Processing math: 100%
Research article

Quasi-periodic solutions of three-component Burgers hierarchy

  • Received: 31 July 2023 Revised: 13 September 2023 Accepted: 21 September 2023 Published: 08 October 2023
  • MSC : 37K10, 37K20

  • Starting from a 3×3 matrix spectral problem and the characteristic polynomial of the Lax matrix, we propose a trigonal curve, the associated meromorphic functions and three kinds of Abelian differentials. By discussing the asymptotic properties for the Baker-Akhiezer functions and their Riemann theta function expressions, we get quasi-periodic solutions of the three-component Burgers hierarchy. Finally, we straighten out the three-component Burgers flows.

    Citation: Wei Liu, Xianguo Geng, Bo Xue. Quasi-periodic solutions of three-component Burgers hierarchy[J]. AIMS Mathematics, 2023, 8(11): 27742-27761. doi: 10.3934/math.20231420

    Related Papers:

    [1] Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426
    [2] Haihua Lu, Tianjue Shi . Multiple periodic solutions of parameterized systems coupling asymmetric components and linear components. AIMS Mathematics, 2025, 10(4): 8988-9010. doi: 10.3934/math.2025412
    [3] Ayman Elsharkawy, Clemente Cesarano, Abdelrhman Tawfiq, Abdul Aziz Ismail . The non-linear Schrödinger equation associated with the soliton surfaces in Minkowski 3-space. AIMS Mathematics, 2022, 7(10): 17879-17893. doi: 10.3934/math.2022985
    [4] Min Zhang, Yi Wang, Yan Li . Reducibility and quasi-periodic solutions for a two dimensional beam equation with quasi-periodic in time potential. AIMS Mathematics, 2021, 6(1): 643-674. doi: 10.3934/math.2021039
    [5] Liangying Miao, Zhiqian He . Reversed S -shaped connected component for second-order periodic boundary value problem with sign-changing weight. AIMS Mathematics, 2020, 5(6): 5884-5892. doi: 10.3934/math.2020376
    [6] Baiying He, Siyu Gao . The nonisospectral integrable hierarchies of three generalized Lie algebras. AIMS Mathematics, 2024, 9(10): 27361-27387. doi: 10.3934/math.20241329
    [7] Zhongqian Wang, Dan Liu, Mingliang Song . Existence of three periodic solutions for a quasilinear periodic boundary value problem. AIMS Mathematics, 2020, 5(6): 6061-6072. doi: 10.3934/math.2020389
    [8] Xin Liu, Yan Wang . Averaging principle on infinite intervals for stochastic ordinary differential equations with Lévy noise. AIMS Mathematics, 2021, 6(5): 5316-5350. doi: 10.3934/math.2021314
    [9] Junjie Li, Gurpreet Singh, Onur Alp İlhan, Jalil Manafian, Yusif S. Gasimov . Modulational instability, multiple Exp-function method, SIVP, solitary and cross-kink solutions for the generalized KP equation. AIMS Mathematics, 2021, 6(7): 7555-7584. doi: 10.3934/math.2021441
    [10] Asif Khan, Tayyaba Akram, Arshad Khan, Shabir Ahmad, Kamsing Nonlaopon . Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with nonsingular kernels. AIMS Mathematics, 2023, 8(1): 1251-1268. doi: 10.3934/math.2023063
  • Starting from a 3×3 matrix spectral problem and the characteristic polynomial of the Lax matrix, we propose a trigonal curve, the associated meromorphic functions and three kinds of Abelian differentials. By discussing the asymptotic properties for the Baker-Akhiezer functions and their Riemann theta function expressions, we get quasi-periodic solutions of the three-component Burgers hierarchy. Finally, we straighten out the three-component Burgers flows.



    It is well known that quasi-periodic solutions of integrable dynamical systems can not only describe periodic nonlinear behavior, but they can also show characteristics of Liouville integrability [1,2,3,4,5]. Therefore, constructing quasi-periodic solutions for integrable nonlinear equations is a hot topic in the field of modern mathematical and theoretical physics. In the past decades, several systematic approaches have been used to study quasi-periodic solutions for nonlinear integrable models [6,7,8,9,10,11,12]. The successful idea is to use the hyperelliptic curves, and finite-genus solutions of nonlinear equations related to 2×2 matrix spectral problems have been derived [2,3,6,7,8,9,10,11,12,13,14,15,16,17]. But, this method is invalid to solve higher-order matrix spectral problems. In Refs. [18,19], a unified work was given to study the algebro-geometric solutions to the Boussinesq equations associated with a third-order spectral problem. After that, according to the characteristic polynomial of the Lax matrix, Geng and colleagues [20,21] developed a general approach to handle the case of the 3×3 matrix spectral problem by introducing trigonal curves. Using this method, quasi-periodic solutions for some famous equations, such as the Manakov, the cmKdV, the modified Boussinesq, the coupled Sasa-Satsuma, the Dym-type equations and so on [22,23,24,25,26], were successfully generalized.

    Recently, in Ref. [27], three-component Burgers hierarchy was derived, and its bi-Hamiltonian structures were discussed. The first member in the whole hierarchy is

    ut=3wxxuwxuxw+2vx,vt=2wxxx2uwxx+vxxvxw2vwxuvx,wt=wxxuwxuxw4wwx, (1.1)

    which can be reduced to the well-known Burgers equation [28]

    ut=uxxuux.

    During the past few decades, there have been some remarkable works on the Burgers equation due to its prominent mathematical structures and physical properties. The Darboux transformation for the generalized Burgers equation was constructed based on the Lax pairs [29]. Quasi-periodic solutions for the 2+1 dimensional discrete Burgers equation were proposed in view of the Jacobi inversion [30]. The Cole-Hopf transformation were used to generate the multiple-front solutions for the coupled Burgers equation [31].

    The purpose of this paper is to study quasi-periodic solutions of three-component Burgers flows. By means of the asymptotic expansions and Abelian differentials, we deduce the theta function expressions of the potential functions. In Section 2, we first list the recursion relations of the three-component Burgers equation; then, we define a trigonal curve Km2 based on the characteristic polynomial of the Lax matrix. By adding two different infinite points, the curve Km2 is compactified. In Section 3, we discuss the asymptotic behaviors of the meromorphic functions ϕ2 and ϕ3. Section 4 is devoted to discussing the divisors of ϕ2,ϕ3, which can reveal essential singularities. In Section 5, we derive the theta function solutions of ψ1,ϕ2,ϕ3 by using the Abelian differentials inferred in Section 3. Especially, we generate the quasi-periodic solutions of the three-component Burgers hierarchy.

    The main idea of this section is to define a trigonal curve Km2 related to the three-component Burgers hierarchy. We first list some necessary results from Ref. [27] to make this paper easier to read. We define the Lenard recurrence relations

    Kˆgj=Jˆgj+1,  Kˇgj=Jˇgj+1,  j0, (2.1)

    and K,J are two 3×3 operators

    K=(u322v+2u2+2ux230K21K220w+2wK323+uv),J=(0232J222u00), (2.2)
    ˆg0=(w,1,0)T,ˇg0=(1,0,0)T, (2.3)

    where

    K21=vx+2v+2u223,K22=2u+u3uu+2vuvuvx4,K32=w22uw(uw)x2w,J22=2w2w+u.

