Processing math: 86%
Research article Special Issues

Composition operators from harmonic H space into harmonic Zygmund space

  • This research paper sought to characterize the boundedness and compactness of composition operators from the space H of bounded harmonic mappings into harmonic Zygmund space ZH, on the open unit disk. Furthermore, we obtain an estimate of the essential norms of such an operator. These results extends the similar results that were proven for composition operators on analytic function spaces.

    Citation: Munirah Aljuaid, Mahmoud Ali Bakhit. Composition operators from harmonic H space into harmonic Zygmund space[J]. AIMS Mathematics, 2023, 8(10): 23087-23107. doi: 10.3934/math.20231175

    Related Papers:

    [1] A. Kamal, M. Hamza. Eissa . A new product of weighted differentiation and superposition operators between Hardy and Zygmund Spaces. AIMS Mathematics, 2021, 6(7): 7749-7765. doi: 10.3934/math.2021451
    [2] Songxiao Li, Jizhen Zhou . Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space. AIMS Mathematics, 2021, 6(4): 3305-3318. doi: 10.3934/math.2021198
    [3] Qian Ding . Commuting Toeplitz operators and H-Toeplitz operators on Bergman space. AIMS Mathematics, 2024, 9(1): 2530-2548. doi: 10.3934/math.2024125
    [4] Cheng-shi Huang, Zhi-jie Jiang, Yan-fu Xue . Sum of some product-type operators from mixed-norm spaces to weighted-type spaces on the unit ball. AIMS Mathematics, 2022, 7(10): 18194-18217. doi: 10.3934/math.20221001
    [5] Aydah Mohammed Ayed Al-Ahmadi . Differences weighted composition operators acting between kind of weighted Bergman-type spaces and the Bers-type space -I-. AIMS Mathematics, 2023, 8(7): 16240-16251. doi: 10.3934/math.2023831
    [6] Yan Wang, Xintian Dong, Fanghui Liao . Weak Hardy spaces associated with para-accretive functions and their applications. AIMS Mathematics, 2024, 9(11): 30572-30596. doi: 10.3934/math.20241476
    [7] Suixin He, Shuangping Tao . Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces. AIMS Mathematics, 2022, 7(1): 1000-1014. doi: 10.3934/math.2022060
    [8] Houcine Sadraoui, Borhen Halouani . Commuting Toeplitz operators on weighted harmonic Bergman spaces and hyponormality on the Bergman space of the punctured unit disk. AIMS Mathematics, 2024, 9(8): 20043-20057. doi: 10.3934/math.2024977
    [9] Caihuan Zhang, Shahid Khan, Aftab Hussain, Nazar Khan, Saqib Hussain, Nasir Khan . Applications of q-difference symmetric operator in harmonic univalent functions. AIMS Mathematics, 2022, 7(1): 667-680. doi: 10.3934/math.2022042
    [10] Jie Zhou, Tianxiu Lu, Jiazheng Zhao . The expansivity and sensitivity of the set-valued discrete dynamical systems. AIMS Mathematics, 2024, 9(9): 24089-24108. doi: 10.3934/math.20241171
  • This research paper sought to characterize the boundedness and compactness of composition operators from the space H of bounded harmonic mappings into harmonic Zygmund space ZH, on the open unit disk. Furthermore, we obtain an estimate of the essential norms of such an operator. These results extends the similar results that were proven for composition operators on analytic function spaces.



    Let D:={ζC:|ζ|<1} be the open unit disk in the complex plane. A harmonic mapping with domain D is a complex-valued function u such that

    Δu:=42uζ¯ζ0.

    In this paper, we denote H(D) as the space consisting of analytic functions on the unit disk, Har(D) as the space consisting of harmonic mappings.

    The harmonic mapping u always a representation of the form h+¯v, where h and v are analytic functions. Up to an additive constant, this representation is unique. Therefore, uHar(D) if and only if u=h+¯v, where h,vH(D) and v(0)=0.

    For a general reference on the theory of harmonic functions, see [8]. Harmonic mappings appear regularly and play a fundamental role in math, physics and engineering; see e.g., [5], [6], [7], [15], and [22].

    The composition operator Cφ induced by analytic or conjugate analytic self-maps of D is defined as the operator

    Cφu=uφ,uHar(D).

    Obviously, such an operator preserves harmonicity.

    Recall that, for any two normed linear spaces X and Y, the linear operator T:XY is said to be bounded if there exists C>0 such that TuYCuX,uX. Furthermore, a linear operator T:XY is said to be compact if it maps every bounded set in X to a relatively compact set in Y (i.e., a set whose closure is compact).

    The operator theory has been characterized for spaces of analytic functions in different settings and a significant number of related papers have appeared in the literature (see, for example, [9], [11], [14], and [18]). However, a similar investigation of the harmonic setting remains limited.

    In [1], we have examined numerous characterizations of the weighted Bloch spaces and closed separable subspaces of harmonic mappings. We then presented the relationships between the weighted harmonic Bloch space and its Carleson measure. In [2], Aljuaid and Colonna studied the weighted Bloch space as the Banach space for harmonic mappings on an open unit disk. They showed that the mappings in weighted Bloch space can be characterized in terms of a Lipschitz condition relative to the metric and can also be thought of as the harmonic growth space. Besides, in [4] they studied the harmonic Zygmund spaces and their closed separable subspace called the little harmonic Zygmund space. In [13], Colonna introduced and studied Bloch harmonic mappings on D as Lipschitz maps from the hyperbolic disk into C. In [20], Lusky investigated weighted spaces of harmonic functions on D and, in [21], isomorphism classes of weighted spaces of holomorphic and harmonic functions with a radial weight on C and on D. In [23], Yoneda studied harmonic Bloch spaces and harmonic Besov spaces. Characterizations of the isometries between weighted spaces of harmonic functions were provided by Boyd and Rueda in [10]. In [17], Jordá and Zarco studied Banach spaces of harmonic functions and composition operators between weighted Banach spaces of pluriharmonic functions. Isomorphisms on weighted Banach spaces of harmonic and holomorphic functions were treated in [16].

    Lately, studies on operator theory acting on spaces of harmonic mappings on the unit disk have been conducted. In [3], the composition operators were studied on the Banach spaces of harmonic mappings on D, including the weighted Bloch spaces, the growth spaces, the Zygmund space, the analytic Besov spaces, and the space BMOA. Shao et al. in [12] studied composition operators in the space of bounded harmonic functions D and then provided criteria for determining the essential norm of the difference between two composition operators. In [19], Laitila and Tylli characterized the weak compactness of the composition operators on vector-valued harmonic Hardy spaces and on the spaces of vector-valued Cauchy transforms for reflexive Banach spaces.

    Unlike what happens in the class of analytical functions which is closed under the customary composition, the usual composition product of two harmonic functions is not in general a harmonic function. This fact causes some problems which are studied for a long time in the space of analytical functions that do not make sense or are difficult to translate and treat on the set of complex harmonic functions with the tools of the complex variable. We give two typical examples: the theory of linear composition operators whose symbols are complex harmonic functions and the corresponding theory of iterations for complex harmonic functions.

    In this work, we are concerned with the operator-theoretic properties of composition operators between distinct spaces of harmonic mappings in order to overcome these difficulties. Specifically, we investigate the composition operators from the space of bounded harmonic mappings H into the harmonic Zygmund space ZH.

    The reason behind our study of the properties of composition operators between distinct spaces of harmonic mappings is the wide range of applications for different harmonic mappings, especially in operator theory.

    We start with several preliminaries used to derive the main results of this work. Then, we focus on the boundedness and compactness of the composition operators from H space into the harmonic Zygmund space ZH. We conclude by approximating the essential norm.

    The space of bounded harmonic mappings H. First, we denote H=H(D) as space consisting of all bounded harmonic mappings u on D equipped with the norm

    u=supζD|u(ζ)|.

    The harmonic Bloch space containing of all uHar(D) is defined such that

    βu:=supζD(1|ζ|2)(|u(ζ)ζ|+|u(ζ)¯ζ|)<. (1.1)

    If u is a harmonic Bloch mapping represented as u=h+ˉv, with h,vH(D), the Bloch seminorm βu can be characterized as

    βu=supζD(1|ζ|2)(|h(ζ)|+|v(ζ)|)<. (1.2)

    The quantity

    uBH:=|u(0)|+βu,

    yields a Banach space structure on BH, see [2].

    The harmonic Zygmund space containing of all uHar(D) such that uζ+u¯ζBH. Define

    uZH:=|u(0)|+|uζ(0)|+|u¯ζ(0)|+supζD(1|ζ|2)(|2uζ2(ζ)|+|2u¯ζ2(ζ)|),

    is a norm on ZH and ZH is a Banach space, see [4].

    Remark 1.1. When uH(D), the mapping uζ reduces to u and u¯ζ=2u¯ζ2=0. Thus, the collection of analytic functions in the space ZH is the classical Zygmund space Z and both norms are identical.

    Throughout this paper, we use the notation AB, which implies that there is a constant C>0 such that ACB. Therefore, when BAB, we use the notation AB, meaning that A and B are equivalent. Moreover, if AB then B<A<.

    Given nN, and uHar(D) be represented as u=h+ˉv, with h,vH(D). Let us define

    βnH(u)=supζD(1|ζ|2)n(|h(n)(ζ)|+|v(n)(ζ)|), (2.1)

    and

    βnH,0(u)=lim|ζ|1(1|ζ|2)n(|h(n)(ζ)|+|v(n)(ζ)|). (2.2)

    The following lemma as a result of Theorem 19 provided in [2] will help characterize the boundedness of the composition operators.

    Lemma 2.1. For uHar(D) represented as u=h+ˉv, with h,vH(D).

    (1) If uH then for any nN, βnH(u)u.

    (2) uBHβnH(u)<.

    (3) uBH,0βnH,0(u)=0.

    Let bD be a fixed and let 1k3. Then, for any ζD, we consider a set of functions hb,k as follows:

    hb,k(ζ)=(1|b|21¯bζ)k+(1|b|21b¯ζ)k. (2.3)

    For every kN, it can be demonstrated that hb,kH and supbDhb,kH1. Moreover, it is evident that lim|b|1hb,k=0 uniformly on compact subsets ¯DD. Recall the power series representations of hb,k are given as

    hb,k(ζ)=(1|b|2)kj=k1(jk1){(¯bζ)jk+1+(b¯ζ)jk+1}. (2.4)

    For all nN and 1k3, by direct calculation we know that

    nhb,kζn(ζ)=(n+k1)!(k1)![¯bn(1|b|2)k(1¯bζ)k+n];nhb,k¯ζn(ζ)=(n+k1)!(k1)![bn(1|b|2)k(1b¯ζ)k+n].

    Thus, we obtain

    nhb,kζn(b)=(n+k1)!(k1)!¯bn(1|b|2)n;nhb,k¯ζn(b)=(n+k1)!(k1)!bn(1|b|2)n. (2.5)

    Now, we are prepared to show and prove our fundamental theorem in this section.

    Theorem 2.1. Let φS(D). Then, Cφ:HZH is bounded if and only if

    supj0φj+¯φjZH<. (2.6)

    Proof. Let the sequence pj(w)=wj+¯wj for wD and when j0 is an integer. Since the sequence {pj} is bounded in the harmonic H space with pj1, if Cφ:HZH is bounded then for each j0 we have

    φj+¯φjZH=CφpjZHCφ.

    Therefore,

    supj0φj+¯φjZH<.

    Conversely, suppose that (2.6) holds and set

    L=supj0φj+¯φjZH<.

    Since the sequence pj(w)=wj+¯wj, Cφp0=(φ)0+(¯φ)0=2ZH and 2ZH=Cφp0ZHL. Note that for any ζD and uHar(D) represented as u=h+ˉv, with h,vH(D), |(Cφu)(0)|=|u(φ(0))|u. Therefore, because |φ(0)|<1 we note that

    |(Cφu)ζ(0)|+|(Cφu)¯ζ(0)|=|u(φ(0))ζφ(0)|+|u(φ(0))¯ζ¯φ(0)|=|h(φ(0))φ(0)|+|v(φ(0))¯φ(0)||φ(0)|(1|φ(0)|2)u<.

    On the other hand, for any ζD and uHar(D),

    |2(Cφu)ζ2(ζ)|=|2u(φ(ζ))ζ2[φ(ζ)]2+u(φ(ζ))ζφ(ζ)||φ(ζ)|2|2u(φ(ζ))ζ2|+|φ(ζ)||u(φ(ζ))ζ|;|2(Cφu)¯ζ2(ζ)|=|2u(φ(ζ))¯ζ2[¯φ(ζ)]2+u(φ(ζ))¯ζ¯φ(ζ)||φ(ζ)|2|2u(φ(ζ))¯ζ2|+|φ(ζ)||u(φ(ζ))¯ζ|.

    By adding the above expressions and multiplying by (1|ζ|2) we obtain

    (1|ζ|2)(|2(Cφu)ζ2(ζ)|+|2(Cφu)¯ζ2(ζ)|)(1|ζ|2)|φ(ζ)|2(|2u(φ(ζ))ζ2|+|2u(φ(ζ))¯ζ2|)+(1|ζ|2)|φ(ζ)|(|u(φ(ζ))ζ|+|u(φ(ζ))¯ζ|).

    Since uHar(D) can be represented as u=h+ˉv, with h,vH(D), by Lemma 2.1, we obtain

    (1|ζ|2)(|2(Cφu)ζ2(ζ)|+|2(Cφu)¯ζ2(ζ)|)(1|ζ|2)|φ(ζ)|2(|h(φ(ζ))|+|v(φ(ζ))|)+(1|ζ|2)|φ(ζ)|(|h(φ(ζ))+|v(φ(ζ))|)(1|ζ|2)|φ(ζ)|2(1|φ(ζ)|2)2β2H(u)+(1|ζ|2)|φ(ζ)|1|φ(ζ)|2βH(u)(L1+L2)u,

    where L1=(1|ζ|2)|φ(ζ)|2(1|φ(ζ)|2)2 and L2=(1|ζ|2)|φ(ζ)|1|φ(ζ)|2. To prove the boundedness, it suffices to show that the quantity L1+L2 is finite. Since Cφp1=φ+¯φ, for ζD, we have

    2(Cφp1)ζ2(ζ)=2(Cφp1)¯ζ2(ζ)=φ(ζ)+¯φ(ζ).

    Then,

    supζD(1|ζ|2)|φ(ζ)|14Cφp1ZHL4. (2.7)

    Moreover, since pj(w)=wj+¯wj with j0 is an integer, we have Cφp2=(φ)2+(¯φ)2,

    2[Cφp2(ζ)]ζ2=2(φ(ζ))2+2(¯φ(ζ))2+2φ(ζ)φ(ζ)+2¯φ(ζ)¯φ(ζ),2[Cφp2(ζ)]¯ζ2=2(¯φ(ζ))2+2(φ(ζ))2+2φ(ζ)φ(ζ)+2¯φ(ζ)¯φ(ζ).

    Since |φ(ζ)|1 for ζD, we have

    |φ(ζ)|218{|2[Cφp2(ζ)]ζ2|+|2[Cφp2(ζ)]¯ζ2|}+|φ(ζ)|.

    Thus,

    supζD(1|ζ|2)|φ(ζ)|218supζD(1|ζ|2)(|2[Cφp2(ζ)]ζ2|+|2[Cφp2(ζ)]¯ζ2|)+supζD(1|ζ|2)|φ(ζ)|18Cφp2ZH+14Cφp1ZH3L8. (2.8)

    On the other hand, by the linearity of the test function (2.4) for k=1,2,3 and ζD, we have

    Cφhφ(ζ),kZH(1|φ(ζ)|2)kj=k1(jk1)|φ(ζ)|jk+1Cφpjk+1ZH2kL. (2.9)

    From (2.5), for k=1,2,3 and ζD, we obtain

    2[Cφhφ(ζ),k(ζ)]ζ2=k(k+1)(φ(ζ)+¯φ(ζ)1|φ(ζ)|2)2[φ(ζ)]2+k(φ(ζ)+¯φ(ζ)1|φ(ζ)|2)φ(ζ),2[Cφhφ(ζ),k(ζ)]¯ζ2=k(k+1)(φ(ζ)+¯φ(ζ)1|φ(ζ)|2)2[¯φ(ζ)]2+k(φ(ζ)+¯φ(ζ)1|φ(ζ)|2)¯φ(ζ).

    Thus, for k=1,2,3, we let

    Qφ(ζ),k=2[Cφhφ(ζ),k(ζ)]ζ2+2[Cφhφ(ζ),k(ζ)]¯ζ2=k(k+1)(φ(ζ)+¯φ(ζ)1|φ(ζ)|2)2([φ(ζ)]2+[¯φ(ζ)]2)+k(φ(ζ)+¯φ(ζ)1|φ(ζ)|2)(φ(ζ)+¯φ(ζ)). (2.10)

    Using (2.10) by subtracting, we get

    Qφ(ζ),12Qφ(ζ),2+Qφ(ζ),3=2(φ(ζ)+¯φ(ζ)1|φ(ζ)|2)2((φ(ζ))2+(¯φ(ζ))2). (2.11)

    On the other hand, using (2.9) and (2.11) we obtain

    (1|ζ|2)|φ(ζ)|2|φ(ζ)|2(1|φ(ζ)|2)2118supζD(1|ζ|2)(|Qφ(ζ),1|+2|Qφ(ζ),2|+|Qφ(ζ),3|)118(Cφhφ(ζ),1ZH+2Cφhφ(ζ),2ZH+Cφhφ(ζ),3ZH)L. (2.12)

    Now, we let 0<s<1. Then, if |φ(ζ)|>s in (2.12) we have

    (1|ζ|2)|φ(ζ)|2(1|φ(ζ)|2)2Ls2. (2.13)

    Conversely, if we let |φ(ζ)|s in (2.8), we have

    (1|ζ|2)|φ(ζ)|2(1|φ(ζ)|2)23L8(1s2). (2.14)

    From (2.13) and (2.14) it follows that the quantity L2 is finite.

    For the second time, we go back to (2.9) by subtracting we get

    2Qφ(ζ),2Qφ(ζ),3=(φ(ζ)+¯φ(ζ)1|φ(ζ)|2)(φ(ζ)+¯φ(ζ)), (2.15)

    which implies that

    (1|ζ|2)|φ(ζ)||φ(ζ)|1|φ(ζ)|214supζD(1|ζ|2){2|Qφ(ζ),2|+|Qφ(ζ),3|}14(2Cφhφ(ζ),2ZH+Cφhφ(ζ),3ZH)4L. (2.16)

    If we instead let 0<s<1, then if |φ(ζ)|>s in (2.16), we deduce

    (1|ζ|2)s|φ(ζ)|1|φ(ζ)|2(1|ζ|2)|φ(ζ)||φ(ζ)|1|φ(ζ)|24L.

    Thus,

    (1|ζ|2)|φ(ζ)|1|φ(ζ)|24Ls. (2.17)

    If we instead let |φ(ζ)|s in (2.7), we have

    (1|ζ|2)|φ(ζ)|1|φ(ζ)|2L4(1|φ(ζ)|2)L4(1s2). (2.18)

    Therefore, the quantity L1 is finite and so is the quantity L1+L2. The proof of Theorem 2.1 is complete.

    In this section, we focus on discussing the composition operators' compactness. We make use of the following lemma:

    Lemma 3.1. The bounded operator T:HZH is compact if and only if TumZH0 as m, for any bounded sequence {um}mN in H converges to zero uniformly on compact subsets ¯DD.

    Proof. We focus on demonstrating the sufficiency. Suppose that T:HZH is not compact. Then, there is a bounded sequence um in H such that {Tum} has no convergent subsequence. However, we know that every bounded sequence in H has a subsequence that converges uniformly on compact subsets ¯DD. Therefore, um has a subsequence u such that um(w)u(w) for wD, and because

    supwD|um(w)||u(w)|Cm=1,2,3,.

    Therefore, uH. The sequence (umu) is bounded in H and converges to zero uniformly on compact subsets ¯DD. If we assume T(umu)ZH0 as n, then the subsequence Tum of Tu converges in ZH, which is a contradiction.

    The following result indicates that the compactness of the composition operators can be characterized in terms of the sequence CφpjZH, where pj(w)=wj+¯wj.

    Theorem 3.1. Let φS(D) and assume that the operator Cφ:HZH is bounded. Then, Cφ:HZH is compact if and only if

    limjφj+¯φjZH=0. (3.1)

    Proof. As in the proof of Theorem 2.1, we let the sequence pj(w)=wj+¯wj, where wD and j0 is an integer. Since the sequence {pj} is bounded in the harmonic space H and converges to zero uniformly on compact subsets ¯DD, if Cφ:HZH is compact then it is a bounded operator and (3.1) holds.

    Conversely, assume the operator Cφ:HZH is bounded and limjφj+¯φjZH=0.

    Now, we define a sequence {hj} in the harmonic space H with L=supjNhj< and hj0 uniformly on compact subsets ¯DD, as j.

    To prove the compactness of Cφ:HZH, it suffices to show that limjhjZH=0.

    Next, we suppose CφpjZHL (L is an upper bound for CφpjZH). Then, for ε>0 there is NN such that

    φj+¯φjZH=CφpjZH<ε,jN.

    By using the test function (2.4), for k=1,2,3 and ζD, we have

    Cφhφ(ζ),kZH(1|φ(ζ)|2)k{[k+N2j=k1+j=k+N1](jk1)|φ(ζ)|jk+1Cφpjk+1ZH}<(1|φ(ζ)|2)k(k+N1N1)L+2kε.

    On the other hand, for any ζD let 0<s<1 be sufficiently close to 1 such that |φ(ζ)|>s. Thus,

    Cφhφ(ζ),kZH<2k+1ε,fork=1,2,3.

    Since ε is arbitrary, for k=1,2,3, it follows that

    lim|φ(ζ)|1Cφhφ(ζ),kZH=0. (3.2)

    Going back to the proof of Theorem 2.1, from (2.12) and (2.16), we know

    (1|ζ|2)|φ(ζ)|2(1|φ(ζ)|2)2Cφhφ(ζ),1ZH+2Cφhφ(ζ),2ZH+Cφhφ(ζ),3ZH18|φ(ζ)|2,(1|ζ|2)|φ(ζ)|1|φ(ζ)|22Cφhφ(ζ),2ZH+Cφhφ(ζ),3ZH4|φ(ζ)|. (3.3)

    Using (3.3), we have

    lim|φ(ζ)|1(1|ζ|2)|φ(ζ)|2(1|φ(ζ)|2)2=0,lim|φ(ζ)|1(1|ζ|2)|φ(ζ)|1|φ(ζ)|2=0.

    Thus, for any 0<s<1 sufficiently close to 1 if |φ(ζ)|>s. Then,

    (1|ζ|2)|φ(ζ)|2(1|φ(ζ)|2)2<ε,and(1|ζ|2)|φ(ζ)|1|φ(ζ)|2<ε. (3.4)

    By Lemma 2.1, if hmH, then βnH(hm)hm, for any mN. Thus, using (3.4), for |φ(w)|>s we have

    (1|ζ|2)(|2(Cφhm)ζ2(ζ)|+|2(Cφhm)¯ζ2(ζ)|)(1|ζ|2)|φ(ζ)|2(|2hm(φ(ζ))ζ2|+|2hm(φ(ζ))¯ζ2|)+(1|ζ|2)|φ(ζ)|(|hm(φ(ζ))ζ|+|hm(φ(ζ))¯ζ|)hm((1|ζ|2)|φ(ζ)|2(1|φ(ζ)|2)2+(1|ζ|2)|φ(ζ)|(1|φ(ζ)|2))εL. (3.5)

    Once again going back to the proof of Theorem 2.1, from (2.7) and (2.8), we know

    supζD(1|ζ|2)|φ(ζ)|L4andsupζD(1|ζ|2)|φ(ζ)|23L8. (3.6)

    We know by Cauchy's estimates that, the sequences {hmζ}, {hm¯ζ}, {2hmζ2} and {2hm¯ζ2} are convergent to zero on ¯D. Thus, using (3.6), for any 0<s<1 if |φ(ζ)|s, we obtain

    (1|ζ|2)(|2(Cφhm)ζ2(ζ)|+|2(Cφhm)¯ζ2(ζ)|)3L8(|2hm(φ(ζ))ζ2|+|2hm(φ(ζ))¯ζ2|)+L4(|hm(φ(ζ))ζ|+|hm(φ(ζ))¯ζ|), (3.7)

    which implies that

    limm(1|ζ|2)(|2(Cφhm)ζ2(ζ)|+|2(Cφhm)¯ζ2(ζ)|)limm|2hm(φ(ζ))ζ2|+limm|2hm(φ(ζ))¯ζ2|+limm|hm(φ(ζ))ζ|+limm|hm(φ(ζ))¯ζ|=0. (3.8)

    Therefore, limm|Cφhm(0)|=0 and limm|[Cφhm](0)¯ζ|=0. Thus, we obtain

    limmCφhmZH=0. (3.9)

    By Lemma 3.1, we verify that Cφ:HZH is compact. The proof of the main theorem of this section is complete.

    Our next goal of this paper is to provide an approximation of the essential norm.

    In this section, we characterize the essential norms of the composition operators from H to ZH. We know that the essential norm Te of an operator T is its distance from the compact operators in the operator norm. Consider X and Y to be Banach spaces and let T:XY be a bounded linear operator. Then, the essential norm of T between X and Y is given by

    Te,XY=inf{TTXY|T:XYiscompact}.

    Let bD be fixed and let 1k3 in (2.3). Then, for any ζD we obtain

    hb,k(ζ)=(1|b|21¯bζ)k+(1|b|21b¯ζ)k.

    Now, we define B1=lim sup|φ(w)|1(1|w|2)|φ(w)|(1|φ(w)|2) and B2=lim sup|φ(w)|1(1|w|2)|φ(w)|2(1|φ(w)|2)2.

    Theorem 4.1. Let φS(D) and consider Cφ:HZH is bounded. Then,

    Cφe,HZHmax1k3{lim sup|b|1Cφhb,k(ζ)ZH}max{B1,B2}.

    Proof. First, we prove that

    max1k3{lim sup|b|1Cφhb,kZH}Cφe,HZH.

    Fix bD since for all 1k3,hb,kH and hb,k converges uniformly to 0 on compact subsets ¯DD. Then, for a compact operator T:HZH we have

    lim|b|1Thb,kZH=0,k=1,2,3.

    Thus,

    CφTHZHlim sup|b|1(CφT)hb,kZHlim sup|b|1Cφhb,kZHlim sup|b|1Thb,kZH.

    Hence, we obtain

    Cφe,HZH=infTCφTmax1k3{lim sup|b|1Cφhb,kZH}.

    Next, to prove that Cφe,HZHmax{B1,B2} we define the sequence {wi} such that limi|φ(wi)|=1 for wiD and i0 is an integer.

    Moreover, we define

    Gi,1(ζ)=hφ(wi),1(ζ)53hφ(wi),2(ζ)+23hφ(wi),3(ζ),Gi,2(ζ)=hφ(wi),1(ζ)2hφ(wi),2(ζ)+hφ(wi),3(ζ).

    For all ζD, it can be proven that Gi,1,Gi,2H and lim|φ(wi)|1Gi,1=lim|φ(wi)|1Gi,2=0 uniformly on compact subsets ¯DD. By direct calculation, we see that Gi,1(φ(wi))=Gi,2(φ(wi))=0.

    By (2.5) we know that

    hφ(wi),1ζ(φ(wi))=¯φ(wi)(1|φ(wi)|2);hφ(wi),1¯ζ(φ(wi))=φ(wi)(1|φ(wi)|2),hφ(wi),2ζ(φ(wi))=2¯φ(wi)(1|φ(wi)|2);hφ(wi),2¯ζ(φ(wi))=2φ(wi)(1|φ(wi)|2),hφ(wi),3ζ(φ(wi))=3¯φ(wi)(1|φ(wi)|2);hφ(wi),3¯ζ(φ(wi))=3φ(wi)(1|φ(wi)|2).

    Moreover,

    2hφ(wi),1ζ2(φ(wi))=2(¯φ(wi))2(1|φ(wi)|2)2;2hφ(wi),1¯ζ2(φ(wi))=2(φ(wi))2(1|φ(wi)|2)2,2hφ(wi),2ζ2(φ(wi))=6(¯φ(wi))2(1|φ(wi)|2)2;2hφ(wi),2¯ζ2(φ(wi))=6(φ(wi))2(1|φ(wi)|2)2,2hφ(wi),3ζ2(φ(wi))=12(¯φ(wi))2(1|φ(wi)|2)2;2hφ(wi),3¯ζ2(φ(wi))=12(φ(wi))2(1|φ(wi)|2)2.

    Thus,

    |(Gi,1)ζ(φ(wi))|=|[hφ(wi),1(ζ)]ζ53[hφ(wi),2(ζ)]ζ+23[hφ(wi),3(ζ)]ζ|=13|φ(wi)|(1|φ(wi)|2),2(Gi,1)ζ2(φ(wi))=2hφ(wi),1ζ2(φ(wi))532hφ(wi),2ζ2(φ(wi))+232hφ(wi),3ζ2(φ(wi))=0.

    Moreover, we obtain

    (Gi,2)ζ(φ(wi))=2hφ(wi),1ζ2(φ(wi))22hφ(wi),2ζ2(φ(wi))+2hφ(wi),1ζ2(φ(wi))=0,|2(Gi,2)ζ2(φ(wi))|=|2hφ(wi),1ζ2(φ(wi))22hφ(wi),2ζ2(φ(wi))+2hφ(wi),3ζ2(φ(wi))|=2|φ(wi)|2(1|φ(wi)|2)2.

    Similarly,

    |(Gi,1)¯ζ(φ(wi))|=13|φ(wi)|(1|φ(wi)|2),2(Gi,1)¯ζ2(φ(wi))=0,|2(Gi,2)¯ζ2(φ(wi))|=2|φ(wi)|2(1|φ(wi)|2)2,(Gi,2)¯ζ(φ(wi))=0.

    Since T:HZH is a compact operator, by Lemma 3.1 we have

    CφTHZHlim supiCφGi,1ZHlim supiTGi,1ZH=lim supi(1|wi|2){|2(CφGi,1(ζ))ζ2|+|2(CφGi,1(ζ))¯ζ2|}=lim supi(1|wi|2)|φ(wi)|2{|2(Gi,1)ζ2(φ(wi))|+|2(Gi,1)¯ζ2(φ(wi))|}+lim supi(1|wi|2)|φ(wi)|{|(Gi,1)ζ(φ(wi))|+|(Gi,1)¯ζ(φ(wi))|}lim supi(1|wi|2)|φ(wi)||φ(wi)|(1|φ(wi)|2).

    Thus,

    Cφe,HZH=infTCφTlim supi(1|wi|2)|φ(wi)||φ(wi)|(1|φ(wi)|2)=lim sup|φ(w)|1(1|w|2)|φ(w)|(1|φ(w)|2)=B1.

    In the same way, we have

    CφTHZHlim supiCφGi,2ZHlim supiTGi,2ZH=lim supi(1|wi|2){|2(CφGi,2(ζ))ζ2|+|2(CφGi,2(ζ))¯ζ2|}=lim supi(1|wi|2)|φ(wi)|2{|2(Gi,2)ζ2(φ(wi))|+|2(Gi,2)¯ζ2(φ(wi))|}+lim supi(1|wi|2)|φ(wi)|{|(Gi,2)ζ(φ(wi))|+|(Gi,2)¯ζ(φ(wi))|}lim supi(1|wi|2)|φ(wi)|2|φ(wi)|2(1|φ(wi)|2)2.

    Thus,

    Cφe,HZH=infTCφTlim supi(1|wi|2)|φ(wi)|2|φ(wi)|2(1|φ(wi)|2)2=lim sup|φ(w)|1(1|w|2)|φ(w)|2(1|φ(w)|2)2=B2.

    Hence, we obtain

    Cφe,HZH=infTCφTmax{B1,B2}.

    Next, we prove that

    Cφe,HZHmax1k3{lim sup|b|1Cφhb,kZH}.

    For any 0δ<1, let the operator Tδ:Har(D)Har(D) such that

    (Tδu)(w)=uδ(w)=u(δw),uHar(D).

    Without a doubt, uδu uniform on compact subsets of the unit disk as δ1. Moreover, Tδ is a compact operator on H and TδHH1. For {δi}(0,1) a sequence such that δi1 as i. Thus, for all positive integers i, we obtain CφTδi:HZH is a compact operator.

    However, the definition of the essential norm indicates that

    Cφe,HZHlimisupCφCφTδiHZH. (4.1)

    Thus, we only need to demonstrate that

    lim supi(CφCφTδiHZHmax1k3{lim sup|b|1Cφhb,kZH}.

    Let uH such that u1. Then,

    (CφCφTδi)uZH=|u(φ(0))u(δiφ(0))|+|φ(0)|{|(uuδi)ζ(φ(0))|+|(uuδi)¯ζ(φ(0))|}+supζD(1|ζ|2){|2[(uuδi)φ(ζ)]ζ2|+|2[(uuδi)φ(ζ)]¯ζ2|}. (4.2)

    Thus, we have that

    limi|u(φ(0))u(δiφ(0))|=limi|(uuδi)ζ(φ(0))||φ(0)|=limi|(uuδi)¯ζ(φ(0))||φ(0)|=0. (4.3)

    Moreover, we consider

    lim supi(1|ζ|2){|2[(uuδi)φ(ζ)]ζ2|+|2[(uuδi)φ(ζ)]¯ζ2|}lim supisup|φ(ζ)|δN(1|ζ|2){|2[(uuδi)φ(ζ)]ζ2|+|2[(uuδi)φ(ζ)]¯ζ2|}+lim supisup|φ(ζ)|>δN(1|ζ|2){|2[(uuδi)φ(ζ)]ζ2|+|2[(uuδi)φ(ζ)]¯ζ2|}=Iφ,i+Jφ,i. (4.4)

    Now, let NN be large enough and δi12, for all iN. Then,

    Iφ,ilim supisup|φ(ζ)|δN(1|ζ|2)|φ(ζ)|{|[(uuδi)(φ(ζ))]ζ|+|[(uuδi)(φ(ζ))]¯ζ|}+lim supisup|φ(ζ)|δN(1|ζ|2)|φ(ζ)|2{|2[(uuδi)(φ(ζ))]ζ2|+|2[(uuδi)(φ(ζ))]¯ζ2|}.

    Since Cφ:HZH is bounded, from Theorem 2.1 we see that

    supζD(1|ζ|2)|φ(ζ)|<,supζD(1|ζ|2)|φ(ζ)|2<.

    Moreover, since the following limits are uniform on compact subsets ¯DD,

    limiδiuδiζ=uζ,limiδiuδi¯ζ=u¯ζ,limi(δi)22uδiζ2=2uζ2,limi(δi)22uδi¯ζ2=2u¯ζ2.

    Then, we have

    lim supisup|w|δN{|u(w)ζuδi(w)ζ|+|u(w)¯ζuδi(w)¯ζ|}=0,lim supisup|w|δN{|2u(w)ζ22uδi(w)ζ2|+|2u(w)¯ζ22uδi(w)¯ζ2|}=0.

    Hence, by the above equations we have

    Iφ,i=0. (4.5)

    Next, considering |φ(ζ)|>δN, we obtain

    Jφ,ilim supisup|φ(ζ)|>δN(1|ζ|2)|φ(ζ)|{|[(uuδi)(φ(ζ))]ζ|+|[(uuδi)(φ(ζ))]¯ζ|}+lim supisup|φ(ζ)|>δN(1|ζ|2)|φ(ζ)|2{|2[(uuδi)(φ(ζ))]ζ2|+|2[(uuδi)(φ(ζ))]¯ζ2|}lim supisup|φ(ζ)|>δN(1|ζ|2)|φ(ζ)|{|u(φ(ζ))ζ|+|u(φ(ζ))¯ζ|}+lim supisup|φ(ζ)|>δN(1|ζ|2)|φ(ζ)|δi{|u(δiφ(ζ))ζ|+|u(δiφ(ζ))¯ζ|}+lim supisup|φ(ζ)|>δN(1|ζ|2)|φ(ζ)|2{|2u(φ(ζ))ζ2|+|2u(φ(ζ))¯ζ2|}+lim supisup|φ(ζ)|>δN(1|ζ|2)|φ(ζ)|2(δi)2{|2u(δiφ(ζ))ζ2|+|2u(δiφ(ζ))]¯ζ2|}=lim supi4j=1Rj.

    Now we estimate the quantities R_{j}, where j = 1, 2, 3 . We define

    \begin{eqnarray*} G_{b,1}(\zeta)& = & h_{b,1}(\zeta) -\frac{5}{3}h_{b,2}(\zeta)+\frac{2}{3}h_{b,3}(\zeta),\\ G_{b,2}(\zeta)& = & h_{b,1}(\zeta) -2h_{b,2}(\zeta)+h_{b,3}(\zeta). \end{eqnarray*}

    By Lemma 2.1, since \beta_{H}(u) \preceq\|u\|_{\infty} for all u \in \mathcal{H}^{\infty} . Because \|u\|_{\infty} \leq 1 , we have

    \begin{eqnarray} R_{1}& = &\sup\limits_{|\varphi(\zeta)| > {\delta}_{N}} (1-|\zeta|^2)|\varphi''(\zeta)| \biggl\{\biggl| \frac{\partial u (\varphi(\zeta))}{\partial \zeta} \biggl| + \biggl| \frac{\partial u (\varphi(\zeta))}{\partial \overline{\zeta}} \biggl| \biggl\},\\ &\preceq& \frac{1}{{\delta}_{N}} \|u\|_{\infty} \sup\limits_{|\varphi(\zeta)| > {\delta}_{N}} (1-|\zeta|^2)|\varphi''(\zeta)| \frac{|\varphi(\zeta)|}{3(1-|\varphi(\zeta)|^2) }\\ &\preceq& \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}G_{b,1}\|_{\mathcal{Z}_H} \\ &\preceq& \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}h_{b,1}\|_{\mathcal{Z}_H} +\frac{5}{3} \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}h_{b,2}\|_{\mathcal{Z}_H}+ \frac{2}{3}\sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}h_{b,3}\|_{\mathcal{Z}_H}. \end{eqnarray} (4.6)

    Consequently,

    \begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{1} &\preceq& \sum\limits_{k = 1}^{3} \limsup\limits_{|b| \rightarrow 1} \|C_{\varphi}h_{b,k}\|_{\mathcal{Z}_H}. \end{eqnarray} (4.7)

    Similarly, we see that

    \begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{2} &\preceq& \sum\limits_{k = 1}^{3} \limsup\limits_{|b| \rightarrow 1} \|C_{\varphi}h_{b,k}\|_{\mathcal{Z}_H}. \end{eqnarray} (4.8)

    By direct calculation, \beta_{H}^2(u) \preceq\|u\|_{\infty} , for all u \in \mathcal{H}^{\infty} . Because \|u\|_{\infty} \leq 1 ,

    \begin{eqnarray} R_{3}& = & \sup\limits_{|\varphi(\zeta)| > {\delta}_{N}} (1-|\zeta|^2)|\varphi'(\zeta)|^2 \biggl\{\biggl| \frac{\partial^2u(\varphi(\zeta))}{\partial \zeta^2} \biggl|+\biggl| \frac{\partial^2 u(\varphi(\zeta))}{\partial\overline{\zeta}^2} \biggl| \biggl\},\\ &\preceq& \|u\|_{\infty} \sup\limits_{|\varphi(\zeta)| > {\delta}_{N}} (1-|\zeta|^2)|\varphi'(\zeta)|^2 \frac{2|\varphi(\zeta)|^2}{3(1-|\varphi(\zeta)|^2)^2 }\\ &\preceq& \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}G_{b,2}\|_{\mathcal{Z}_H} \\ &\preceq& \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}h_{b,1}\|_{\mathcal{Z}_H} +2 \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}h_{b,2}\|_{\mathcal{Z}_H}+ \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}h_{b,3}\|_{\mathcal{Z}_H}. \end{eqnarray} (4.9)

    Thus, we obtain

    \begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{3} &\preceq& \sum\limits_{k = 1}^{3} \limsup\limits_{|b| \rightarrow 1} \|C_{\varphi}h_{b,k}\|_{\mathcal{Z}_H}. \end{eqnarray} (4.10)

    Similarly, we see that

    \begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{4} &\preceq& \sum\limits_{k = 1}^{3} \limsup\limits_{|b| \rightarrow 1} \|C_{\varphi}h_{b,k}\|_{\mathcal{Z}_H}. \end{eqnarray} (4.11)

    By the inequalities (4.7)-(4.11), we obtain

    \begin{eqnarray} J_{\varphi,i} &\preceq& \max\limits_{1\leq k \leq3}\bigl\{\limsup\limits_{|b| \rightarrow 1} \|C_\varphi h_{b,k}\|_{\mathcal{Z}_H}\bigl\}. \end{eqnarray} (4.12)

    Hence, by applying (4.5) and (4.12) we determine that

    \begin{eqnarray*} \limsup\limits_{i \rightarrow \infty} \|(C_\varphi -C_\varphi \mathcal{T}_{{\delta}_i} \|_{\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H}\preceq \max\limits_{1\leq k \leq3}\bigl\{\limsup\limits_{|b| \rightarrow 1} \|C_\varphi h_{b,k}\|_{\mathcal{Z}_H}\bigl\}. \end{eqnarray*}

    Finally, we prove that

    \begin{eqnarray*} \|C_{\varphi} \|_{e,\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H}\preceq\max \{ B_1, B_2\}. \end{eqnarray*}

    According to the definition of the essential norm, we only need to prove that

    \begin{eqnarray*} \limsup\limits_{i \rightarrow \infty} \|C_\varphi -C_\varphi \mathcal{T}_{{\delta}_i} \|_{\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H}\preceq \max\{B_1, B_2\}. \end{eqnarray*}

    From (4.6), we see that

    \begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{1} &\preceq& \limsup\limits_{|\varphi(\zeta)| \rightarrow 1} (1-|\zeta|^2)|\varphi''(\zeta)| \frac{|\varphi(\zeta)|}{(1-|\varphi(\zeta)|^2) } = B_2. \end{eqnarray} (4.13)

    Similarly,

    \begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{2} &\preceq& B_2. \end{eqnarray} (4.14)

    Moreover, for (4.9), we see that

    \begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{3}&\preceq& \limsup\limits_{|\varphi(\zeta)| \rightarrow 1} (1-|\zeta|^2)|\varphi'(\zeta)|^2 \frac{2|\varphi(\zeta)|^2}{3(1-|\varphi(\zeta)|^2)^2 } = B_1. \end{eqnarray} (4.15)

    Similarly,

    \begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{4}&\preceq& B_1. \end{eqnarray} (4.16)

    Hence, by the inequalities (4.13)-(4.16) we obtain

    \begin{eqnarray*} \|C_{\varphi} \|_{e,\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H}\preceq\max \{ B_1, B_2\}. \end{eqnarray*}

    The proof is complete.

    Theorem 4.2. Let \varphi\in S(\mathbb{D}) such that C_{\varphi}: \mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H is bounded. Then,

    \begin{eqnarray*} \|C_{\varphi} \|_{e, \mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H} \approx \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray*}

    Proof. First, we prove that

    \begin{eqnarray*} \|C_{\varphi} \|_{e,\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H} \succeq \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray*}

    Set the sequence p_j(w) = w^j+\overline{w}^j , for w\in\mathbb{D} and when j\ge0 is an integer. Then, \|p_j\|_{\infty} = 1 and p_j converges uniformly to 0 on compact subsets \mathbb{\overline D} \subset \mathbb{D} . Therefore, by Lemma 3.1 we see that

    \begin{eqnarray*} \lim\limits_{j\to\infty}\|\mathcal{T} p_j\|_{\mathcal{Z}_H} = 0. \end{eqnarray*}

    Hence,

    \begin{eqnarray*} \|C_{\varphi}-\mathcal{T}\|_{ \mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H}\succeq \limsup\limits_{j \rightarrow \infty} \|(C_\varphi -\mathcal{T})p_j\|_{\mathcal{Z}_H}\succeq \limsup\limits_{j \rightarrow \infty}\|C_\varphi p_j\|_{\mathcal{Z}_H}. \end{eqnarray*}

    Therefore,

    \begin{eqnarray} \|C_{\varphi} \|_{e, \mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H} \succeq \limsup\limits_{j \rightarrow \infty} \|C_\varphi p_j\|_{\mathcal{Z}_H} = \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray} (4.17)

    Next, we prove that

    \|C_{\varphi} \|_{e,\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H} \preceq \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}.

    Since C_{\varphi}: \mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H is bounded, by Theorem 2.1

    \begin{eqnarray*} L: = \sup\limits_{j\geq 0}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H} < \infty. \end{eqnarray*}

    Now, consider the test function h_{b, k} with b \in \mathbb{D} in (2.4), for k = 1, 2, 3 . By linearity of C_{\varphi} , for any fixed positive integer n \geq 2 , we have

    \begin{eqnarray*} \|C_{\varphi}h_{b,1}\|_{\mathcal{Z}_H} &\leq& (1-|b|^2) \sum\limits_{j = 0}^{\infty} |b|^{j} \|C_{\varphi} p_{j}\|_{\mathcal{Z}_H}\nonumber\\ & = & (1-|b|^2) \biggl[ \biggl\{ \sum\limits_{j = 0}^{n-1} + \sum\limits_{j = n}^{\infty} \biggl\} |b|^{j} \|C_{\varphi} p_{j}\|_{\mathcal{Z}_H} \biggl]\nonumber\\ &\leq&n L (1-|b|^2)+ 2\sup\limits_{j\geq n}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray*}

    Letting |b| \rightarrow 1 in the above inequality leads to

    \begin{eqnarray*} \limsup\limits_{|b|\to 1} \|C_{\varphi}h_{b,1}\|_{\mathcal{Z}_H} &\leq& 2 \sup\limits_{j\geq n}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}\\ &\preceq& \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray*}

    Similarly, we can prove that

    \begin{eqnarray*} \limsup\limits_{|b|\to 1} \|C_{\varphi}h_{b,2}\|_{\mathcal{Z}_H} &\preceq& \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H},\\ \limsup\limits_{|b|\to 1} \|C_{\varphi}h_{b,3}\|_{\mathcal{Z}_H} &\preceq& \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray*}

    Hence,

    \begin{eqnarray*} \max\limits_{1\leq k \leq3}\bigl\{\limsup\limits_{|b| \rightarrow 1} \|C_\varphi h_{b,k}\|_{\mathcal{Z}_H}\bigl\} &\preceq& \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray*}

    By Theorem 4.1, we obtain

    \begin{eqnarray} \|C_{\varphi} \|_{e,\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H}\preceq \max\limits_{1\leq k \leq3}\bigl\{\limsup\limits_{|b| \rightarrow 1} \|C_\varphi h_{b,k}\|_{\mathcal{Z}_H}\bigl\} \preceq \sup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j\|_{\mathcal{Z}_H}. \end{eqnarray} (4.18)

    By (4.17) and (4.18), we have achieved the desired result.

    In this work, an interesting result in harmonic mappings about the operator-theoretic properties of composition operators between \mathcal{H}^{\infty} space and harmonic Zygmund space \mathcal{Z}_H has been obtained. It is well known that the existing similar results in spaces of analytic functions have been applied many times to the composition operators between \mathcal{H}^{\infty} and Zygmund space \mathcal{Z} . We hope that this study can attract people's attention to the operator theory on harmonic mappings.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare no conflict of interest.



    [1] M. Aljuaid, M. A. Bakit, On characterizations of weighted harmonic Bloch mappings and its Carleson measure criteria, J. Funct. Space., 2023 (2023), 8500633. https://doi.org/10.1155/2023/8500633 doi: 10.1155/2023/8500633
    [2] M. Aljuaid, F. Colonna, Characterizations of Bloch-type spaces of harmonic mappings, J. Funct. Space., 2019 (2019), 5687343. https://doi.org/10.1155/2019/5687343 doi: 10.1155/2019/5687343
    [3] M. Aljuaid, F. Colonna, Composition operators on some Banach spaces of harmonic mappings, J. Funct. Space., 2020 (2020), 9034387. https://doi.org/10.1155/2020/9034387 doi: 10.1155/2020/9034387
    [4] M. Aljuaid, F. Colonna, On the harmonic Zygmund spaces, B. Aust. Math. Soc., 101 (2020), 466–476. https://doi.org/10.1017/S0004972720000180 doi: 10.1017/S0004972720000180
    [5] M. Al-Qurashi, S. Rashid, F. Jarad, E. Ali, Ria H. Egami, Dynamic prediction modelling and equilibrium stability of a fractional discrete biophysical neuron model, Results Phys., 48 (2023), 106405. https://doi.org/10.1016/j.rinp.2023.106405 doi: 10.1016/j.rinp.2023.106405
    [6] M. Al-Qurashi, S. Sultana, S. Karim, S. Rashid, F. Jarad, M. S. Alharthi, Identification of numerical solutions of a fractal-fractional divorce epidemic model of nonlinear systems via anti-divorce counseling, AIMS Mathematics, 8 (2023), 5233–5265. https://doi.org/10.3934/math.2023263 doi: 10.3934/math.2023263
    [7] A. K. Alsharidi, S. Rashid, S. K. Elagan, Short-memory discrete fractional difference equation wind turbine model and its inferential control of a chaotic permanent magnet synchronous transformer in time-scale analysis, AIMS Mathematics, 8 (2023), 19097–19120. doilinkhttps://doi.org/10.3934/math.2023975 doi: 10.3934/math.2023975
    [8] S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, 2nd Eds., New York: Springer, 2001.
    [9] M. A. Bakhit, Essential norms of Stević–Sharma operators from general Banach spaces into Zygmund-type spaces, J. Math., 2022 (2022), 1230127. https://doi.org/10.1155/2022/1230127 doi: 10.1155/2022/1230127
    [10] C. Boyd, P. Rueda, Isometries of weighted spaces of harmonic functions, Potential Anal., 29 (2008), 37–48. https://doi.org/10.1007/s11118-008-9086-4 doi: 10.1007/s11118-008-9086-4
    [11] R. E. Castillo, J. C. Ramos-Fernández, E. M. Rojas, A new essential norm estimate of composition operators from weighted Bloch space into Bloch spaces, J. Funct. Space., 2013 (2013), 817278. https://doi.org/10.1155/2013/817278 doi: 10.1155/2013/817278
    [12] J. S. Choa, K. J. Izuchi, S. Ohno, Composition Operators on the Space of Bounded Harmonic Functions, Integr. Equ. Oper. Theory, 61 (2008), 167–186. https://doi.org/10.1007/s00020-008-1579-4 doi: 10.1007/s00020-008-1579-4
    [13] F. Colonna, The Bloch constant of bounded harmonic mappings, Indiana U. Math. J., 38 (1989), 829–840.
    [14] C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, Boca Raton: CRC Press, 1995.
    [15] J. G. Liu, W. H. Zhu, Y. K. Wu, G. H. Jin, Application of multivariate bilinear neural network method to fractional partial differential equations, Results Phys., 47 (2023), 106341. https://doi.org/10.1016/j.rinp.2023.106341 doi: 10.1016/j.rinp.2023.106341
    [16] E. Jordá, A. M. Zarco, Isomorphisms on weighted Banach spaces of harmonic and holomorphic functions, J. Funct. Space., 2013 (2013), 178460. https://doi.org/10.1155/2013/178460 doi: 10.1155/2013/178460
    [17] E. Jordá, A. M. Zarco, Weighted Banach spaces of harmonic functions, RACSAM, 108 (2014), 405–418. https://doi.org/10.1007/s13398-012-0109-z doi: 10.1007/s13398-012-0109-z
    [18] A. Kamal, S. A. Abd-Elhafeez, M. Hamza Eissa, On product-type operators between H^{\infty} and Zygmund Spaces, Appl. Math. Inf. Sci., 16 (2022), 623–633. https://doi.org/10.18576/amis/160416 doi: 10.18576/amis/160416
    [19] J. Laitila, H. O. Tylli, Composition operators on vector-valued harmonic functions and Cauchy transforms, Indiana Univ. Math. J., 55 (2006), 719–746.
    [20] W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. Lond. Math. Soc., 51 (1995), 309–320. https://doi.org/10.1112/jlms/51.2.309 doi: 10.1112/jlms/51.2.309
    [21] W. Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic functions, Stud. Math., 175 (2006), 19–45. https://doi.org/10.4064/sm175-1-2 doi: 10.4064/sm175-1-2
    [22] S. Rashid, F. Jarad, S. A. A. El-Marouf, S. K. Elagan, Global dynamics of deterministic-stochastic dengue infection model including multi specific receptors via crossover effects, AIMS Mathematics, 8 (2023), 6466–6503. https://doi.org/10.3934/math.2023327 doi: 10.3934/math.2023327
    [23] R. Yoneda, A characterization of the harmonic Bloch space and the harmonic Besov spaces by an oscillation, Proc. Edinburgh Math. Soc., 45 (2002), 229–239. https://doi.org/10.1017/S001309159900142X doi: 10.1017/S001309159900142X
  • This article has been cited by:

    1. Munirah Aljuaid, M. A. Bakhit, Andrea Scapellato, Norms of Composition Operators from Weighted Harmonic Bloch Spaces into Weighted Harmonic Zygmund Spaces, 2024, 2024, 2314-8888, 1, 10.1155/2024/5581805
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1864) PDF downloads(98) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog