(∞1)j,0=−1α20Cj,2n+1−γ0α20Cj,m−2,d(∞2)j,0=−1α0β0Cj,2n+1−α0+γ0α0β0Cj,m−2. |
Moreover, ωj can be rewritten as
ωj=∞∑l=0ϱj,l(P∞s)ζldζ, P→P∞s,s=1,2, | (3.33) |
where ϱj,l(P∞s) represents constants.
Let ω(2)P∞2,j(P) (j≥2) be the normalized differential of the second kind, satisfying
ω(2)P∞2,j(P)=ζ→0(ζ−j+O(1))dζ, P→P∞2, | (3.34) |
with
∫akω(2)P∞2,j(P)=0,k=1,2,…,m−2. | (3.35) |
We introduce
Ω(2)2(P)=ω(2)P∞2,2(P), | (3.36) |
˜Ω(2)2r+3(P)=r∑l=0(2+2l)˜αr−lω(2)P∞2,3+2l(P)+r∑l=0(2l+1)˜βr−lω(2)P∞2,2+2l(P). | (3.37) |
Then, we have
∫PQ0Ω(2)2(P)={e(2)1(Q0)+O(ζ), P→P∞1,−ζ−1+e(2)2(Q0)+O(ζ), P→P∞2, | (3.38) |
∫PQ0˜Ω(2)2r+3(P)={˜e(2)1(Q0)+O(ζ), P→P∞1,−r∑l=0˜αr−lζ−2(1+l)−r∑l=0˜βr−lζ−(1+2l)+˜e(2)2(Q0)+O(ζ), P→P∞2, | (3.39) |
for some constants e(2)1,e(2)2,˜e(2)1,˜e(2)2 depending on the appropriately chosen point Q0. The associated b-periods are defined by
U_(2)2=(12πi∫b1Ω(2)2(P),…,12πi∫bm−2Ω(2)2(P)), | (3.40) |
˜U_(2)2r+3=(12πi∫b1˜Ω(2)2r+3(P),…,12πi∫bm−2˜Ω(2)2r+3(P)). | (3.41) |
By means of the relations between the second kind of differential and holomorphic differential ω_, we can respectively express the members U(2)2,k of U(2)2 and ˜U(2)2r+3,k of ˜U(2)2r+3 as follows:
U(2)2,k=ϱk,0(P∞2),˜U(2)2r+3,k=r∑l=0˜αr−lϱk,2l+1(P∞2)+r∑l=0˜βr−lϱk,2l(P∞2),k=1,…,m−2. | (3.42) |
We define the Abelian differential of the third kind, ω(3)Q1,Q2, on Km−2∖{Q1,Q2}, i.e.,
∫akω(3)Q1,Q2=0, ∫bkω(3)Q1,Q2=2πi∫Q1Q2ωk. | (3.43) |
In particular,
∫PQ0ω(3)P∞2,ˆν0=ζ→0{e1,∞1(Q0)+O(ζ),P→P∞1,−lnζ+e1,ˆν0(Q0)+ωˆν00ζ+O(ζ2),P→ˆν0,lnζ+e1,∞2(Q0)+O(ζ),P→P∞2, | (3.44) |
∫PQ0ω(3)P0,P∞2=ζ→0{e2,∞1(Q0)+ω∞10ζ+O(ζ2),P→P∞1,lnζ+e2,P0(Q0)+O(ζ),P→P0,−lnζ+e2,∞2(Q0)+ω∞20ζ+O(ζ2),P→P∞2, | (3.45) |
with integration constants e1,∞s(Q0), e2,∞s(Q0),e1,ˆν0(Q0),e2,P0(Q0) and s=1,2.
We will propose the divisors of two meromorphic functions ϕ2 and ϕ3. The definitions of the two meromorphic functions in (3.2) and (3.3) respectively imply that
ϕ2=yV(n)23+CmyV(n)13+Am=y2V(n)13−y(Am+V(n)13Rm)+BmEm−2=Fm−2y2V(n)23−y(Cm+V(n)23Rm)+Dm, | (4.1) |
ϕ3=yV(n)32+CmyV(n)12+Am=y2V(n)12−y(Am+V(n)12Rm)+Bm−λEm−2=Fm−2y2V(n)32−y(Cm+V(n)32Rm)+Dm, | (4.2) |
where
Am=−V(n)13V(n)22+V(n)12V(n)23,Bm=V(n)12(V(n)23V(n)11−V(n)13V(n)21)+λV(n)13(V(n)33V(n)11−V(n)13V(n)31),Cm=−V(n)11V(n)23+V(n)13V(n)21,Dm=λV(n)23(V(n)22V(n)33−V(n)23V(n)32)+V(n)21(V(n)13V(n)22−V(n)23V(n)12), | (4.3) |
Am=λ(V(n)13V(n)32−V(n)12V(n)33),Bm=V(n)12(V(n)22V(n)11−V(n)12V(n)21)+λV(n)13(V(n)11V(n)32−V(n)12V(n)31),Cm=V(n)12V(n)31−V(n)11V(n)32,Dm=λV(n)32(V(n)22V(n)33−V(n)32V(n)23)+λV(n)31(V(n)33V(n)12−V(n)13V(n)32), | (4.4) |
Em−2=λV(n)32(V(n)13)2−(V(n)12)2V(n)23+V(n)12V(n)13(V(n)22−λV(n)33),Fm−2=λ(V(n)23)2V(n)31+(V(n)11−λV(n)33)V(n)23V(n)21−V(n)13(V(n)21)2,Fm−2=V(n)21(V(n)32)2+(V(n)11−V(n)22)V(n)31V(n)32−V(n)12(V(n)31)2. | (4.5) |
By complex computation, we obtain
V(n)13Fm−2=V(n)23Dm−(V(n)23)2Sm−Cm(V(n)23Rm+Cm),AmFm−2=(V(n)23)2Tm+CmDm, | (4.6) |
V(n)23Em−2=V(n)13Bm−(V(n)13)2Sm−Am(V(n)13Rm+Am),CmEm−2=(V(n)13)2Tm+AmBm, | (4.7) |
V(n)23Bm+V(n)13Dm−V(n)13V(n)23Sm+AmCm=0,V(n)13V(n)23Tm+(V(n)23Sm−Dm)(V(n)13Rm+Am)+V(n)13CmSm−Bm(Cm+V(n)23Rm)=0,V(n)23Tm(Am+V(n)13Rm)+V(n)13CmTm+Em−2Fm−2−BmDm=0, | (4.8) |
V(n)12Fm−2=V(n)32Dm−(V(n)32)2Sm−Cm(V32Rm+Cm),AmFm−2=(V(n)32)2Tm+CmDm, | (4.9) |
−λV(n)32Em−2=V(n)12Bm−(V(n)12)2Sm−Am(V12Rm+Am),−λCmEm−2=(V(n)12)2Tm+AmBm, | (4.10) |
V(n)32Bm+V(n)12Dm−V(n)12V(n)32Sm+AmCm=0,V(n)12V(n)32Tm+(V(n)32Sm−Dm)(Am+V12Rm)+V(n)12CmSm=Bm(V32Rm+Cm),V(n)32Tm(Am+V12Rm)+V(n)12CmTm−λEm−2Fm−2−BmDm=0, | (4.11) |
Em−2,x=−uEm−2+(3Bm−2V(n)13Sm−RmAm),V(n)23Fm−2,x=((λ+v)V(n)23−V(n)21)(3Dm−2V(n)23Sm−RmCm)+(2uV(n)23+Rm−3V(n)22)Fm−2,Fm−2,x=−uFm−2+w(3Dm−2V(n)32Sm−RmCm). | (4.12) |
Due to the observation of (4.5), one infers that Em−2,Fm−2 and Fm−2 are polynomials of λ:
Em−2=α20β0m−2∏j=1(λ−μj(x,tr)), | (4.13) |
Fm−2=−α20β0wm−2∏j=0(λ−νj(x,tr)), | (4.14) |
Fm−2=α20β0w2m−2∏j=1(λ−ξj(x,tr)). | (4.15) |
As λ=μj(x,tr), we get
Em−2=(λ(V(n)13)2V(n)32+V(n)13V(n)12(V(n)22−λV(n)33)−V(n)23(V(n)12)2)=(V(n)13Am−V(n)12Am)=0, |
so we can define
ˆμj(x,tr)=(μj(x,tr),−Am(μj(x,tr),x,tr)V(n)12(μj(x,tr),x,tr)),ˆξj(x,tr)=(ξj(x,tr),−Cm(ξj(x,tr),x,tr)V(n)32(ξj(x,tr),x,tr)),ˆνj(x,tr)=(νj(x,tr),−Cm(νj(x,tr),x,tr)V(n)23(νj(x,tr),x,tr)), j=1,…,m−2. | (4.16) |
In fact, for λ=μj(x,tr), combining (4.7) and (4.13), we have
0=V(n)13Bm−(V(n)13)2Sm−Am(V(n)13Rm+Am),0=(V(n)13)2Tm+AmBm, |
that is,
(−AmV(n)13)3−(−AmV(n)13)2Rm+(−AmV(n)13)Sm−Tm=0, |
which means that
(y3−y2Rm+ySm−Tm)∣(λ,y)=(μj(x,tr),−Am(μj(x,tr),x,tr)V(n)12(μj(x,tr),x,tr))=0; |
so, the first definition of (4.16) is reasonable. Similarly, we can prove the others.
From (3.6), (3.7), (4.1) and (4.2), one infers that the divisors of ϕ2 and ϕ3 have the following respective forms:
(ϕ2(P,x,tr))=Dˆν0(x,tr),ˆν1(x,tr),…,ˆνm−2(x,tr)(P)−DP∞2,ˆμ1(x,tr),…,ˆμm−2(x,tr)(P), | (4.17) |
(ϕ3(P,x,tr))=DP∞2,ˆξ1(x,tr),…,ˆξm−2(x,tr)(P)−DP0,ˆμ1(x,tr),…,ˆμm−2(x,tr)(P). | (4.18) |
Next, our main purpose is to discuss the poles and zeros of ψ1 on Km−2∖{P∞1,P∞2}. Observing (4.1) and (4.2), one gets
ϕ2,tr(P,x,tr)=˜V(r)21+(˜V(r)22−˜V(r)11)ϕ2+λ˜V(r)23ϕ3−˜V(r)12ϕ22−λ˜V(r)13ϕ2ϕ3, | (4.19) |
ϕ3,tr(P,x,tr)=˜V(r)31+(λ˜V(r)33−˜V(r)11)ϕ3+˜V(r)32ϕ2−λ˜V(r)13ϕ23−˜V(r)12ϕ2ϕ3. | (4.20) |
Lemma 4.1. We suppose that (3.1) holds. Let (λ,x,tr)∈C3; then,
Em−2,tr(λ,x,tr)=˜V(r)12Em−2,x+(3˜V(r)11+u˜V(r)12−∂−1utr)Em−2−˜V(r)13(3Bm−2V(n)12Sm−RmAm),Fm−2,tr(λ,x,tr)=˜V(r)21V(n)23−λ˜V(r)23V(n)21(λ+v)V(n)23−vV(n)21Fm−2,x+(3V(n)22−∂−1utr)Fm−2+2u(λ˜V(r)23V(n)21−˜V(r)21V(n)23)+(Rm−3V(n)22)((λ+v)λV(r)23−V(r)21)(λ+v)V(n)23−V(n)21Fm−2,Fm−2,tr(λ,x,tr)=˜V(r)31V(n)32−˜V(r)32V(n)31wV(n)32Fm−2,x−∂−1utrFm−2+[3λ˜V(r)33V(n)32−3˜V(r)32V(n)33+Rm˜V(r)32V(n)32+u⋅˜V(r)31V(n)32−˜V(r)32V(n)31wV(n)32]Fm−2. | (4.21) |
Proof. Observing the compatibility condition given by (3.21), we have
(Em−2,xEm−2)tr=∂tr∂x(lnEm−2)=(ϕ2+ϕ∗2+ϕ∗∗2−u)tr=[3˜V(r)11+˜V(r)12(ϕ2+ϕ∗2+ϕ∗∗2)+λ˜V(r)13(ϕ3+ϕ∗3+ϕ∗∗3)]x−utr. |
That is to say,
∂tr(lnEm−2)=3˜V(r)11+˜V(r)12(ϕ2+ϕ∗2+ϕ∗∗2)+λ˜V(r)13(ϕ3+ϕ∗3+ϕ∗∗3)−∂−1xutr=3˜V(r)11+˜V(r)12×3Bm−2V(n)13Sm−RmAmEm−2+λ˜V(r)13×3Bm−2V(n)12Sm−RmAm−λEm−2−∂−1xutr, |
so we know that the first expression in (4.21) holds.
Furthermore, since
ϕ2ϕ∗2ϕ∗∗2=−Fm−2Em−2, |
differentiating the above equation with respect to the variable tr, one gets
(−Fm−2Em−2)tr=ϕ2ϕ∗2ϕ∗∗2(ϕ2,trϕ2+ϕ∗2,trϕ∗2+ϕ∗∗2,trϕ∗∗2)=−Fm−2Em−2[3(˜V(r)22−˜V(r)11)−˜V(r)12(ϕ2+ϕ∗2+ϕ∗∗2)−λ˜V(r)13(ϕ3+ϕ∗3+ϕ∗∗3)+˜V(r)21(1ϕ2+1ϕ∗2+1ϕ∗∗2)+λ˜V(r)23(ϕ3ϕ2+ϕ∗3ϕ∗2+ϕ∗∗3ϕ∗∗2)]=−Fm−2Em−2[3(˜V(r)22−˜V(r)11)−˜V(r)12×3Bm−2V(n)13Sm−RmAmEm−2−λ˜V(r)13×3Bm−2V(n)12Sm−RmAm−λEm−2+˜V(r)21×−(2uV(n)23+Rm−3V(n)22)Fm−2+V(n)23Fm−2,x[(λ+v)V(n)23−V(n)21]Fm−2+λ˜V(r)23×(2uV(n)21+(λ+v)(Rm−3V(n)22))Fm−2−V(n)21Fm−2,x((λ+v)V(n)23−V(n)21)Fm−2, | (4.22) |
which can yield the second expression in (4.21). By the same method, the third expression can be obtained.
By using (4.1), (4.2), (4.12), (4.16) and (4.21), one can compute
ϕ2(P,x,tr)=y2V(n)13−y(Am+V(n)13Rm)+BmEm−2=V(n)13y2−y(Am+V(n)13Rm)+13(Em−2,x+uEm−2+2V(n)13Sm+RmAm)Em−2=Em−2,x3Em−2+2V(n)13(3y2−2yRm+Sm)3Em−2+u3 =λ→μj−μj,xλ−μj+O(1) =λ→μj∂xln(λ−μj)+O(1). | (4.23) |
On the other hand,
˜V(r)11+˜V(r)12ϕ2+λ˜V(r)13ϕ3=1Em−2[13Em−2,tr+(˜V(r)12V(n)13−˜V(r)13V(n)12)(y2−yRm+23Sm)+13∂−1utrEm−2−(˜V(r)12Am−˜V(r)13Am)(y−13Rm)]=−μj,trλ−μj+O(1)=λ→μj∂trln(λ−μj)+O(1). | (4.24) |
Consequently,
ψ1(P,x,x0,tr,t0,r)=exp(∫xx0[ϕ2(P,x′,tr)]dx′+∫trt0,rIr(P,x0,t′)dt′)=λ−μj(x,tr)λ−μj(x0,t0,r)O(1)={(λ−μj(x0,t0,r))−1O(1),P→ˆμj(x0,t0,r)≠ˆμj(x,tr),(λ−μj(x,tr))O(1),P→ˆμj(x,tr)≠ˆμj(x0,t0,r),O(1),P→ˆμj(x,tr)=ˆμj(x0,t0,r), | (4.25) |
where O(1)≠0. So ˆμ1(x,tr),…,ˆμm−2(x,tr) are m−2 zeros of ψ1(P,x,x0,tr,t0,r), and ˆμ1(x0,t0,r), …,ˆμm−2(x0,t0,r) are m−2 poles of ψ1 on Km−2.
We will study the solutions for the three-component Burgers hierarchy in this section. The period lattice Tm−2 = {z_∈Cm−2∣z_=N_+M_τ,N_,M_∈Zm−2}. The Jacobian variety Jm−2 of Km−2 is defined by Cm−2/Tm−2. The Abel map A_:Km−2→Jm−2 is as follows:
A_(P)=(∫PQ0ω1,…,∫PQ0ωm−2)(modTm−2), | (5.1) |
and it can be extended to Div(Km−2):
A_(∑nkPk)=∑nkA_(Pk). | (5.2) |
Define
ρ_(1)(x,tr)=A_(m−2∑k=1ˆμk(x,tr))=m−2∑k=1∫ˆμk(x,tr)Q0ω_,ρ_(2)(x,tr)=A_(m−2∑k=1ˆνk(x,tr))=m−2∑k=1∫ˆνk(x,tr)Q0ω_,ρ_(3)(x,tr)=A_(m−2∑k=1ˆξk(x,tr))=m−2∑k=1∫ˆξk(x,tr)Q0ω_. |
Then, the Riemann theta function
θ(z_)=∑N_∈Zm−2exp{πi⟨N_τ,N_⟩+2πi⟨N_,z_⟩}, | (5.3) |
where ⟨⋅,⋅⟩ is the Euclidean scalar product and z_=(z1,…,zm−2)∈Cm−2.
For simplicity, we introduce a function z_:Km−2×σm−2Km−2→Cm−2,
z_(P,Q_)=Λ_−A_(P)+∑Q′∈Q_D(Q′)A_(Q′),P∈Km−2, Q_∈σm−2Km−2, |
in which the vector of the Riemann constant Λ_=(Λ1,…,Λm−2) only depends on Q0, and
Λj=12(1+τjj)−m−2∑l=1l≠j∫alωl(P)∫PQ0ωj,j=1,2,…,m−2; |
then,
θ(z_(P,Q_))=θ(Λ_−A_(P)+A_(Q)), P∈Km−2. |
Using the above preparations, we can give the solutions for the three-component Burgers hierarchy.
Theorem 5.1. Suppose that Km−2 is nonsingular and Ωμ⊆C2 is connected and open. Let (x,tr),(x0,t0,r)∈Ωμ and P∈Km−2∖{P∞1,P∞2}. If Dˆμ_(x,tr), Dˆξ_(x,tr) or Dˆν_(x,tr) is nonspecial, then
(i)
ϕ2(P,x,tr)=θ(z_(P∞2,ˆμ_(x,tr)))θ(z_(P,ˆμ_(x,tr)))θ(z_(P,ˆν_(x,tr)))θ(z_(P∞2,ˆν_(x,tr)))exp(e1,∞2(Q0)−∫PQ0ω(3)P∞2,ˆν0), | (5.4) |
ϕ3(P,x,tr)=−θ(z_(P∞1,ˆμ_(x,tr)))θ(z_(P,ˆμ_(x,tr)))θ(z_(P,ˆξ_(x,tr)))θ(z_(P∞1,ˆξ_(x,tr)))exp(e2,∞1(Q0)−∫PQ0ω(3)P0,P∞2); | (5.5) |
(ii)
u(x,tr)=2m−2∑j=1d(∞2)j,0∂∂zjlnθ(z_(P∞2,ˆξ_(x,tr)))θ(z_(P∞2,ˆμ_(x,tr)))+2ω∞20−w−2wxw, | (5.6) |
v(x,tr)=w2+uw−wx−ω∞10−m−2∑j=1d(∞1)j,0∂∂zjlnθ(z_(P∞1,ˆξ_(x,tr)))θ(z_(P∞1,ˆμ_(x,tr))), | (5.7) |
w(x,tr)=−θ(z_(P∞1,ˆμ_(x,tr)))θ(z_(P∞1,ˆξ_(x,tr)))θ(z_(P∞2,ˆξ_(x,tr)))θ(z_(P∞2,ˆμ_(x,tr)))exp(e2,∞1(Q0)−e2,∞2(Q0)); | (5.8) |
(iii)
ψ1(P,x,x0,tr,t0,r)=θ(z_(P,ˆμ_(x,tr)))θ(z_(P∞2,ˆμ_(x,tr)))θ(z_(P∞2,ˆμ_(x0,t0,r)))θ(z_(P,ˆμ_(x0,t0,r)))×exp((e(2)2(Q0)−∫PQ0Ω(2)2(P))(x−x0)−12(Δ1+Δ2)+(tr−t0,r)(˜e(2)2(Q0)−∫PQ0˜Ω(2)2r+3(P)+˜αr+1)). | (5.9) |
Proof. (ⅰ) From (4.17), we can know that ˆμ1,…,ˆμm−2, P∞2 are simple poles of ϕ2 and ˆν0,ˆν1,…,ˆνm−2 are simple poles of ϕ2. So, one infers the following:
ϕ2(P,x,tr)=N(x,tr)θ(z_(P,ˆν_(x,tr)))θ(z_(P,ˆμ_(x,tr)))exp(−∫PQ0ω(3)P∞2,ˆν0(P)); | (5.10) |
then, we need to determine the expression of N(x,tr).
From (3.6), combining the expressions of ϕ2 near P∞2, we have
N(x,tr)=θ(z_(P∞2,ˆμ_(x,tr)))θ(z_(P∞2,ˆν_(x,tr)))exp(e1,∞2(Q0)), | (5.11) |
so (5.4) holds. Equation (5.5) can be proved by using a similar method.
(ⅱ) By (5.5), as P→P∞1,
θ(z_(P,ˆξ_(x,tr)))θ(z_(P,ˆμ_(x,tr)))=ζ→0θ(z_(P∞1,ˆξ_(x,tr)))θ(z_(P∞1,ˆμ_(x,tr)))(1−m−2∑j=1d(∞1)j,0∂∂zjlnθ(z_(P∞1,ˆξ_(x,tr)))θ(z_(P∞1,ˆμ_(x,tr)))ζ+O(ζ2)); | (5.12) |
as P→P∞2,
θ(z_(P,ˆξ_(x,tr)))θ(z_(P,ˆμ_(x,tr)))=ζ→0θ(z_(P∞2,ˆξ_(x,tr)))θ(z_(P∞2,ˆμ_(x,tr)))(1−m−2∑j=1d(∞2)j,0∂∂zjlnθ(z_(P∞2,ˆξ_(x,tr)))θ(z_(P∞2,ˆμ_(x,tr)))ζ+O(ζ2)). | (5.13) |
Hence, for P→P∞1,
ϕ3(P,x,tr)=−(1−ω∞10ζ+O(ζ2))(1−m−2∑j=1d(∞1)j,0∂∂zjlnθ13θ11ζ+O(ζ2)); | (5.14) |
for P→P∞2,
ϕ3(P,x,tr)=−ζ(1−ω∞20ζ+O(ζ2))exp(e2,∞1(Q0)−e2,∞2(Q0))×θ11θ23θ13θ21(1−m−2∑j=1d(∞2)j,0∂∂zjlnθ23θ21ζ+O(ζ2)), | (5.15) |
with θs1=θ(z_(P∞s,ˆμ_(x,tr))) and θs3=θ(z_(P∞s,ˆξ_(x,tr))),s=1,2. Combining (3.6), (3.7), (5.14) and (5.15), we can get (5.6)–(5.8).
(ⅲ) Let Ψ1 be the right hand of (5.9). We will prove that ψ1=Ψ1. Applying Proposition 4.2, we find that ψ1 and Ψ1 have the same zeros and poles. Based on the Riemann-Roch theorem, we infer that Ψ1ψ1=γ for some constant γ. From (3.27), we get
Ψ1(P,x,x0,tr,t0,r)ψ1(P,x,x0,tr,t0,r)=ζ→0exp(ζ−1(x−x0))exp(ζ−1(x−x0))×exp{[r∑l=0(˜αr−lζ−2(l+1)+˜βr−lζ−(2l+1))+˜αr+1](tr−t0,r)−12(Δ1+Δ2)+O(ζ)}(1+O(ζ))exp{[r∑l=0(˜αr−lζ−2(l+1)+˜βr−lζ−(2l+1))+˜αr+1](tr−t0,r)−12(Δ1+Δ2)+O(ζ)}=ζ→01+O(ζ), P→P∞2. | (5.16) |
Hence, γ=1, and (5.9) holds.
Theorem 5.2. Let (x0,t0,r),(x,tr)∈C2. Then
ρ_(1)(x,tr)=ρ_(1)(x0,t0,r)+(x−x0)U_(2)2+(tr−t0,r)˜U_(2)2r+3(modTm−2), | (5.17) |
ρ_(2)(x,tr)=−A_(ˆν0(x,tr))+A_(ˆν0(x0,t0,r))+ρ_(2)(x0,t0,r)+(x−x0)U_(2)2+(tr−t0,r)˜U_(2)2r+3(modTm−2), | (5.18) |
ρ_(3)(x,tr)=ρ_(3)(x0,t0,r)+(x−x0)U_(2)2+(tr−t0,r)˜U_(2)2r+3(modTm−2). | (5.19) |
Proof. Set
Ω(x,x0,tr,t0,r)=∂∂λln(ψ1(P,x,x0,tr,t0,r))dλ. | (5.20) |
By (5.9), we have
Ω(x,x0,tr,t0,r)=˜ω−(x−x0)Ω(2)2−(tr−t0,r)˜Ω(2)2r+3+m−2∑j=1ω(3)ˆμj(x,tr),ˆμj(x0,t0,r), | (5.21) |
where for some ej∈C, ˜ω=∑m−2j=1ejωj. Since ψ1 is single-valued function, all a- and b-periods of Ω are integer multiples of 2πi; so, for some Mk,Nk∈Z,
2πiMk=∫akΩ(x,x0,tr,t0,r)=∫ak˜ω=ek, k=1,…,m−2. | (5.22) |
2πiNk=∫bkΩ(x,x0,tr,t0,r)=∫bk˜ω−(x−x0)∫bkΩ(2)2−(tr−t0,r)∫bk˜Ω(2)2r+3+m−2∑j=1∫bkω(3)ˆμj(x,tr),ˆμj(x0,t0,r)=2πim−2∑j=1Mj∫bkωj−(x−x0)∫bkΩ(2)2−(tr−t0,r)∫bk˜Ω(2)2r+3+2πim−2∑j=1∫ˆμj(x,tr)ˆμj(x0,t0,r)ωk. | (5.23) |
So,
N_=M_τ−(x−x0)U_(2)2−(tr−t0,r)˜U_(2)2r+3+m−2∑j=1∫ˆμj(x,tr)Q0ω_−m−2∑j=1∫ˆμj(x0,t0,r)Q0ω_, | (5.24) |
where N_=(N1,…,Nm−2) and M_=(M1,…,Mm−2)∈Zm−2.
Thus, (5.24) has the equivalent form of (5.17). The other two equations in (5.18) and (5.19) can be obtained in the same way.
The authors declare that they have not used artificial intelligence tools in the creation of this article.
This work was supported by the National Natural Science Foundation of China (Grant Nos. 12101418, 11931017, 11871440, 11971442).
All authors declare no conflict of interest that may affect the publication of this paper.
[1] | M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equation and Inverse Scattering, Cambridge: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511623998 |
[2] | E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Berlin: Springer, 1994. |
[3] | S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of Solitons, the Inverse Scattering Method, New York: Consultants Bureau, 1984. |
[4] | Y. Kosmann-Schwarzbach, B. Grammaticos, K. M. Tamizhmani, Integrability of Nonlinear Systems, Berlin: Springer, 1997. |
[5] | L. A. Dickey, Soliton Equations and Hamiltonian Systems, Singapore: World Scientific, 2003. http://dx.doi.org/10.1142/5108 |
[6] |
B. A. Dubrovin, Theta functions and non-linear equations, Russian Math. Surveys, 36 (1981), 11–92. http://dx.doi.org/10.1070/RM1981v036n02ABEH002596 doi: 10.1070/RM1981v036n02ABEH002596
![]() |
[7] |
E. Date, S. Tanaka, Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice, Progr. Theoret. Phys. Suppl., 59 (1976), 107–125. http://dx.doi.org/10.1143/PTPS.59.107 doi: 10.1143/PTPS.59.107
![]() |
[8] |
E. Date, S. Tanaka, Analogue of inverse scattering theory for the discrete Hill's equation and exact solutions for the periodic Toda lattice, Prog. Theor. Phys., 55 (1976), 457–465. http://dx.doi.org/10.1143/ptp.55.457 doi: 10.1143/ptp.55.457
![]() |
[9] |
J. S. Geronimo, F. Gesztesy, H. Holden, Algebro-geometric solutions of the Baxter-Szegő difference equation, Commun. Math. Phys., 258 (2005), 149–177. http://dx.doi.org/10.1007/s00220-005-1305-x doi: 10.1007/s00220-005-1305-x
![]() |
[10] |
C. W. Cao, Y. T. Wu, X. G. Geng, Relation between the Kadometsev-Petviashvili equation and the confocal involutive system, J. Math. Phys., 40 (1999), 3948–3970. http://dx.doi.org/10.1063/1.532936 doi: 10.1063/1.532936
![]() |
[11] |
X. G. Geng, C. W. Cao, Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions, Nonlinearity, 14 (2001), 1433–1452. http://dx.doi.org/10.1088/0951-7715/14/6/302 doi: 10.1088/0951-7715/14/6/302
![]() |
[12] | F. Gesztesy, H. Holden, Algebro-geometric solutions of the Camassa-Holm hierarchy, Rev. Math. Iberoam., 19 (2003), 73–142. |
[13] |
H. Lundmark, J. Szmigielski, An inverse spectral problem related to the Geng-Xue two-component peakon equation, Mem. Am. Math. Soc., 244 (2016), 1155. http://dx.doi.org/10.1090/memo/1155 doi: 10.1090/memo/1155
![]() |
[14] | F. Gesztesy, H. Holden, Soliton Equations and Their Algebro-Geometric Solutions, Cambridge: Cambridge University Press, 2003. |
[15] |
H. Lundmark, J. Szmigielski, Dynamics of interlacing peakons (and shockpeakons) in the Geng-Xue equation, J. Integr. Sys., 2 (2017), xyw014. http://dx.doi.org/10.1093/INTEGR/XYW014 doi: 10.1093/INTEGR/XYW014
![]() |
[16] |
A. R. Its, V. B. Matveev, Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation, Theoret. Math. Phys., 23 (1975), 343–355. http://dx.doi.org/10.1007/BF01038218 doi: 10.1007/BF01038218
![]() |
[17] |
X. G. Geng, H. Liu, The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation, J. Nonlinear Sci., 28 (2018), 739–763. http://dx.doi.org/10.1007/s00332-017-9426-x doi: 10.1007/s00332-017-9426-x
![]() |
[18] |
R. Dickson, F. Gesztesy, K. Unterkofler, A new approach to the Boussinesq hierarchy, Math. Nachr., 198 (1999), 51–108. http://dx.doi.org/10.1002/mana.19991980105 doi: 10.1002/mana.19991980105
![]() |
[19] |
R. Dickson, F. Gesztesy, K. Unterkofler, Algebro-geometric solutions of the Boussinesq hierarchy, Rev. Math. Phys., 11 (1999), 823–879. http://dx.doi.org/10.1142/S0129055X9900026X doi: 10.1142/S0129055X9900026X
![]() |
[20] |
X. G. Geng, L. H. Wu, G. L. He, Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions, Phys. D, 240 (2011), 1262–1288. http://dx.doi.org/10.1016/j.physd.2011.04.020 doi: 10.1016/j.physd.2011.04.020
![]() |
[21] |
G. L. He, L. H. Wu, X. G. Geng, Finite genus solutions to the mixed Boussinesq equation, Sci. Sin. Math., 42 (2012), 711–734. http://dx.doi.org/10.1360/012011-848 doi: 10.1360/012011-848
![]() |
[22] |
X. G. Geng, Y. Y. Zhai, H. H. Dai, Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy, Adv. Math., 263 (2014), 123–153. http://dx.doi.org/10.1016/j.aim.2014.06.013 doi: 10.1016/j.aim.2014.06.013
![]() |
[23] |
M. X. Jia, X. G. Geng, J. Wei, Y. Y. Zhai, H. Liu, Coupled discrete Sawada-Kotera equations and their explicit quasi-periodic solutions, Anal. Math. Phys., 11 (2021), 140. http://dx.doi.org/10.1007/s13324-021-00577-2 doi: 10.1007/s13324-021-00577-2
![]() |
[24] |
L. H. Wu, X. G. Geng, G. L. He, Algebro-geometric solutions to the Manakov hierarchy, Appl. Anal., 95 (2016), 769–800. http://dx.doi.org/10.1080/00036811.2015.1031220 doi: 10.1080/00036811.2015.1031220
![]() |
[25] |
X. G. Geng, J. Wei, Three-sheeted Riemann surface and solutions of the Itoh-Narita-Bogoyavlensky lattice hierarchy, Rev. Math. Phys., 34 (2022), 2250009. http://dx.doi.org/10.1142/S0129055X2250009X doi: 10.1142/S0129055X2250009X
![]() |
[26] |
X. G. Geng, H. Wang, Algebro-geometric constructions of quasi-periodic flows of the Newell hierarchy and applications, IMA J. Appl. Math., 82 (2017), 97–130. http://dx.doi.org/10.1093/imamat/hxw008 doi: 10.1093/imamat/hxw008
![]() |
[27] |
W. Liu, X. G. Geng, B. Xue, Three-component generalisation of Burgers equation and its bi-Hamiltonian structures, Z. Naturforsch. A, 72 (2017), 469–475. http://dx.doi.org/10.1142/S0217984917502992 doi: 10.1142/S0217984917502992
![]() |
[28] | J. M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion, Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect. 1., 17 (1939). |
[29] |
T. Su, Explicit solutions for a modified 2+1-dimensional coupled Burgers equation by using Darboux transformation, Appl. Math. Lett., 69 (2017), 15–21. http://dx.doi.org/10.1016/j.aml.2017.01.014 doi: 10.1016/j.aml.2017.01.014
![]() |
[30] |
C. W. Cao, X. G. Geng, H. Y. Wang, Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable, J. Math. Phys., 43 (2002), 621–643. http://dx.doi.org/10.1063/1.1415427 doi: 10.1063/1.1415427
![]() |
[31] |
A. M. Wazwaz, Multiple-front solutions for the Burgers equation and the coupled Burgers equations, Appl. Math. Comput., 190 (2007), 1198–1206. http://dx.doi.org/10.1016/j.amc.2007.02.003 doi: 10.1016/j.amc.2007.02.003
![]() |
[32] | P. Griffiths, J. Harris, Principles of Algebraic Geometry, New York: Wiley, 1994. http://dx.doi.org/10.1002/9781118032527 |
[33] | D. Mumford, Tata Lectures on Theta II, Boston, Mass: Birkhäuser, 1984. |
[34] | H. M. Farkas, I. Kra, Riemann Surfaces, New York: Springer, 1992. http://dx.doi.org/10.1007/978-1-4612-2034-3 |