    The recursion relations given by (2.1) can be uniquely solved. So, we have

    ˆg1=(ˆg(1)1,3w2+2uwv,(wx+uw+2w2))T,ˇg1=(ˇg(1)1,12u32w,w)T, (2.4)

    with

    ˆg(1)1=wxxuwxuxw+2vw3uw23wwx4w3,
    ˇg(1)1=34uw12v+34wx+14ux18u2+158w2.

    Now, we discuss the zero-curvature equation

    Vx[U,V]=0, (2.5)

    where

    U=(010λ+vuλw00),V=(Vij)3×3=(V11V12λV13V21V22λV23V31V32λV33),

    with λ as a constant spectral parameter; also, u(x,t),v(x,t) and w(x,t) are three potentials. Each entry Vij(a,b,c) is defined as follows:

    V11=2a+(v+u2)b+λ(b+c),V12=a,V13=b,V21=(v22)a+(v+u3)b+λ(a+wb+b+c),V22=(u)a+(v+u2)b+λ(b+c),V23=a+b,V31=wa(uw+w)b+(u+2)c,V32=wbc,V33=c. (2.6)

    From (2.5) and (2.6), we obtain

    KG=λJG,G=(a,b,c)T. (2.7)

    Set

    G=j0Gjλj,Gj=(aj,bj,cj)T; (2.8)

    then,

    Gj=α0ˆgj+β0ˇgj+α1ˆgj1+β1ˇgj1++αjˆg0+βjˇg0+γjˉg0,j0, (2.9)

    satisfies

    KGj=JGj+1,JG0=0, (2.10)

    for ˉg0=(0,0,1)TkerKkerJ; also, αj,βj and γj are arbitrary constants.

    In order to generate the three-component Burgers hierarchy, we set

    ˜Gj=˜α0ˆgj+˜β0ˇgj+˜α1ˆgj1+˜β1ˇgj1++˜αjˆg0+˜βjˇg0(˜aj,˜bj,˜cj)T,j0,

    and give the following Lax pairs

    {ψx=Uψ,ψ=(ψ1,ψ2,ψ3)T,ψtr=(Vij(˜a(r),˜b(r),˜c(r)))3×3ψ, (2.11)

    where

    ˜a(r)=rj=0˜ajλrj,˜b(r)=rj=0˜bjλrj,˜c(r)=rj=0˜cjλrj, (2.12)

    with ˜αj,˜βj as arbitrary constants independent of αj,βj. The compatible condition of (2.11) implies that Utr˜V(r)x+[U,˜V(r)]=0 is equivalent to the following three-component Burgers equations:

    (utr,vtr,wtr)T=K˜Gr=J˜Gr+1,r0. (2.13)

    Next, we define a Lax matrix V(n)=(λnV)+=(V(n)ij(aj,bj,cj))3×3, and

    V(n)x[U,V(n)]=0, (2.14)
    V(n)tr[˜V(r),V(n)]=0. (2.15)

    So, the characteristic polynomial of Vn is independent of (x,tr). Moreover, we have

    det(yIV(n))=y3y2Rm(λ)+ySm(λ)Tm(λ), (2.16)

    where Rm,Sm, Tm are polynomials of λ:

    Rm=V(n)11+V(n)22+λV(n)33=(2α0+3γ0)λn+1+(2α1+3γ1)λn+,Sm=|V(n)11V(n)12V(n)21V(n)22|+|V(n)11λV(n)13V(n)31λV(n)33|+|V(n)22λV(n)23V(n)32λV(n)33|=(α20+4α0γ0+3γ20)λ2n+2+,Tm=det(V(n))=λ[(α0+γ0)2γ0λ3n+2+]. (2.17)

    Hence, (2.16) leads to a trigonal curve Km2:

    Km2:Fm(λ,y)=y3y2Rm+ySmTm=0. (2.18)

    The discriminant of (2.18) is

    Δ(λ)=4S3mR2mS2m18RmSmTm+27T2m+4R3mTm=4α40β20λ6n+5+;

    here, we assume that α0β0γ0(α0+γ0)0 and Km2 is nonsingular. So Km2 can be compactified by adding the infinite point P1 and the double branch point P2. In our paper, the compactification of Km2 is still expressed by this symbol. Then, Km2 becomes a three-sheeted Riemann surface, and its genus is 3n+1. Each point P=(λ,y)Km2 satisfies (2.18), along with P1 and P2.

    We asumme that P,P,P are three points on three different sheets of Km2. Set yi(λ), i=0,1,2 to satisfy

    (yy0(λ))(yy1(λ))(yy2(λ))=y3y2Rm+ySmTm=0. (2.19)

    Using (2.19), we obtain

    y0+y1+y2=Rm,y0y1+y1y2+y0y2=Sm,y20+y21+y22=R2m2Sm,y0y1y2=Tm,y30+y31+y32=R3m3RmSm+3Tm,y20y21+y20y22+y21y22=S2m2RmTm. (2.20)

    We shall discuss the asymptotic expansions of two associated meromorphic functions. Meanwhile, we introduce Abelian differentials to represent quasi-periodic solutions of the three-component Burgers hierarchy. First, the Baker-Akhiezer function ψ(P,x,x0,tr,t0,r) satisfies

    V(n)(u(x,tr),v(x,tr),w(x,tr);λ(P))ψ(P,x,x0,tr,t0,r)=y(P)ψ(P,x,x0,tr,t0,r),ψx(P,x,x0,tr,t0,r)=U(u(x,tr),v(x,tr),w(x,tr);λ(P))ψ(P,x,x0,tr,t0,r),ψtr(P,x,x0,tr,t0,r)=˜V(r)(u(x,tr),v(x,tr),w(x,tr);λ(P))ψ(P,x,x0,tr,t0,r),ψ1(P,x0,x0,t0,r,t0,r)=1, x,trC. (3.1)

    And the meromorphic functions ϕ2(P,x,tr), ϕ3(P,x,tr) on Km2 are respectively introduced as follows:

    ϕ2(P,x,tr)=ψ2(P,x,x0,tr,t0,r)ψ1(P,x,x0,tr,t0,r),PKm2, (3.2)
    ϕ3(P,x,tr)=ψ3(P,x,x0,tr,t0,r)ψ1(P,x,x0,tr,t0,r),PKm2. (3.3)

    Expressions (3.1)–(3.3) imply that ϕ2 and ϕ3 satisfy the following Riccati-type equations

    ϕ2,x+ϕ22uϕ2λϕ3vλ=0, (3.4)
    ϕ3,x+ϕ2ϕ3w=0. (3.5)

    So, we can get the following lemma.

    Lemma 3.1. Let PKm2{P1,P2}; then,

    ϕ2(P,x,tr)=ζ0{w+κ1,1ζ+O(ζ2),   PP1,  ζ=λ1,ζ1+κ2,0+κ2,1ζ+κ2,2ζ2+O(ζ3),   PP2,  ζ=λ12, (3.6)
    ϕ3(P,x,tr)=ζ0{1+χ1,1ζ+O(ζ2),    PP1,  ζ=λ1,wζ+χ2,2ζ2+χ2,3ζ3+O(ζ4),    PP2, ζ=λ12, (3.7)

    where

    κ1,1=3wwx+(uw)xwxxvxw3uw2+vw,κ2,0=u+w2,κ2,1=v2ux43wx4+(u+w)(u3w)8,κ2,2=uxx8vx4+7wxx8uux8+5(uw)x8+15wwx8wv2+w2(u+w)2,χ1,1=w2+uwvwx,χ2,2=wxuw+w22,χ2,3=wxx+uwx+3uxw4+9wwx4wv2+w(u+w)(u+5w)8.

    Proof. Substituting the hypotheses

    (1)  ϕ2=ζ0κ1,0+κ1,1ζ+O(ζ2),ϕ3=ζ0χ1,0+χ1,1ζ+O(ζ2);(2)  ϕ2=ζ0κ1,1ζ1+κ2,0+κ2,1ζ+κ2,2ζ2+O(ζ3),ϕ3=ζ0χ2,1ζ+χ2,2ζ2+χ2,3ζ3+O(ζ4);

    into (3.4) and (3.5), and by analyzing the coefficients of ζ, we prove the lemma.

    Next, we study the asymptotic properties of ψ1 near P1 and P2. By means of the first two expressions of (3.1), we obtain

    ψ1(P,x,x0,tr,t0,r)=exp(xx0ϕ2(P,x,tr)dx+trt0,rIr(P,x0,t)dt), (3.8)

    with

    Ir(P,x,tr)=˜V(r)11+˜V(r)12ϕ2+λ˜V(r)13ϕ3, (3.9)

    which can imply the essential singularities of ψ1. We use the following symbols to represent the corresponding homogeneous case of ˜V(r)ij, that is to say,

    ˉ˜V(r,1)ij=˜V(r)ij˜α0=1,˜α1==˜αr=˜β0==˜βr=0, (3.10)
    ˉ˜V(r,2)ij=˜V(r)ij˜β0=1,˜α0==˜αr=˜β1==˜βr=0. (3.11)

    So, we have

    ˉI(ϵ)r(P,x,tr)=ˉ˜V(r,ϵ)11+ˉ˜V(r,ϵ)12ϕ2+λˉ˜V(r,ϵ)13ϕ3,  ϵ=1,2. (3.12)

    Especially,

    ˉI(1)r(P,x,tr)={ˆcr+1+O(ζ),PP1,ζ2r2ˆbr+1ˆcr+1+O(ζ),PP2. (3.13)
    ˉI(2)r(P,x,tr)={ˇcr+1+O(ζ),PP1,ζ2r1ˇbr+1ˇcr+1+O(ζ),PP2. (3.14)

    In fact, consider that (r,ϵ)=(0,1), ˉ˜a(0,1)=w,ˉ˜b(0,1)=1,ˉ˜c(0,1)=0, λ=ζ1 denotes the local coordinate near P1 and λ=ζ2 denotes the local coordinate near P2. When PP1,

    ˉI(1)0(P,x,tr)=2ˉ˜a(0,1)xˉ˜b(0,1)xx+uˉ˜b(0,1)x+vˉ˜b(0,1)+ζ1(ˉ˜b(0,1)+ˉ˜c(0,1))+ˉ˜a(0,1)ϕ2+ζ1ˉ˜b(0,1)ϕ3=wx+2w2+uw+O(ζ)=ˆc1+O(ζ), (3.15)

    and, when PP2,

    ˉI(1)0(P,x,tr)=2ˉ˜a(0,1)xˉ˜b(0,1)xx+uˉ˜b(0,1)x+vˉ˜b(0,1)+ζ2(ˉ˜b(0,1)+ˉ˜c(0,1))+ˉ˜a(0,1)ϕ2+ζ2ˉ˜b(0,1)ϕ3=ξ2+wx+vuww2+O(ζ)=ξ2ˆb1ˆc1+O(ζ). (3.16)

    So, as PP1, one infers the following:

    ˉI(1)r(P,x,tr)=j=0σjζj; (3.17)

    as PP1, we assume

    ˉI(1)r(P,x,tr)=ζ2r2+j=0δjζj, (3.18)

    and {σj(x,tr)},{δj(x,tr)},jN are some coefficients. Using (3.1), we obtain

    ψ1,xψ1=ϕ2, (3.19)
    ψ1,trψ1=˜V(r)11+˜V(r)22ϕ2+λ˜V(r)13ϕ3. (3.20)

    Furthermore, we have

    (ϕ2)tr=(˜V(r)11+˜V(r)22ϕ2+λ˜V(r)13ϕ3)x. (3.21)

    When ˜α0=1,˜α1==˜αr=0 and ˜β0==˜βr=0, we arrive at

    σ0,x=(κ1,0)tr,σj,x=(κ1,j)tr,δ0,x=(κ2,0)tr,δj,x=(κ2,j)tr,j=1,2,3. (3.22)

    Combining (2.5), (2.13) and Lemma 3.1, one gets

    σ0,x=(ˆcr+1)x,σ1,x=(wˆar+1+2ˆar+1,x+ˆbr+1,xx+wxˆbr+1uwˆbr+1w2ˆbr+1ˆcr+2uˆbr+1,x)x,δ0,x=ˆbr+1,xˆcr+1,x,δ1,x=ˆar+1,xwxˆbr+1wˆbr+1,x,δ2,x=(12ˆar+1,x12wˆar+1+wxˆbr+1+12uwˆbr+1+12w2ˆbr+1+12ˆcr+2)x, (3.23)

    from which it can be inferred that

    σ0=ˆcr+1,σ1=wˆar+1+2ˆar+1,x+ˆbr+1,xx+wxˆbr+1uˆbr+1,xuwˆbr+1w2ˆbr+1ˆcr+2,δ0=ˆbr+1ˆcr+1,δ1=ˆar+1wˆbr+1,δ2=12ˆar+1,x12wˆar+1+wxˆbr+1+12uwˆbr+1+12w2ˆbr+1+12ˆcr+2. (3.24)

    Furthermore,

    ˉI(1)r+1=ˉ˜V(r+1,1)11+ˉ˜V(r+1,1)12ϕ2+λˉ˜V(r+1,1)13ϕ3=ζ1ˉIr2ˆar+1,xˆbr+1,xx+uˆbr+1,x+vˆbr+1+ζ1(ˆbr+1+ˆcr+1)+ˆar+1ϕ2+ζ1ˆbr+1ϕ3=ˆcr+2+O(ζ),PP1,ˉI(1)r+1=ˉ˜V(r+1,1)11+ˉ˜V(r+1,1)12ϕ2+λˉ˜V(r+1,1)13ϕ3=ζ2ˉIr2ˆar+1,xˆbr+1,xx+uˆbr+1,x+vˆbr+1+ζ2(ˆbr+1+ˆcr+1)+ˆar+1ϕ2+ζ2ˆbr+1ϕ3=ζ2r4ˆbr+2ˆcr+2+O(ζ),PP2, (3.25)

    so (3.13) holds. Equation (3.14) can be proved by using the same method.

    By considering (3.13), (3.14) and (2.12), one infers the following:

    Ir(P,x,tr)={˜cr+1+O(ζ),PP1,rl=0(˜αrlζ2l2+˜βrlζ2l1)˜br+1˜cr+1+˜αr+1+O(ζ),PP2. (3.26)

    Given those above preparations, the asymptotic expansions of ψ1 near P1 and P2 read as follows.

    Lemma 3.2. Let PKm2{P1, P2} and let (x,x0,tr,t0,r)C4; so,

    ψ1(P,x,x0,tr,t0,r)=ζ0{exp(Δ1+O(ζ)),    PP1,exp(ζ1(xx0)+(rl=0(˜αrlζ2(1+l)+˜βrlζ(1+2l))+˜αr+1)×(trt0,r)12(Δ1+Δ2)+O(ζ)),  PP2, (3.27)

    where

    Δ1=1w(x0,t0,r)1w(x,tr),Δ2=1u(x0,t0,r)1u(x,tr),

    are two functions independent of variable x.

    Regarding Km2, one can choose the basis {aj,bj}m2j=1 with the intersection numbers

    ajak=0,bjbk=0,ajbk=δj,k,j,k=1,,m2,

    Our basis is as follows

    ϖl(P)=13y22yRm+Sm{λl1dλ,1l1+2n,(y13Rm)λl2n2dλ,2+2nlm2. (3.28)

    Let us construct the matrices A=(Ajk) and B=(Bjk) by respectively applying the following:

    Ajk=akϖj,Bjk=bkϖj. (3.29)

    Then, τ=A1B is a symmetric matrix [32,33,34] and we denote C=A1. If ϖl(P) takes the normalized basis ω_=(ω1,,ωm2) with

    ωj=m2l=1Cjlϖl, (3.30)

    then akωj=δjk and bkωj=τjk,  j,k=1,2,,m2. Utilizing (3.1) and (3.6)–(3.7), one gets the asymptotic properties of y(P):

    y(P)=ζ0{ζn1(γ0+γ1ζ+O(ζ2)),as  PP1,ζ2n2(α0+γ0+β0ζ+(α1+γ1)ζ2+O(ζ3)),as  PP2. (3.31)

    So,

    ωj=ζ0{(d(1)j,0+O(ζ))dζ,  PP1,(d(2)j,0+O(ζ))dζ,  PP2, (3.32)

    where

    d(1)j,0=1α20Cj,2n+1γ0α20Cj,m2,d(2)j,0=1α0β0Cj,2n+1α0+γ0α0β0Cj,m2.

    Moreover, ωj can be rewritten as

    ωj=l=0ϱj,l(Ps)ζldζ,    PPs,s=1,2, (3.33)

    where ϱj,l(Ps) represents constants.

    Let ω(2)P2,j(P) (j2) be the normalized differential of the second kind, satisfying

    ω(2)P2,j(P)=ζ0(ζj+O(1))dζ,  PP2, (3.34)

    with

    akω(2)P2,j(P)=0,k=1,2,,m2. (3.35)

    We introduce

    Ω(2)2(P)=ω(2)P2,2(P), (3.36)
    ˜Ω(2)2r+3(P)=rl=0(2+2l)˜αrlω(2)P2,3+2l(P)+rl=0(2l+1)˜βrlω(2)P2,2+2l(P). (3.37)

    Then, we have

    PQ0Ω(2)2(P)={e(2)1(Q0)+O(ζ),  PP1,ζ1+e(2)2(Q0)+O(ζ),  PP2, (3.38)
    PQ0˜Ω(2)2r+3(P)={˜e(2)1(Q0)+O(ζ),  PP1,rl=0˜αrlζ2(1+l)rl=0˜βrlζ(1+2l)+˜e(2)2(Q0)+O(ζ),  PP2, (3.39)

    for some constants e(2)1,e(2)2,˜e(2)1,˜e(2)2 depending on the appropriately chosen point Q0. The associated b-periods are defined by

    U_(2)2=(12πib1Ω(2)2(P),,12πibm2Ω(2)2(P)), (3.40)
    ˜U_(2)2r+3=(12πib1˜Ω(2)2r+3(P),,12πibm2˜Ω(2)2r+3(P)). (3.41)

    By means of the relations between the second kind of differential and holomorphic differential ω_, we can respectively express the members U(2)2,k of U(2)2 and ˜U(2)2r+3,k of ˜U(2)2r+3 as follows:

    U(2)2,k=ϱk,0(P2),˜U(2)2r+3,k=rl=0˜αrlϱk,2l+1(P2)+rl=0˜βrlϱk,2l(P2),k=1,,m2. (3.42)

    We define the Abelian differential of the third kind, ω(3)Q1,Q2, on Km2{Q1,Q2}, i.e.,

    akω(3)Q1,Q2=0,  bkω(3)Q1,Q2=2πiQ1Q2ωk. (3.43)

    In particular,

    PQ0ω(3)P2,ˆν0=ζ0{e1,1(Q0)+O(ζ),PP1,lnζ+e1,ˆν0(Q0)+ωˆν00ζ+O(ζ2),Pˆν0,lnζ+e1,2(Q0)+O(ζ),PP2, (3.44)
    PQ0ω(3)P0,P2=ζ0{e2,1(Q0)+ω10ζ+O(ζ2),PP1,lnζ+e2,P0(Q0)+O(ζ),PP0,lnζ+e2,2(Q0)+ω20ζ+O(ζ2),PP2, (3.45)

    with integration constants e1,s(Q0), e2,s(Q0),e1,ˆν0(Q0),e2,P0(Q0) and s=1,2.

    We will propose the divisors of two meromorphic functions ϕ2 and ϕ3. The definitions of the two meromorphic functions in (3.2) and (3.3) respectively imply that

    ϕ2=yV(n)23+CmyV(n)13+Am=y2V(n)13y(Am+V(n)13Rm)+BmEm2=Fm2y2V(n)23y(Cm+V(n)23Rm)+Dm, (4.1)
    ϕ3=yV(n)32+CmyV(n)12+Am=y2V(n)12y(Am+V(n)12Rm)+BmλEm2=Fm2y2V(n)32y(Cm+V(n)32Rm)+Dm, (4.2)

    where

    Am=V(n)13V(n)22+V(n)12V(n)23,Bm=V(n)12(V(n)23V(n)11V(n)13V(n)21)+λV(n)13(V(n)33V(n)11V(n)13V(n)31),Cm=V(n)11V(n)23+V(n)13V(n)21,Dm=λV(n)23(V(n)22V(n)33V(n)23V(n)32)+V(n)21(V(n)13V(n)22V(n)23V(n)12), (4.3)
    Am=λ(V(n)13V(n)32V(n)12V(n)33),Bm=V(n)12(V(n)22V(n)11V(n)12V(n)21)+λV(n)13(V(n)11V(n)32V(n)12V(n)31),Cm=V(n)12V(n)31V(n)11V(n)32,Dm=λV(n)32(V(n)22V(n)33V(n)32V(n)23)+λV(n)31(V(n)33V(n)12V(n)13V(n)32), (4.4)
    Em2=λV(n)32(V(n)13)2(V(n)12)2V(n)23+V(n)12V(n)13(V(n)22λV(n)33),Fm2=λ(V(n)23)2V(n)31+(V(n)11λV(n)33)V(n)23V(n)21V(n)13(V(n)21)2,Fm2=V(n)21(V(n)32)2+(V(n)11V(n)22)V(n)31V(n)32V(n)12(V(n)31)2. (4.5)

    By complex computation, we obtain

    V(n)13Fm2=V(n)23Dm(V(n)23)2SmCm(V(n)23Rm+Cm),AmFm2=(V(n)23)2Tm+CmDm, (4.6)
    V(n)23Em2=V(n)13Bm(V(n)13)2SmAm(V(n)13Rm+Am),CmEm2=(V(n)13)2Tm+AmBm, (4.7)
    V(n)23Bm+V(n)13DmV(n)13V(n)23Sm+AmCm=0,V(n)13V(n)23Tm+(V(n)23SmDm)(V(n)13Rm+Am)+V(n)13CmSmBm(Cm+V(n)23Rm)=0,V(n)23Tm(Am+V(n)13Rm)+V(n)13CmTm+Em2Fm2BmDm=0, (4.8)
    V(n)12Fm2=V(n)32Dm(V(n)32)2SmCm(V32Rm+Cm),AmFm2=(V(n)32)2Tm+CmDm, (4.9)
    λV(n)32Em2=V(n)12Bm(V(n)12)2SmAm(V12Rm+Am),λCmEm2=(V(n)12)2Tm+AmBm, (4.10)
    V(n)32Bm+V(n)12DmV(n)12V(n)32Sm+AmCm=0,V(n)12V(n)32Tm+(V(n)32SmDm)(Am+V12Rm)+V(n)12CmSm=Bm(V32Rm+Cm),V(n)32Tm(Am+V12Rm)+V(n)12CmTmλEm2Fm2BmDm=0, (4.11)
    Em2,x=uEm2+(3Bm2V(n)13SmRmAm),V(n)23Fm2,x=((λ+v)V(n)23V(n)21)(3Dm2V(n)23SmRmCm)+(2uV(n)23+Rm3V(n)22)Fm2,Fm2,x=uFm2+w(3Dm2V(n)32SmRmCm). (4.12)

    Due to the observation of (4.5), one infers that Em2,Fm2 and Fm2 are polynomials of λ:

    Em2=α20β0m2j=1(λμj(x,tr)), (4.13)
    Fm2=α20β0wm2j=0(λνj(x,tr)), (4.14)
    Fm2=α20β0w2m2j=1(λξj(x,tr)). (4.15)

    As λ=μj(x,tr), we get

    Em2=(λ(V(n)13)2V(n)32+V(n)13V(n)12(V(n)22λV(n)33)V(n)23(V(n)12)2)=(V(n)13AmV(n)12Am)=0,

    so we can define

    ˆμj(x,tr)=(μj(x,tr),Am(μj(x,tr),x,tr)V(n)12(μj(x,tr),x,tr)),ˆξj(x,tr)=(ξj(x,tr),Cm(ξj(x,tr),x,tr)V(n)32(ξj(x,tr),x,tr)),ˆνj(x,tr)=(νj(x,tr),Cm(νj(x,tr),x,tr)V(n)23(νj(x,tr),x,tr)),  j=1,,m2. (4.16)

    In fact, for λ=μj(x,tr), combining (4.7) and (4.13), we have

    0=V(n)13Bm(V(n)13)2SmAm(V(n)13Rm+Am),0=(V(n)13)2Tm+AmBm,

    that is,

    (AmV(n)13)3(AmV(n)13)2Rm+(AmV(n)13)SmTm=0,

    which means that

    (y3y2Rm+ySmTm)(λ,y)=(μj(x,tr),Am(μj(x,tr),x,tr)V(n)12(μj(x,tr),x,tr))=0;

    so, the first definition of (4.16) is reasonable. Similarly, we can prove the others.

    From (3.6), (3.7), (4.1) and (4.2), one infers that the divisors of ϕ2 and ϕ3 have the following respective forms:

    (ϕ2(P,x,tr))=Dˆν0(x,tr),ˆν1(x,tr),,ˆνm2(x,tr)(P)DP2,ˆμ1(x,tr),,ˆμm2(x,tr)(P), (4.17)
    (ϕ3(P,x,tr))=DP2,ˆξ1(x,tr),,ˆξm2(x,tr)(P)DP0,ˆμ1(x,tr),,ˆμm2(x,tr)(P). (4.18)

    Next, our main purpose is to discuss the poles and zeros of ψ1 on Km2{P1,P2}. Observing (4.1) and (4.2), one gets

    ϕ2,tr(P,x,tr)=˜V(r)21+(˜V(r)22˜V(r)11)ϕ2+λ˜V(r)23ϕ3˜V(r)12ϕ22λ˜V(r)13ϕ2ϕ3, (4.19)
    ϕ3,tr(P,x,tr)=˜V(r)31+(λ˜V(r)33˜V(r)11)ϕ3+˜V(r)32ϕ2λ˜V(r)13ϕ23˜V(r)12ϕ2ϕ3. (4.20)

    Lemma 4.1. We suppose that (3.1) holds. Let (λ,x,tr)C3; then,

    Em2,tr(λ,x,tr)=˜V(r)12Em2,x+(3˜V(r)11+u˜V(r)121utr)Em2˜V(r)13(3Bm2V(n)12SmRmAm),Fm2,tr(λ,x,tr)=˜V(r)21V(n)23λ˜V(r)23V(n)21(λ+v)V(n)23vV(n)21Fm2,x+(3V(n)221utr)Fm2+2u(λ˜V(r)23V(n)21˜V(r)21V(n)23)+(Rm3V(n)22)((λ+v)λV(r)23V(r)21)(λ+v)V(n)23V(n)21Fm2,Fm2,tr(λ,x,tr)=˜V(r)31V(n)32˜V(r)32V(n)31wV(n)32Fm2,x1utrFm2+[3λ˜V(r)33V(n)323˜V(r)32V(n)33+Rm˜V(r)32V(n)32+u˜V(r)31V(n)32˜V(r)32V(n)31wV(n)32]Fm2. (4.21)

    Proof. Observing the compatibility condition given by (3.21), we have

    (Em2,xEm2)tr=trx(lnEm2)=(ϕ2+ϕ2+ϕ2u)tr=[3˜V(r)11+˜V(r)12(ϕ2+ϕ2+ϕ2)+λ˜V(r)13(ϕ3+ϕ3+ϕ3)]xutr.

    That is to say,

    tr(lnEm2)=3˜V(r)11+˜V(r)12(ϕ2+ϕ2+ϕ2)+λ˜V(r)13(ϕ3+ϕ3+ϕ3)1xutr=3˜V(r)11+˜V(r)12×3Bm2V(n)13SmRmAmEm2+λ˜V(r)13×3Bm2V(n)12SmRmAmλEm21xutr,

    so we know that the first expression in (4.21) holds.

    Furthermore, since

    ϕ2ϕ2ϕ2=Fm2Em2,

    differentiating the above equation with respect to the variable tr, one gets

    (Fm2Em2)tr=ϕ2ϕ2ϕ2(ϕ2,trϕ2+ϕ2,trϕ2+ϕ2,trϕ2)=Fm2Em2[3(˜V(r)22˜V(r)11)˜V(r)12(ϕ2+ϕ2+ϕ2)λ˜V(r)13(ϕ3+ϕ3+ϕ3)+˜V(r)21(1ϕ2+1ϕ2+1ϕ2)+λ˜V(r)23(ϕ3ϕ2+ϕ3ϕ2+ϕ3ϕ2)]=Fm2Em2[3(˜V(r)22˜V(r)11)˜V(r)12×3Bm2V(n)13SmRmAmEm2λ˜V(r)13×3Bm2V(n)12SmRmAmλEm2+˜V(r)21×(2uV(n)23+Rm3V(n)22)Fm2+V(n)23Fm2,x[(λ+v)V(n)23V(n)21]Fm2+λ˜V(r)23×(2uV(n)21+(λ+v)(Rm3V(n)22))Fm2V(n)21Fm2,x((λ+v)V(n)23V(n)21)Fm2, (4.22)

    which can yield the second expression in (4.21). By the same method, the third expression can be obtained.

    By using (4.1), (4.2), (4.12), (4.16) and (4.21), one can compute

    ϕ2(P,x,tr)=y2V(n)13y(Am+V(n)13Rm)+BmEm2=V(n)13y2y(Am+V(n)13Rm)+13(Em2,x+uEm2+2V(n)13Sm+RmAm)Em2=Em2,x3Em2+2V(n)13(3y22yRm+Sm)3Em2+u3 =λμjμj,xλμj+O(1) =λμjxln(λμj)+O(1). (4.23)

    On the other hand,

    ˜V(r)11+˜V(r)12ϕ2+λ˜V(r)13ϕ3=1Em2[13Em2,tr+(˜V(r)12V(n)13˜V(r)13V(n)12)(y2yRm+23Sm)+131utrEm2(˜V(r)12Am˜V(r)13Am)(y13Rm)]=μj,trλμj+O(1)=λμjtrln(λμj)+O(1). (4.24)

    Consequently,

    ψ1(P,x,x0,tr,t0,r)=exp(xx0[ϕ2(P,x,tr)]dx+trt0,rIr(P,x0,t)dt)=λμj(x,tr)λμj(x0,t0,r)O(1)={(λμj(x0,t0,r))1O(1),Pˆμj(x0,t0,r)ˆμj(x,tr),(λμj(x,tr))O(1),Pˆμj(x,tr)ˆμj(x0,t0,r),O(1),Pˆμj(x,tr)=ˆμj(x0,t0,r), (4.25)

    where O(1)0. So ˆμ1(x,tr),,ˆμm2(x,tr) are m2 zeros of ψ1(P,x,x0,tr,t0,r), and ˆμ1(x0,t0,r), ,ˆμm2(x0,t0,r) are m2 poles of ψ1 on Km2.

    We will study the solutions for the three-component Burgers hierarchy in this section. The period lattice Tm2 = {z_Cm2z_=N_+M_τ,N_,M_Zm2}. The Jacobian variety Jm2 of Km2 is defined by Cm2/Tm2. The Abel map A_:Km2Jm2 is as follows:

    A_(P)=(PQ0ω1,,PQ0ωm2)(modTm2), (5.1)

    and it can be extended to Div(Km2):

    A_(nkPk)=nkA_(Pk). (5.2)

    Define

    ρ_(1)(x,tr)=A_(m2k=1ˆμk(x,tr))=m2k=1ˆμk(x,tr)Q0ω_,ρ_(2)(x,tr)=A_(m2k=1ˆνk(x,tr))=m2k=1ˆνk(x,tr)Q0ω_,ρ_(3)(x,tr)=A_(m2k=1ˆξk(x,tr))=m2k=1ˆξk(x,tr)Q0ω_.

    Then, the Riemann theta function

    θ(z_)=N_Zm2exp{πiN_τ,N_+2πiN_,z_}, (5.3)

    where , is the Euclidean scalar product and z_=(z1,,zm2)Cm2.

    For simplicity, we introduce a function z_:Km2×σm2Km2Cm2,

    z_(P,Q_)=Λ_A_(P)+QQ_D(Q)A_(Q),PKm2,  Q_σm2Km2,

    in which the vector of the Riemann constant Λ_=(Λ1,,Λm2) only depends on Q0, and

    Λj=12(1+τjj)m2l=1ljalωl(P)PQ0ωj,j=1,2,,m2;

    then,

    θ(z_(P,Q_))=θ(Λ_A_(P)+A_(Q)),  PKm2.

    Using the above preparations, we can give the solutions for the three-component Burgers hierarchy.

    Theorem 5.1. Suppose that Km2 is nonsingular and ΩμC2 is connected and open. Let (x,tr),(x0,t0,r)Ωμ and PKm2{P1,P2}. If Dˆμ_(x,tr), Dˆξ_(x,tr) or Dˆν_(x,tr) is nonspecial, then

    (i)

    ϕ2(P,x,tr)=θ(z_(P2,ˆμ_(x,tr)))θ(z_(P,ˆμ_(x,tr)))θ(z_(P,ˆν_(x,tr)))θ(z_(P2,ˆν_(x,tr)))exp(e1,2(Q0)PQ0ω(3)P2,ˆν0), (5.4)
    ϕ3(P,x,tr)=θ(z_(P1,ˆμ_(x,tr)))θ(z_(P,ˆμ_(x,tr)))θ(z_(P,ˆξ_(x,tr)))θ(z_(P1,ˆξ_(x,tr)))exp(e2,1(Q0)PQ0ω(3)P0,P2); (5.5)

    (ii)

    u(x,tr)=2m2j=1d(2)j,0zjlnθ(z_(P2,ˆξ_(x,tr)))θ(z_(P2,ˆμ_(x,tr)))+2ω20w2wxw, (5.6)
    v(x,tr)=w2+uwwxω10m2j=1d(1)j,0zjlnθ(z_(P1,ˆξ_(x,tr)))θ(z_(P1,ˆμ_(x,tr))), (5.7)
    w(x,tr)=θ(z_(P1,ˆμ_(x,tr)))θ(z_(P1,ˆξ_(x,tr)))θ(z_(P2,ˆξ_(x,tr)))θ(z_(P2,ˆμ_(x,tr)))exp(e2,1(Q0)e2,2(Q0)); (5.8)

    (iii)

    ψ1(P,x,x0,tr,t0,r)=θ(z_(P,ˆμ_(x,tr)))θ(z_(P2,ˆμ_(x,tr)))θ(z_(P2,ˆμ_(x0,t0,r)))θ(z_(P,ˆμ_(x0,t0,r)))×exp((e(2)2(Q0)PQ0Ω(2)2(P))(xx0)12(Δ1+Δ2)+(trt0,r)(˜e(2)2(Q0)PQ0˜Ω(2)2r+3(P)+˜αr+1)). (5.9)

    Proof. (ⅰ) From (4.17), we can know that ˆμ1,,ˆμm2, P2 are simple poles of ϕ2 and ˆν0,ˆν1,,ˆνm2 are simple poles of ϕ2. So, one infers the following:

    ϕ2(P,x,tr)=N(x,tr)θ(z_(P,ˆν_(x,tr)))θ(z_(P,ˆμ_(x,tr)))exp(PQ0ω(3)P2,ˆν0(P)); (5.10)

    then, we need to determine the expression of N(x,tr).

    From (3.6), combining the expressions of ϕ2 near P2, we have

    N(x,tr)=θ(z_(P2,ˆμ_(x,tr)))θ(z_(P2,ˆν_(x,tr)))exp(e1,2(Q0)), (5.11)

    so (5.4) holds. Equation (5.5) can be proved by using a similar method.

    (ⅱ) By (5.5), as PP1,

    θ(z_(P,ˆξ_(x,tr)))θ(z_(P,ˆμ_(x,tr)))=ζ0θ(z_(P1,ˆξ_(x,tr)))θ(z_(P1,ˆμ_(x,tr)))(1m2j=1d(1)j,0zjlnθ(z_(P1,ˆξ_(x,tr)))θ(z_(P1,ˆμ_(x,tr)))ζ+O(ζ2)); (5.12)

    as PP2,

    θ(z_(P,ˆξ_(x,tr)))θ(z_(P,ˆμ_(x,tr)))=ζ0θ(z_(P2,ˆξ_(x,tr)))θ(z_(P2,ˆμ_(x,tr)))(1m2j=1d(2)j,0zjlnθ(z_(P2,ˆξ_(x,tr)))θ(z_(P2,ˆμ_(x,tr)))ζ+O(ζ2)). (5.13)

    Hence, for PP1,

    ϕ3(P,x,tr)=(1ω10ζ+O(ζ2))(1m2j=1d(1)j,0zjlnθ13θ11ζ+O(ζ2)); (5.14)

    for PP2,

    ϕ3(P,x,tr)=ζ(1ω20ζ+O(ζ2))exp(e2,1(Q0)e2,2(Q0))×θ11θ23θ13θ21(1m2j=1d(2)j,0zjlnθ23θ21ζ+O(ζ2)), (5.15)

    with θs1=θ(z_(Ps,ˆμ_(x,tr))) and θs3=θ(z_(Ps,ˆξ_(x,tr))),s=1,2. Combining (3.6), (3.7), (5.14) and (5.15), we can get (5.6)–(5.8).

    (ⅲ) Let Ψ1 be the right hand of (5.9). We will prove that ψ1=Ψ1. Applying Proposition 4.2, we find that ψ1 and Ψ1 have the same zeros and poles. Based on the Riemann-Roch theorem, we infer that Ψ1ψ1=γ for some constant γ. From (3.27), we get

    Ψ1(P,x,x0,tr,t0,r)ψ1(P,x,x0,tr,t0,r)=ζ0exp(ζ1(xx0))exp(ζ1(xx0))×exp{[rl=0(˜αrlζ2(l+1)+˜βrlζ(2l+1))+˜αr+1](trt0,r)12(Δ1+Δ2)+O(ζ)}(1+O(ζ))exp{[rl=0(˜αrlζ2(l+1)+˜βrlζ(2l+1))+˜αr+1](trt0,r)12(Δ1+Δ2)+O(ζ)}=ζ01+O(ζ),  PP2. (5.16)

    Hence, γ=1, and (5.9) holds.

    Theorem 5.2. Let (x0,t0,r),(x,tr)C2. Then

    ρ_(1)(x,tr)=ρ_(1)(x0,t0,r)+(xx0)U_(2)2+(trt0,r)˜U_(2)2r+3(modTm2), (5.17)
    ρ_(2)(x,tr)=A_(ˆν0(x,tr))+A_(ˆν0(x0,t0,r))+ρ_(2)(x0,t0,r)+(xx0)U_(2)2+(trt0,r)˜U_(2)2r+3(modTm2), (5.18)
    ρ_(3)(x,tr)=ρ_(3)(x0,t0,r)+(xx0)U_(2)2+(trt0,r)˜U_(2)2r+3(modTm2). (5.19)

    Proof. Set

    Ω(x,x0,tr,t0,r)=λln(ψ1(P,x,x0,tr,t0,r))dλ. (5.20)

    By (5.9), we have

    Ω(x,x0,tr,t0,r)=˜ω(xx0)Ω(2)2(trt0,r)˜Ω(2)2r+3+m2j=1ω(3)ˆμj(x,tr),ˆμj(x0,t0,r), (5.21)

    where for some ejC, ˜ω=m2j=1ejωj. Since ψ1 is single-valued function, all a- and b-periods of Ω are integer multiples of 2πi; so, for some Mk,NkZ,

    2πiMk=akΩ(x,x0,tr,t0,r)=ak˜ω=ek,  k=1,,m2. (5.22)
    2πiNk=bkΩ(x,x0,tr,t0,r)=bk˜ω(xx0)bkΩ(2)2(trt0,r)bk˜Ω(2)2r+3+m2j=1bkω(3)ˆμj(x,tr),ˆμj(x0,t0,r)=2πim2j=1Mjbkωj(xx0)bkΩ(2)2(trt0,r)bk˜Ω(2)2r+3+2πim2j=1ˆμj(x,tr)ˆμj(x0,t0,r)ωk. (5.23)

    So,

    N_=M_τ(xx0)U_(2)2(trt0,r)˜U_(2)2r+3+m2j=1ˆμj(x,tr)Q0ω_m2j=1ˆμj(x0,t0,r)Q0ω_, (5.24)

    where N_=(N1,,Nm2) and M_=(M1,,Mm2)Zm2.

    Thus, (5.24) has the equivalent form of (5.17). The other two equations in (5.18) and (5.19) can be obtained in the same way.

    The authors declare that they have not used artificial intelligence tools in the creation of this article.

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 12101418, 11931017, 11871440, 11971442).

    All authors declare no conflict of interest that may affect the publication of this paper.



    [1] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equation and Inverse Scattering, Cambridge: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511623998
    [2] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Berlin: Springer, 1994.
    [3] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of Solitons, the Inverse Scattering Method, New York: Consultants Bureau, 1984.
    [4] Y. Kosmann-Schwarzbach, B. Grammaticos, K. M. Tamizhmani, Integrability of Nonlinear Systems, Berlin: Springer, 1997.
    [5] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Singapore: World Scientific, 2003. http://dx.doi.org/10.1142/5108
    [6] B. A. Dubrovin, Theta functions and non-linear equations, Russian Math. Surveys, 36 (1981), 11–92. http://dx.doi.org/10.1070/RM1981v036n02ABEH002596 doi: 10.1070/RM1981v036n02ABEH002596
    [7] E. Date, S. Tanaka, Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice, Progr. Theoret. Phys. Suppl., 59 (1976), 107–125. http://dx.doi.org/10.1143/PTPS.59.107 doi: 10.1143/PTPS.59.107
    [8] E. Date, S. Tanaka, Analogue of inverse scattering theory for the discrete Hill's equation and exact solutions for the periodic Toda lattice, Prog. Theor. Phys., 55 (1976), 457–465. http://dx.doi.org/10.1143/ptp.55.457 doi: 10.1143/ptp.55.457
    [9] J. S. Geronimo, F. Gesztesy, H. Holden, Algebro-geometric solutions of the Baxter-Szegő difference equation, Commun. Math. Phys., 258 (2005), 149–177. http://dx.doi.org/10.1007/s00220-005-1305-x doi: 10.1007/s00220-005-1305-x
    [10] C. W. Cao, Y. T. Wu, X. G. Geng, Relation between the Kadometsev-Petviashvili equation and the confocal involutive system, J. Math. Phys., 40 (1999), 3948–3970. http://dx.doi.org/10.1063/1.532936 doi: 10.1063/1.532936
    [11] X. G. Geng, C. W. Cao, Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions, Nonlinearity, 14 (2001), 1433–1452. http://dx.doi.org/10.1088/0951-7715/14/6/302 doi: 10.1088/0951-7715/14/6/302
    [12] F. Gesztesy, H. Holden, Algebro-geometric solutions of the Camassa-Holm hierarchy, Rev. Math. Iberoam., 19 (2003), 73–142.
    [13] H. Lundmark, J. Szmigielski, An inverse spectral problem related to the Geng-Xue two-component peakon equation, Mem. Am. Math. Soc., 244 (2016), 1155. http://dx.doi.org/10.1090/memo/1155 doi: 10.1090/memo/1155
    [14] F. Gesztesy, H. Holden, Soliton Equations and Their Algebro-Geometric Solutions, Cambridge: Cambridge University Press, 2003.
    [15] H. Lundmark, J. Szmigielski, Dynamics of interlacing peakons (and shockpeakons) in the Geng-Xue equation, J. Integr. Sys., 2 (2017), xyw014. http://dx.doi.org/10.1093/INTEGR/XYW014 doi: 10.1093/INTEGR/XYW014
    [16] A. R. Its, V. B. Matveev, Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation, Theoret. Math. Phys., 23 (1975), 343–355. http://dx.doi.org/10.1007/BF01038218 doi: 10.1007/BF01038218
    [17] X. G. Geng, H. Liu, The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation, J. Nonlinear Sci., 28 (2018), 739–763. http://dx.doi.org/10.1007/s00332-017-9426-x doi: 10.1007/s00332-017-9426-x
    [18] R. Dickson, F. Gesztesy, K. Unterkofler, A new approach to the Boussinesq hierarchy, Math. Nachr., 198 (1999), 51–108. http://dx.doi.org/10.1002/mana.19991980105 doi: 10.1002/mana.19991980105
    [19] R. Dickson, F. Gesztesy, K. Unterkofler, Algebro-geometric solutions of the Boussinesq hierarchy, Rev. Math. Phys., 11 (1999), 823–879. http://dx.doi.org/10.1142/S0129055X9900026X doi: 10.1142/S0129055X9900026X
    [20] X. G. Geng, L. H. Wu, G. L. He, Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions, Phys. D, 240 (2011), 1262–1288. http://dx.doi.org/10.1016/j.physd.2011.04.020 doi: 10.1016/j.physd.2011.04.020
    [21] G. L. He, L. H. Wu, X. G. Geng, Finite genus solutions to the mixed Boussinesq equation, Sci. Sin. Math., 42 (2012), 711–734. http://dx.doi.org/10.1360/012011-848 doi: 10.1360/012011-848
    [22] X. G. Geng, Y. Y. Zhai, H. H. Dai, Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy, Adv. Math., 263 (2014), 123–153. http://dx.doi.org/10.1016/j.aim.2014.06.013 doi: 10.1016/j.aim.2014.06.013
    [23] M. X. Jia, X. G. Geng, J. Wei, Y. Y. Zhai, H. Liu, Coupled discrete Sawada-Kotera equations and their explicit quasi-periodic solutions, Anal. Math. Phys., 11 (2021), 140. http://dx.doi.org/10.1007/s13324-021-00577-2 doi: 10.1007/s13324-021-00577-2
    [24] L. H. Wu, X. G. Geng, G. L. He, Algebro-geometric solutions to the Manakov hierarchy, Appl. Anal., 95 (2016), 769–800. http://dx.doi.org/10.1080/00036811.2015.1031220 doi: 10.1080/00036811.2015.1031220
    [25] X. G. Geng, J. Wei, Three-sheeted Riemann surface and solutions of the Itoh-Narita-Bogoyavlensky lattice hierarchy, Rev. Math. Phys., 34 (2022), 2250009. http://dx.doi.org/10.1142/S0129055X2250009X doi: 10.1142/S0129055X2250009X
    [26] X. G. Geng, H. Wang, Algebro-geometric constructions of quasi-periodic flows of the Newell hierarchy and applications, IMA J. Appl. Math., 82 (2017), 97–130. http://dx.doi.org/10.1093/imamat/hxw008 doi: 10.1093/imamat/hxw008
    [27] W. Liu, X. G. Geng, B. Xue, Three-component generalisation of Burgers equation and its bi-Hamiltonian structures, Z. Naturforsch. A, 72 (2017), 469–475. http://dx.doi.org/10.1142/S0217984917502992 doi: 10.1142/S0217984917502992
    [28] J. M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion, Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect. 1., 17 (1939).
    [29] T. Su, Explicit solutions for a modified 2+1-dimensional coupled Burgers equation by using Darboux transformation, Appl. Math. Lett., 69 (2017), 15–21. http://dx.doi.org/10.1016/j.aml.2017.01.014 doi: 10.1016/j.aml.2017.01.014
    [30] C. W. Cao, X. G. Geng, H. Y. Wang, Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable, J. Math. Phys., 43 (2002), 621–643. http://dx.doi.org/10.1063/1.1415427 doi: 10.1063/1.1415427
    [31] A. M. Wazwaz, Multiple-front solutions for the Burgers equation and the coupled Burgers equations, Appl. Math. Comput., 190 (2007), 1198–1206. http://dx.doi.org/10.1016/j.amc.2007.02.003 doi: 10.1016/j.amc.2007.02.003
    [32] P. Griffiths, J. Harris, Principles of Algebraic Geometry, New York: Wiley, 1994. http://dx.doi.org/10.1002/9781118032527
    [33] D. Mumford, Tata Lectures on Theta II, Boston, Mass: Birkhäuser, 1984.
    [34] H. M. Farkas, I. Kra, Riemann Surfaces, New York: Springer, 1992. http://dx.doi.org/10.1007/978-1-4612-2034-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1242) PDF downloads(44) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog