This research paper sought to characterize the boundedness and compactness of composition operators from the space H∞ of bounded harmonic mappings into harmonic Zygmund space ZH, on the open unit disk. Furthermore, we obtain an estimate of the essential norms of such an operator. These results extends the similar results that were proven for composition operators on analytic function spaces.
Citation: Munirah Aljuaid, Mahmoud Ali Bakhit. Composition operators from harmonic H∞ space into harmonic Zygmund space[J]. AIMS Mathematics, 2023, 8(10): 23087-23107. doi: 10.3934/math.20231175
[1] | A. Kamal, M. Hamza. Eissa . A new product of weighted differentiation and superposition operators between Hardy and Zygmund Spaces. AIMS Mathematics, 2021, 6(7): 7749-7765. doi: 10.3934/math.2021451 |
[2] | Songxiao Li, Jizhen Zhou . Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space. AIMS Mathematics, 2021, 6(4): 3305-3318. doi: 10.3934/math.2021198 |
[3] | Qian Ding . Commuting Toeplitz operators and H-Toeplitz operators on Bergman space. AIMS Mathematics, 2024, 9(1): 2530-2548. doi: 10.3934/math.2024125 |
[4] | Cheng-shi Huang, Zhi-jie Jiang, Yan-fu Xue . Sum of some product-type operators from mixed-norm spaces to weighted-type spaces on the unit ball. AIMS Mathematics, 2022, 7(10): 18194-18217. doi: 10.3934/math.20221001 |
[5] | Aydah Mohammed Ayed Al-Ahmadi . Differences weighted composition operators acting between kind of weighted Bergman-type spaces and the Bers-type space -I-. AIMS Mathematics, 2023, 8(7): 16240-16251. doi: 10.3934/math.2023831 |
[6] | Yan Wang, Xintian Dong, Fanghui Liao . Weak Hardy spaces associated with para-accretive functions and their applications. AIMS Mathematics, 2024, 9(11): 30572-30596. doi: 10.3934/math.20241476 |
[7] | Suixin He, Shuangping Tao . Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces. AIMS Mathematics, 2022, 7(1): 1000-1014. doi: 10.3934/math.2022060 |
[8] | Houcine Sadraoui, Borhen Halouani . Commuting Toeplitz operators on weighted harmonic Bergman spaces and hyponormality on the Bergman space of the punctured unit disk. AIMS Mathematics, 2024, 9(8): 20043-20057. doi: 10.3934/math.2024977 |
[9] | Caihuan Zhang, Shahid Khan, Aftab Hussain, Nazar Khan, Saqib Hussain, Nasir Khan . Applications of q-difference symmetric operator in harmonic univalent functions. AIMS Mathematics, 2022, 7(1): 667-680. doi: 10.3934/math.2022042 |
[10] | Jie Zhou, Tianxiu Lu, Jiazheng Zhao . The expansivity and sensitivity of the set-valued discrete dynamical systems. AIMS Mathematics, 2024, 9(9): 24089-24108. doi: 10.3934/math.20241171 |
This research paper sought to characterize the boundedness and compactness of composition operators from the space H∞ of bounded harmonic mappings into harmonic Zygmund space ZH, on the open unit disk. Furthermore, we obtain an estimate of the essential norms of such an operator. These results extends the similar results that were proven for composition operators on analytic function spaces.
Let D:={ζ∈C:|ζ|<1} be the open unit disk in the complex plane. A harmonic mapping with domain D is a complex-valued function u such that
Δu:=4∂2u∂ζ∂¯ζ≡0. |
In this paper, we denote H(D) as the space consisting of analytic functions on the unit disk, Har(D) as the space consisting of harmonic mappings.
The harmonic mapping u always a representation of the form h+¯v, where h and v are analytic functions. Up to an additive constant, this representation is unique. Therefore, u∈Har(D) if and only if u=h+¯v, where h,v∈H(D) and v(0)=0.
For a general reference on the theory of harmonic functions, see [8]. Harmonic mappings appear regularly and play a fundamental role in math, physics and engineering; see e.g., [5], [6], [7], [15], and [22].
The composition operator Cφ induced by analytic or conjugate analytic self-maps of D is defined as the operator
Cφu=u∘φ,∀u∈Har(D). |
Obviously, such an operator preserves harmonicity.
Recall that, for any two normed linear spaces X and Y, the linear operator T:X⟶Y is said to be bounded if there exists C>0 such that ‖Tu‖Y≤C‖u‖X,∀u∈X. Furthermore, a linear operator T:X⟶Y is said to be compact if it maps every bounded set in X to a relatively compact set in Y (i.e., a set whose closure is compact).
The operator theory has been characterized for spaces of analytic functions in different settings and a significant number of related papers have appeared in the literature (see, for example, [9], [11], [14], and [18]). However, a similar investigation of the harmonic setting remains limited.
In [1], we have examined numerous characterizations of the weighted Bloch spaces and closed separable subspaces of harmonic mappings. We then presented the relationships between the weighted harmonic Bloch space and its Carleson measure. In [2], Aljuaid and Colonna studied the weighted Bloch space as the Banach space for harmonic mappings on an open unit disk. They showed that the mappings in weighted Bloch space can be characterized in terms of a Lipschitz condition relative to the metric and can also be thought of as the harmonic growth space. Besides, in [4] they studied the harmonic Zygmund spaces and their closed separable subspace called the little harmonic Zygmund space. In [13], Colonna introduced and studied Bloch harmonic mappings on D as Lipschitz maps from the hyperbolic disk into C. In [20], Lusky investigated weighted spaces of harmonic functions on D and, in [21], isomorphism classes of weighted spaces of holomorphic and harmonic functions with a radial weight on C and on D. In [23], Yoneda studied harmonic Bloch spaces and harmonic Besov spaces. Characterizations of the isometries between weighted spaces of harmonic functions were provided by Boyd and Rueda in [10]. In [17], Jordá and Zarco studied Banach spaces of harmonic functions and composition operators between weighted Banach spaces of pluriharmonic functions. Isomorphisms on weighted Banach spaces of harmonic and holomorphic functions were treated in [16].
Lately, studies on operator theory acting on spaces of harmonic mappings on the unit disk have been conducted. In [3], the composition operators were studied on the Banach spaces of harmonic mappings on D, including the weighted Bloch spaces, the growth spaces, the Zygmund space, the analytic Besov spaces, and the space BMOA. Shao et al. in [12] studied composition operators in the space of bounded harmonic functions D and then provided criteria for determining the essential norm of the difference between two composition operators. In [19], Laitila and Tylli characterized the weak compactness of the composition operators on vector-valued harmonic Hardy spaces and on the spaces of vector-valued Cauchy transforms for reflexive Banach spaces.
Unlike what happens in the class of analytical functions which is closed under the customary composition, the usual composition product of two harmonic functions is not in general a harmonic function. This fact causes some problems which are studied for a long time in the space of analytical functions that do not make sense or are difficult to translate and treat on the set of complex harmonic functions with the tools of the complex variable. We give two typical examples: the theory of linear composition operators whose symbols are complex harmonic functions and the corresponding theory of iterations for complex harmonic functions.
In this work, we are concerned with the operator-theoretic properties of composition operators between distinct spaces of harmonic mappings in order to overcome these difficulties. Specifically, we investigate the composition operators from the space of bounded harmonic mappings H∞ into the harmonic Zygmund space ZH.
The reason behind our study of the properties of composition operators between distinct spaces of harmonic mappings is the wide range of applications for different harmonic mappings, especially in operator theory.
We start with several preliminaries used to derive the main results of this work. Then, we focus on the boundedness and compactness of the composition operators from H∞ space into the harmonic Zygmund space ZH. We conclude by approximating the essential norm.
The space of bounded harmonic mappings H∞. First, we denote H∞=H∞(D) as space consisting of all bounded harmonic mappings u on D equipped with the norm
‖u‖∞=supζ∈D|u(ζ)|. |
The harmonic Bloch space containing of all u∈Har(D) is defined such that
βu:=supζ∈D(1−|ζ|2)(|∂u(ζ)∂ζ|+|∂u(ζ)∂¯ζ|)<∞. | (1.1) |
If u is a harmonic Bloch mapping represented as u=h+ˉv, with h,v∈H(D), the Bloch seminorm βu can be characterized as
βu=supζ∈D(1−|ζ|2)(|h′(ζ)|+|v′(ζ)|)<∞. | (1.2) |
The quantity
‖u‖BH:=|u(0)|+βu, |
yields a Banach space structure on BH, see [2].
The harmonic Zygmund space containing of all u∈Har(D) such that ∂u∂ζ+∂u∂¯ζ∈BH. Define
‖u‖ZH:=|u(0)|+|∂u∂ζ(0)|+|∂u∂¯ζ(0)|+supζ∈D(1−|ζ|2)(|∂2u∂ζ2(ζ)|+|∂2u∂¯ζ2(ζ)|), |
is a norm on ZH and ZH is a Banach space, see [4].
Remark 1.1. When u∈H(D), the mapping ∂u∂ζ reduces to u′ and ∂u∂¯ζ=∂2u∂¯ζ2=0. Thus, the collection of analytic functions in the space ZH is the classical Zygmund space Z and both norms are identical.
Throughout this paper, we use the notation A⪯B, which implies that there is a constant C>0 such that A≤CB. Therefore, when B⪯A⪯B, we use the notation A≈B, meaning that A and B are equivalent. Moreover, if A≈B then B<∞⟺A<∞.
Given n∈N, and u∈Har(D) be represented as u=h+ˉv, with h,v∈H(D). Let us define
βnH(u)=supζ∈D(1−|ζ|2)n(|h(n)(ζ)|+|v(n)(ζ)|), | (2.1) |
and
βnH,0(u)=lim|ζ|→1(1−|ζ|2)n(|h(n)(ζ)|+|v(n)(ζ)|). | (2.2) |
The following lemma as a result of Theorem 19 provided in [2] will help characterize the boundedness of the composition operators.
Lemma 2.1. For u∈Har(D) represented as u=h+ˉv, with h,v∈H(D).
(1) If u∈H∞ then for any n∈N, βnH(u)⪯‖u‖∞.
(2) u∈BH⟺βnH(u)<∞.
(3) u∈BH,0⟺βnH,0(u)=0.
Let b∈D be a fixed and let 1≤k≤3. Then, for any ζ∈D, we consider a set of functions hb,k as follows:
hb,k(ζ)=(1−|b|21−¯bζ)k+(1−|b|21−b¯ζ)k. | (2.3) |
For every k∈N, it can be demonstrated that hb,k∈H∞ and supb∈D‖hb,k‖H∞⪯1. Moreover, it is evident that lim|b|→1hb,k=0 uniformly on compact subsets ¯D⊂D. Recall the power series representations of hb,k are given as
hb,k(ζ)=(1−|b|2)k∞∑j=k−1(jk−1){(¯bζ)j−k+1+(b¯ζ)j−k+1}. | (2.4) |
For all n∈N and 1≤k≤3, by direct calculation we know that
∂nhb,k∂ζn(ζ)=(n+k−1)!(k−1)![¯bn(1−|b|2)k(1−¯bζ)k+n];∂nhb,k∂¯ζn(ζ)=(n+k−1)!(k−1)![bn(1−|b|2)k(1−b¯ζ)k+n]. |
Thus, we obtain
∂nhb,k∂ζn(b)=(n+k−1)!(k−1)!¯bn(1−|b|2)n;∂nhb,k∂¯ζn(b)=(n+k−1)!(k−1)!bn(1−|b|2)n. | (2.5) |
Now, we are prepared to show and prove our fundamental theorem in this section.
Theorem 2.1. Let φ∈S(D). Then, Cφ:H∞→ZH is bounded if and only if
supj≥0‖φj+¯φj‖ZH<∞. | (2.6) |
Proof. Let the sequence pj(w)=wj+¯wj for w∈D and when j≥0 is an integer. Since the sequence {pj} is bounded in the harmonic H∞ space with ‖pj‖∞≤1, if Cφ:H∞→ZH is bounded then for each j≥0 we have
‖φj+¯φj‖ZH=‖Cφpj‖ZH⪯‖Cφ‖∞. |
Therefore,
supj≥0‖φj+¯φj‖ZH<∞. |
Conversely, suppose that (2.6) holds and set
L=supj≥0‖φj+¯φj‖ZH<∞. |
Since the sequence pj(w)=wj+¯wj, Cφp0=(φ)0+(¯φ)0=2∈ZH and ‖2‖ZH=‖Cφp0‖ZH≤L. Note that for any ζ∈D and u∈Har(D) represented as u=h+ˉv, with h,v∈H(D), |(Cφu)(0)|=|u(φ(0))|≤‖u‖∞. Therefore, because |φ(0)|<1 we note that
|∂(Cφu)∂ζ(0)|+|∂(Cφu)∂¯ζ(0)|=|∂u(φ(0))∂ζφ′(0)|+|∂u(φ(0))∂¯ζ¯φ′(0)|=|h′(φ(0))φ′(0)|+|v′(φ(0))¯φ′(0)|⪯|φ′(0)|(1−|φ(0)|2)‖u‖∞<∞. |
On the other hand, for any ζ∈D and u∈Har(D),
|∂2(Cφu)∂ζ2(ζ)|=|∂2u(φ(ζ))∂ζ2[φ′(ζ)]2+∂u(φ(ζ))∂ζφ″(ζ)|≤|φ′(ζ)|2|∂2u(φ(ζ))∂ζ2|+|φ″(ζ)||∂u(φ(ζ))∂ζ|;|∂2(Cφu)∂¯ζ2(ζ)|=|∂2u(φ(ζ))∂¯ζ2[¯φ′(ζ)]2+∂u(φ(ζ))∂¯ζ¯φ″(ζ)|≤|φ′(ζ)|2|∂2u(φ(ζ))∂¯ζ2|+|φ″(ζ)||∂u(φ(ζ))∂¯ζ|. |
By adding the above expressions and multiplying by (1−|ζ|2) we obtain
(1−|ζ|2)(|∂2(Cφu)∂ζ2(ζ)|+|∂2(Cφu)∂¯ζ2(ζ)|)≤(1−|ζ|2)|φ′(ζ)|2(|∂2u(φ(ζ))∂ζ2|+|∂2u(φ(ζ))∂¯ζ2|)+(1−|ζ|2)|φ″(ζ)|(|∂u(φ(ζ))∂ζ|+|∂u(φ(ζ))∂¯ζ|). |
Since u∈Har(D) can be represented as u=h+ˉv, with h,v∈H(D), by Lemma 2.1, we obtain
(1−|ζ|2)(|∂2(Cφu)∂ζ2(ζ)|+|∂2(Cφu)∂¯ζ2(ζ)|)≤(1−|ζ|2)|φ′(ζ)|2(|h″(φ(ζ))|+|v″(φ(ζ))|)+(1−|ζ|2)|φ″(ζ)|(|h′(φ(ζ))+|v′(φ(ζ))|)⪯(1−|ζ|2)|φ′(ζ)|2(1−|φ(ζ)|2)2β2H(u)+(1−|ζ|2)|φ″(ζ)|1−|φ(ζ)|2βH(u)⪯(L1+L2)‖u‖∞, |
where L1=(1−|ζ|2)|φ′(ζ)|2(1−|φ(ζ)|2)2 and L2=(1−|ζ|2)|φ″(ζ)|1−|φ(ζ)|2. To prove the boundedness, it suffices to show that the quantity L1+L2 is finite. Since Cφp1=φ+¯φ, for ζ∈D, we have
∂2(Cφp1)∂ζ2(ζ)=∂2(Cφp1)∂¯ζ2(ζ)=φ″(ζ)+¯φ″(ζ). |
Then,
supζ∈D(1−|ζ|2)|φ″(ζ)|≤14‖Cφp1‖ZH≤L4. | (2.7) |
Moreover, since pj(w)=wj+¯wj with j≥0 is an integer, we have Cφp2=(φ)2+(¯φ)2,
∂2[Cφp2(ζ)]∂ζ2=2(φ′(ζ))2+2(¯φ′(ζ))2+2φ(ζ)φ″(ζ)+2¯φ(ζ)¯φ″(ζ),∂2[Cφp2(ζ)]∂¯ζ2=2(¯φ′(ζ))2+2(φ′(ζ))2+2φ(ζ)φ″(ζ)+2¯φ(ζ)¯φ″(ζ). |
Since |φ(ζ)|≤1 for ζ∈D, we have
|φ′(ζ)|2≤18{|∂2[Cφp2(ζ)]∂ζ2|+|∂2[Cφp2(ζ)]∂¯ζ2|}+|φ″(ζ)|. |
Thus,
supζ∈D(1−|ζ|2)|φ′(ζ)|2≤18supζ∈D(1−|ζ|2)(|∂2[Cφp2(ζ)]∂ζ2|+|∂2[Cφp2(ζ)]∂¯ζ2|)+supζ∈D(1−|ζ|2)|φ″(ζ)|≤18‖Cφp2‖ZH+14‖Cφp1‖ZH≤3L8. | (2.8) |
On the other hand, by the linearity of the test function (2.4) for k=1,2,3 and ζ∈D, we have
‖Cφhφ(ζ),k‖ZH≤(1−|φ(ζ)|2)k∞∑j=k−1(jk−1)|φ(ζ)|j−k+1‖Cφpj−k+1‖ZH≤2kL. | (2.9) |
From (2.5), for k=1,2,3 and ζ∈D, we obtain
∂2[Cφhφ(ζ),k(ζ)]∂ζ2=k(k+1)(φ(ζ)+¯φ(ζ)1−|φ(ζ)|2)2[φ′(ζ)]2+k(φ(ζ)+¯φ(ζ)1−|φ(ζ)|2)φ″(ζ),∂2[Cφhφ(ζ),k(ζ)]∂¯ζ2=k(k+1)(φ(ζ)+¯φ(ζ)1−|φ(ζ)|2)2[¯φ′(ζ)]2+k(φ(ζ)+¯φ(ζ)1−|φ(ζ)|2)¯φ″(ζ). |
Thus, for k=1,2,3, we let
Qφ(ζ),k=∂2[Cφhφ(ζ),k(ζ)]∂ζ2+∂2[Cφhφ(ζ),k(ζ)]∂¯ζ2=k(k+1)(φ(ζ)+¯φ(ζ)1−|φ(ζ)|2)2([φ′(ζ)]2+[¯φ′(ζ)]2)+k(φ(ζ)+¯φ(ζ)1−|φ(ζ)|2)(φ″(ζ)+¯φ″(ζ)). | (2.10) |
Using (2.10) by subtracting, we get
Qφ(ζ),1−2Qφ(ζ),2+Qφ(ζ),3=2(φ(ζ)+¯φ(ζ)1−|φ(ζ)|2)2((φ′(ζ))2+(¯φ′(ζ))2). | (2.11) |
On the other hand, using (2.9) and (2.11) we obtain
(1−|ζ|2)|φ(ζ)|2|φ′(ζ)|2(1−|φ(ζ)|2)2≤118supζ∈D(1−|ζ|2)(|Qφ(ζ),1|+2|Qφ(ζ),2|+|Qφ(ζ),3|)≤118(‖Cφhφ(ζ),1‖ZH+2‖Cφhφ(ζ),2‖ZH+‖Cφhφ(ζ),3‖ZH)≤L. | (2.12) |
Now, we let 0<s<1. Then, if |φ(ζ)|>s in (2.12) we have
(1−|ζ|2)|φ′(ζ)|2(1−|φ(ζ)|2)2≤Ls2. | (2.13) |
Conversely, if we let |φ(ζ)|≤s in (2.8), we have
(1−|ζ|2)|φ′(ζ)|2(1−|φ(ζ)|2)2≤3L8(1−s2). | (2.14) |
From (2.13) and (2.14) it follows that the quantity L2 is finite.
For the second time, we go back to (2.9) by subtracting we get
2Qφ(ζ),2−Qφ(ζ),3=(φ(ζ)+¯φ(ζ)1−|φ(ζ)|2)(φ″(ζ)+¯φ″(ζ)), | (2.15) |
which implies that
(1−|ζ|2)|φ(ζ)||φ″(ζ)|1−|φ(ζ)|2≤14supζ∈D(1−|ζ|2){2|Qφ(ζ),2|+|Qφ(ζ),3|}≤14(2‖Cφhφ(ζ),2‖ZH+‖Cφhφ(ζ),3‖ZH)≤4L. | (2.16) |
If we instead let 0<s<1, then if |φ(ζ)|>s in (2.16), we deduce
(1−|ζ|2)s|φ″(ζ)|1−|φ(ζ)|2≤(1−|ζ|2)|φ(ζ)||φ″(ζ)|1−|φ(ζ)|2≤4L. |
Thus,
(1−|ζ|2)|φ″(ζ)|1−|φ(ζ)|2≤4Ls. | (2.17) |
If we instead let |φ(ζ)|≤s in (2.7), we have
(1−|ζ|2)|φ″(ζ)|1−|φ(ζ)|2≤L4(1−|φ(ζ)|2)≤L4(1−s2). | (2.18) |
Therefore, the quantity L1 is finite and so is the quantity L1+L2. The proof of Theorem 2.1 is complete.
In this section, we focus on discussing the composition operators' compactness. We make use of the following lemma:
Lemma 3.1. The bounded operator T:H∞→ZH is compact if and only if ‖Tum‖ZH→0 as m→∞, for any bounded sequence {um}m∈N in H∞ converges to zero uniformly on compact subsets ¯D⊂D.
Proof. We focus on demonstrating the sufficiency. Suppose that T:H∞→ZH is not compact. Then, there is a bounded sequence um in H∞ such that {Tum} has no convergent subsequence. However, we know that every bounded sequence in H∞ has a subsequence that converges uniformly on compact subsets ¯D⊂D. Therefore, um has a subsequence u such that um(w)→u(w) for w∈D, and because
supw∈D|um(w)|≤|u(w)|≤C∀m=1,2,3,…. |
Therefore, u∈H∞. The sequence (um−u) is bounded in H∞ and converges to zero uniformly on compact subsets ¯D⊂D. If we assume ‖T(um−u)‖ZH→0 as n→∞, then the subsequence Tum of Tu converges in ZH, which is a contradiction.
The following result indicates that the compactness of the composition operators can be characterized in terms of the sequence ‖Cφpj‖ZH, where pj(w)=wj+¯wj.
Theorem 3.1. Let φ∈S(D) and assume that the operator Cφ:H∞→ZH is bounded. Then, Cφ:H∞→ZH is compact if and only if
limj→∞‖φj+¯φj‖ZH=0. | (3.1) |
Proof. As in the proof of Theorem 2.1, we let the sequence pj(w)=wj+¯wj, where w∈D and j≥0 is an integer. Since the sequence {pj} is bounded in the harmonic space H∞ and converges to zero uniformly on compact subsets ¯D⊂D, if Cφ:H∞→ZH is compact then it is a bounded operator and (3.1) holds.
Conversely, assume the operator Cφ:H∞→ZH is bounded and limj→∞‖φj+¯φj‖ZH=0.
Now, we define a sequence {hj} in the harmonic space H∞ with L∞=supj∈N‖hj‖∞<∞ and hj→0 uniformly on compact subsets ¯D⊂D, as j→∞.
To prove the compactness of Cφ:H∞→ZH, it suffices to show that limj→∞‖hj‖ZH=0.
Next, we suppose ‖Cφpj‖ZH≤L (L is an upper bound for ‖Cφpj‖ZH). Then, for ε>0 there is N∈N such that
‖φj+¯φj‖ZH=‖Cφpj‖ZH<ε,∀j≥N. |
By using the test function (2.4), for k=1,2,3 and ζ∈D, we have
‖Cφhφ(ζ),k‖ZH≤(1−|φ(ζ)|2)k{[k+N−2∑j=k−1+∞∑j=k+N−1](jk−1)|φ(ζ)|j−k+1‖Cφpj−k+1‖ZH}<(1−|φ(ζ)|2)k(k+N−1N−1)L+2kε. |
On the other hand, for any ζ∈D let 0<s<1 be sufficiently close to 1 such that |φ(ζ)|>s. Thus,
‖Cφhφ(ζ),k‖ZH<2k+1ε,fork=1,2,3. |
Since ε is arbitrary, for k=1,2,3, it follows that
lim|φ(ζ)|→1‖Cφhφ(ζ),k‖ZH=0. | (3.2) |
Going back to the proof of Theorem 2.1, from (2.12) and (2.16), we know
(1−|ζ|2)|φ′(ζ)|2(1−|φ(ζ)|2)2≤‖Cφhφ(ζ),1‖ZH+2‖Cφhφ(ζ),2‖ZH+‖Cφhφ(ζ),3‖ZH18|φ(ζ)|2,(1−|ζ|2)|φ″(ζ)|1−|φ(ζ)|2≤2‖Cφhφ(ζ),2‖ZH+‖Cφhφ(ζ),3‖ZH4|φ(ζ)|. | (3.3) |
Using (3.3), we have
lim|φ(ζ)|→1(1−|ζ|2)|φ′(ζ)|2(1−|φ(ζ)|2)2=0,lim|φ(ζ)|→1(1−|ζ|2)|φ″(ζ)|1−|φ(ζ)|2=0. |
Thus, for any 0<s<1 sufficiently close to 1 if |φ(ζ)|>s. Then,
(1−|ζ|2)|φ′(ζ)|2(1−|φ(ζ)|2)2<ε,and(1−|ζ|2)|φ″(ζ)|1−|φ(ζ)|2<ε. | (3.4) |
By Lemma 2.1, if hm∈H∞, then βnH(hm)⪯‖hm‖∞, for any m∈N. Thus, using (3.4), for |φ(w)|>s we have
(1−|ζ|2)(|∂2(Cφhm)∂ζ2(ζ)|+|∂2(Cφhm)∂¯ζ2(ζ)|)≤(1−|ζ|2)|φ′(ζ)|2(|∂2hm(φ(ζ))∂ζ2|+|∂2hm(φ(ζ))∂¯ζ2|)+(1−|ζ|2)|φ″(ζ)|(|∂hm(φ(ζ))∂ζ|+|∂hm(φ(ζ))∂¯ζ|)⪯‖hm‖∞((1−|ζ|2)|φ′(ζ)|2(1−|φ(ζ)|2)2+(1−|ζ|2)|φ″(ζ)|(1−|φ(ζ)|2))⪯εL∞. | (3.5) |
Once again going back to the proof of Theorem 2.1, from (2.7) and (2.8), we know
supζ∈D(1−|ζ|2)|φ″(ζ)|≤L4andsupζ∈D(1−|ζ|2)|φ′(ζ)|2≤3L8. | (3.6) |
We know by Cauchy's estimates that, the sequences {∂hm∂ζ}, {∂hm∂¯ζ}, {∂2hm∂ζ2} and {∂2hm∂¯ζ2} are convergent to zero on ¯D. Thus, using (3.6), for any 0<s<1 if |φ(ζ)|≤s, we obtain
(1−|ζ|2)(|∂2(Cφhm)∂ζ2(ζ)|+|∂2(Cφhm)∂¯ζ2(ζ)|)≤3L8(|∂2hm(φ(ζ))∂ζ2|+|∂2hm(φ(ζ))∂¯ζ2|)+L4(|∂hm(φ(ζ))∂ζ|+|∂hm(φ(ζ))∂¯ζ|), | (3.7) |
which implies that
limm→∞(1−|ζ|2)(|∂2(Cφhm)∂ζ2(ζ)|+|∂2(Cφhm)∂¯ζ2(ζ)|)≤limm→∞|∂2hm(φ(ζ))∂ζ2|+limm→∞|∂2hm(φ(ζ))∂¯ζ2|+limm→∞|∂hm(φ(ζ))∂ζ|+limm→∞|∂hm(φ(ζ))∂¯ζ|=0. | (3.8) |
Therefore, limm→∞|Cφhm(0)|=0 and limm→∞|∂[Cφhm](0)∂¯ζ|=0. Thus, we obtain
limm→∞‖Cφhm‖ZH=0. | (3.9) |
By Lemma 3.1, we verify that Cφ:H∞→ZH is compact. The proof of the main theorem of this section is complete.
Our next goal of this paper is to provide an approximation of the essential norm.
In this section, we characterize the essential norms of the composition operators from H∞ to ZH. We know that the essential norm ‖T‖e of an operator T is its distance from the compact operators in the operator norm. Consider X and Y to be Banach spaces and let T:X→Y be a bounded linear operator. Then, the essential norm of T between X and Y is given by
‖T‖e,X→Y=inf{‖T−T‖X→Y|T:X→Yiscompact}. |
Let b∈D be fixed and let 1≤k≤3 in (2.3). Then, for any ζ∈D we obtain
hb,k(ζ)=(1−|b|21−¯bζ)k+(1−|b|21−b¯ζ)k. |
Now, we define B1=lim sup|φ(w)|→1(1−|w|2)|φ″(w)|(1−|φ(w)|2) and B2=lim sup|φ(w)|→1(1−|w|2)|φ′(w)|2(1−|φ(w)|2)2.
Theorem 4.1. Let φ∈S(D) and consider Cφ:H∞→ZH is bounded. Then,
‖Cφ‖e,H∞→ZH≈max1≤k≤3{lim sup|b|→1‖Cφhb,k(ζ)‖ZH}≈max{B1,B2}. |
Proof. First, we prove that
max1≤k≤3{lim sup|b|→1‖Cφhb,k‖ZH}⪯‖Cφ‖e,H∞→ZH. |
Fix b∈D since for all 1≤k≤3,hb,k∈H∞ and hb,k converges uniformly to 0 on compact subsets ¯D⊂D. Then, for a compact operator T:H∞→ZH we have
lim|b|→1‖Thb,k‖ZH=0,∀k=1,2,3. |
Thus,
‖Cφ−T‖H∞→ZH⪰lim sup|b|→1‖(Cφ−T)hb,k‖ZH≥lim sup|b|→1‖Cφhb,k‖ZH−lim sup|b|→1‖Thb,k‖ZH. |
Hence, we obtain
‖Cφ‖e,H∞→ZH=infT‖Cφ−T‖⪰max1≤k≤3{lim sup|b|→1‖Cφhb,k‖ZH}. |
Next, to prove that ‖Cφ‖e,H∞→ZH⪰max{B1,B2} we define the sequence {wi} such that limi→∞|φ(wi)|=1 for wi∈D and i≥0 is an integer.
Moreover, we define
Gi,1(ζ)=hφ(wi),1(ζ)−53hφ(wi),2(ζ)+23hφ(wi),3(ζ),Gi,2(ζ)=hφ(wi),1(ζ)−2hφ(wi),2(ζ)+hφ(wi),3(ζ). |
For all ζ∈D, it can be proven that Gi,1,Gi,2∈H∞ and lim|φ(wi)|→1Gi,1=lim|φ(wi)|→1Gi,2=0 uniformly on compact subsets ¯D⊂D. By direct calculation, we see that Gi,1(φ(wi))=Gi,2(φ(wi))=0.
By (2.5) we know that
∂hφ(wi),1∂ζ(φ(wi))=¯φ(wi)(1−|φ(wi)|2);∂hφ(wi),1∂¯ζ(φ(wi))=φ(wi)(1−|φ(wi)|2),∂hφ(wi),2∂ζ(φ(wi))=2¯φ(wi)(1−|φ(wi)|2);∂hφ(wi),2∂¯ζ(φ(wi))=2φ(wi)(1−|φ(wi)|2),∂hφ(wi),3∂ζ(φ(wi))=3¯φ(wi)(1−|φ(wi)|2);∂hφ(wi),3∂¯ζ(φ(wi))=3φ(wi)(1−|φ(wi)|2). |
Moreover,
∂2hφ(wi),1∂ζ2(φ(wi))=2(¯φ(wi))2(1−|φ(wi)|2)2;∂2hφ(wi),1∂¯ζ2(φ(wi))=2(φ(wi))2(1−|φ(wi)|2)2,∂2hφ(wi),2∂ζ2(φ(wi))=6(¯φ(wi))2(1−|φ(wi)|2)2;∂2hφ(wi),2∂¯ζ2(φ(wi))=6(φ(wi))2(1−|φ(wi)|2)2,∂2hφ(wi),3∂ζ2(φ(wi))=12(¯φ(wi))2(1−|φ(wi)|2)2;∂2hφ(wi),3∂¯ζ2(φ(wi))=12(φ(wi))2(1−|φ(wi)|2)2. |
Thus,
|∂(Gi,1)∂ζ(φ(wi))|=|∂[hφ(wi),1(ζ)]∂ζ−53∂[hφ(wi),2(ζ)]∂ζ+23∂[hφ(wi),3(ζ)]∂ζ|=13|φ(wi)|(1−|φ(wi)|2),∂2(Gi,1)∂ζ2(φ(wi))=∂2hφ(wi),1∂ζ2(φ(wi))−53∂2hφ(wi),2∂ζ2(φ(wi))+23∂2hφ(wi),3∂ζ2(φ(wi))=0. |
Moreover, we obtain
∂(Gi,2)∂ζ(φ(wi))=∂2hφ(wi),1∂ζ2(φ(wi))−2∂2hφ(wi),2∂ζ2(φ(wi))+∂2hφ(wi),1∂ζ2(φ(wi))=0,|∂2(Gi,2)∂ζ2(φ(wi))|=|∂2hφ(wi),1∂ζ2(φ(wi))−2∂2hφ(wi),2∂ζ2(φ(wi))+∂2hφ(wi),3∂ζ2(φ(wi))|=2|φ(wi)|2(1−|φ(wi)|2)2. |
Similarly,
|∂(Gi,1)∂¯ζ(φ(wi))|=13|φ(wi)|(1−|φ(wi)|2),∂2(Gi,1)∂¯ζ2(φ(wi))=0,|∂2(Gi,2)∂¯ζ2(φ(wi))|=2|φ(wi)|2(1−|φ(wi)|2)2,∂(Gi,2)∂¯ζ(φ(wi))=0. |
Since T:H∞→ZH is a compact operator, by Lemma 3.1 we have
‖Cφ−T‖H∞→ZH⪰lim supi→∞‖CφGi,1‖ZH−lim supi→∞‖TGi,1‖ZH=lim supi→∞(1−|wi|2){|∂2(CφGi,1(ζ))∂ζ2|+|∂2(CφGi,1(ζ))∂¯ζ2|}=lim supi→∞(1−|wi|2)|φ′(wi)|2{|∂2(Gi,1)∂ζ2(φ(wi))|+|∂2(Gi,1)∂¯ζ2(φ(wi))|}+lim supi→∞(1−|wi|2)|φ″(wi)|{|∂(Gi,1)∂ζ(φ(wi))|+|∂(Gi,1)∂¯ζ(φ(wi))|}⪰lim supi→∞(1−|wi|2)|φ(wi)||φ″(wi)|(1−|φ(wi)|2). |
Thus,
‖Cφ‖e,H∞→ZH=infT‖Cφ−T‖⪰lim supi→∞(1−|wi|2)|φ(wi)||φ″(wi)|(1−|φ(wi)|2)=lim sup|φ(w)|→1(1−|w|2)|φ″(w)|(1−|φ(w)|2)=B1. |
In the same way, we have
‖Cφ−T‖H∞→ZH⪰lim supi→∞‖CφGi,2‖ZH−lim supi→∞‖TGi,2‖ZH=lim supi→∞(1−|wi|2){|∂2(CφGi,2(ζ))∂ζ2|+|∂2(CφGi,2(ζ))∂¯ζ2|}=lim supi→∞(1−|wi|2)|φ′(wi)|2{|∂2(Gi,2)∂ζ2(φ(wi))|+|∂2(Gi,2)∂¯ζ2(φ(wi))|}+lim supi→∞(1−|wi|2)|φ″(wi)|{|∂(Gi,2)∂ζ(φ(wi))|+|∂(Gi,2)∂¯ζ(φ(wi))|}⪰lim supi→∞(1−|wi|2)|φ(wi)|2|φ′(wi)|2(1−|φ(wi)|2)2. |
Thus,
‖Cφ‖e,H∞→ZH=infT‖Cφ−T‖⪰lim supi→∞(1−|wi|2)|φ(wi)|2|φ′(wi)|2(1−|φ(wi)|2)2=lim sup|φ(w)|→1(1−|w|2)|φ′(w)|2(1−|φ(w)|2)2=B2. |
Hence, we obtain
‖Cφ‖e,H∞→ZH=infT‖Cφ−T‖⪰max{B1,B2}. |
Next, we prove that
‖Cφ‖e,H∞→ZH⪯max1≤k≤3{lim sup|b|→1‖Cφhb,k‖ZH}. |
For any 0≤δ<1, let the operator Tδ:Har(D)→Har(D) such that
(Tδu)(w)=uδ(w)=u(δw),u∈Har(D). |
Without a doubt, uδ→u uniform on compact subsets of the unit disk as δ→1. Moreover, Tδ is a compact operator on H∞ and ‖Tδ‖H∞→H∞≤1. For {δi}⊂(0,1) a sequence such that δi→1 as i→∞. Thus, for all positive integers i, we obtain CφTδi:H∞→ZH is a compact operator.
However, the definition of the essential norm indicates that
‖Cφ‖e,H∞→ZH≤limi→∞sup‖Cφ−CφTδi‖H∞→ZH. | (4.1) |
Thus, we only need to demonstrate that
lim supi→∞‖(Cφ−CφTδi‖H∞→ZH⪯max1≤k≤3{lim sup|b|→1‖Cφhb,k‖ZH}. |
Let u∈H∞ such that ‖u‖∞≤1. Then,
‖(Cφ−CφTδi)u‖ZH=|u(φ(0))−u(δiφ(0))|+|φ′(0)|{|∂(u−uδi)∂ζ(φ(0))|+|∂(u−uδi)∂¯ζ(φ(0))|}+supζ∈D(1−|ζ|2){|∂2[(u−uδi)∘φ(ζ)]∂ζ2|+|∂2[(u−uδi)∘φ(ζ)]∂¯ζ2|}. | (4.2) |
Thus, we have that
limi→∞|u(φ(0))−u(δiφ(0))|=limi→∞|∂(u−uδi)∂ζ(φ(0))||φ′(0)|=limi→∞|∂(u−uδi)∂¯ζ(φ(0))||φ′(0)|=0. | (4.3) |
Moreover, we consider
lim supi→∞(1−|ζ|2){|∂2[(u−uδi)∘φ(ζ)]∂ζ2|+|∂2[(u−uδi)∘φ(ζ)]∂¯ζ2|}≤lim supi→∞sup|φ(ζ)|≤δN(1−|ζ|2){|∂2[(u−uδi)∘φ(ζ)]∂ζ2|+|∂2[(u−uδi)∘φ(ζ)]∂¯ζ2|}+lim supi→∞sup|φ(ζ)|>δN(1−|ζ|2){|∂2[(u−uδi)∘φ(ζ)]∂ζ2|+|∂2[(u−uδi)∘φ(ζ)]∂¯ζ2|}=Iφ,i+Jφ,i. | (4.4) |
Now, let N∈N be large enough and δi≥12, for all i≥N. Then,
Iφ,i≤lim supi→∞sup|φ(ζ)|≤δN(1−|ζ|2)|φ″(ζ)|{|∂[(u−uδi)(φ(ζ))]∂ζ|+|∂[(u−uδi)(φ(ζ))]∂¯ζ|}+lim supi→∞sup|φ(ζ)|≤δN(1−|ζ|2)|φ′(ζ)|2{|∂2[(u−uδi)(φ(ζ))]∂ζ2|+|∂2[(u−uδi)(φ(ζ))]∂¯ζ2|}. |
Since Cφ:H∞→ZH is bounded, from Theorem 2.1 we see that
supζ∈D(1−|ζ|2)|φ″(ζ)|<∞,supζ∈D(1−|ζ|2)|φ′(ζ)|2<∞. |
Moreover, since the following limits are uniform on compact subsets ¯D⊂D,
limi→∞δi∂uδi∂ζ=∂u∂ζ,limi→∞δi∂uδi∂¯ζ=∂u∂¯ζ,limi→∞(δi)2∂2uδi∂ζ2=∂2u∂ζ2,limi→∞(δi)2∂2uδi∂¯ζ2=∂2u∂¯ζ2. |
Then, we have
lim supi→∞sup|w|≤δN{|∂u(w)∂ζ−∂uδi(w)∂ζ|+|∂u(w)∂¯ζ−∂uδi(w)∂¯ζ|}=0,lim supi→∞sup|w|≤δN{|∂2u(w)∂ζ2−∂2uδi(w)∂ζ2|+|∂2u(w)∂¯ζ2−∂2uδi(w)∂¯ζ2|}=0. |
Hence, by the above equations we have
Iφ,i=0. | (4.5) |
Next, considering |φ(ζ)|>δN, we obtain
Jφ,i≤lim supi→∞sup|φ(ζ)|>δN(1−|ζ|2)|φ″(ζ)|{|∂[(u−uδi)(φ(ζ))]∂ζ|+|∂[(u−uδi)(φ(ζ))]∂¯ζ|}+lim supi→∞sup|φ(ζ)|>δN(1−|ζ|2)|φ′(ζ)|2{|∂2[(u−uδi)(φ(ζ))]∂ζ2|+|∂2[(u−uδi)(φ(ζ))]∂¯ζ2|}≤lim supi→∞sup|φ(ζ)|>δN(1−|ζ|2)|φ″(ζ)|{|∂u(φ(ζ))∂ζ|+|∂u(φ(ζ))∂¯ζ|}+lim supi→∞sup|φ(ζ)|>δN(1−|ζ|2)|φ″(ζ)|δi{|∂u(δiφ(ζ))∂ζ|+|∂u(δiφ(ζ))∂¯ζ|}+lim supi→∞sup|φ(ζ)|>δN(1−|ζ|2)|φ′(ζ)|2{|∂2u(φ(ζ))∂ζ2|+|∂2u(φ(ζ))∂¯ζ2|}+lim supi→∞sup|φ(ζ)|>δN(1−|ζ|2)|φ′(ζ)|2(δi)2{|∂2u(δiφ(ζ))∂ζ2|+|∂2u(δiφ(ζ))]∂¯ζ2|}=lim supi→∞4∑j=1Rj. |
Now we estimate the quantities R_{j}, where j = 1, 2, 3 . We define
\begin{eqnarray*} G_{b,1}(\zeta)& = & h_{b,1}(\zeta) -\frac{5}{3}h_{b,2}(\zeta)+\frac{2}{3}h_{b,3}(\zeta),\\ G_{b,2}(\zeta)& = & h_{b,1}(\zeta) -2h_{b,2}(\zeta)+h_{b,3}(\zeta). \end{eqnarray*} |
By Lemma 2.1, since \beta_{H}(u) \preceq\|u\|_{\infty} for all u \in \mathcal{H}^{\infty} . Because \|u\|_{\infty} \leq 1 , we have
\begin{eqnarray} R_{1}& = &\sup\limits_{|\varphi(\zeta)| > {\delta}_{N}} (1-|\zeta|^2)|\varphi''(\zeta)| \biggl\{\biggl| \frac{\partial u (\varphi(\zeta))}{\partial \zeta} \biggl| + \biggl| \frac{\partial u (\varphi(\zeta))}{\partial \overline{\zeta}} \biggl| \biggl\},\\ &\preceq& \frac{1}{{\delta}_{N}} \|u\|_{\infty} \sup\limits_{|\varphi(\zeta)| > {\delta}_{N}} (1-|\zeta|^2)|\varphi''(\zeta)| \frac{|\varphi(\zeta)|}{3(1-|\varphi(\zeta)|^2) }\\ &\preceq& \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}G_{b,1}\|_{\mathcal{Z}_H} \\ &\preceq& \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}h_{b,1}\|_{\mathcal{Z}_H} +\frac{5}{3} \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}h_{b,2}\|_{\mathcal{Z}_H}+ \frac{2}{3}\sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}h_{b,3}\|_{\mathcal{Z}_H}. \end{eqnarray} | (4.6) |
Consequently,
\begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{1} &\preceq& \sum\limits_{k = 1}^{3} \limsup\limits_{|b| \rightarrow 1} \|C_{\varphi}h_{b,k}\|_{\mathcal{Z}_H}. \end{eqnarray} | (4.7) |
Similarly, we see that
\begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{2} &\preceq& \sum\limits_{k = 1}^{3} \limsup\limits_{|b| \rightarrow 1} \|C_{\varphi}h_{b,k}\|_{\mathcal{Z}_H}. \end{eqnarray} | (4.8) |
By direct calculation, \beta_{H}^2(u) \preceq\|u\|_{\infty} , for all u \in \mathcal{H}^{\infty} . Because \|u\|_{\infty} \leq 1 ,
\begin{eqnarray} R_{3}& = & \sup\limits_{|\varphi(\zeta)| > {\delta}_{N}} (1-|\zeta|^2)|\varphi'(\zeta)|^2 \biggl\{\biggl| \frac{\partial^2u(\varphi(\zeta))}{\partial \zeta^2} \biggl|+\biggl| \frac{\partial^2 u(\varphi(\zeta))}{\partial\overline{\zeta}^2} \biggl| \biggl\},\\ &\preceq& \|u\|_{\infty} \sup\limits_{|\varphi(\zeta)| > {\delta}_{N}} (1-|\zeta|^2)|\varphi'(\zeta)|^2 \frac{2|\varphi(\zeta)|^2}{3(1-|\varphi(\zeta)|^2)^2 }\\ &\preceq& \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}G_{b,2}\|_{\mathcal{Z}_H} \\ &\preceq& \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}h_{b,1}\|_{\mathcal{Z}_H} +2 \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}h_{b,2}\|_{\mathcal{Z}_H}+ \sup\limits_{|b| > {\delta}_{N}} \|C_{\varphi}h_{b,3}\|_{\mathcal{Z}_H}. \end{eqnarray} | (4.9) |
Thus, we obtain
\begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{3} &\preceq& \sum\limits_{k = 1}^{3} \limsup\limits_{|b| \rightarrow 1} \|C_{\varphi}h_{b,k}\|_{\mathcal{Z}_H}. \end{eqnarray} | (4.10) |
Similarly, we see that
\begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{4} &\preceq& \sum\limits_{k = 1}^{3} \limsup\limits_{|b| \rightarrow 1} \|C_{\varphi}h_{b,k}\|_{\mathcal{Z}_H}. \end{eqnarray} | (4.11) |
By the inequalities (4.7)-(4.11), we obtain
\begin{eqnarray} J_{\varphi,i} &\preceq& \max\limits_{1\leq k \leq3}\bigl\{\limsup\limits_{|b| \rightarrow 1} \|C_\varphi h_{b,k}\|_{\mathcal{Z}_H}\bigl\}. \end{eqnarray} | (4.12) |
Hence, by applying (4.5) and (4.12) we determine that
\begin{eqnarray*} \limsup\limits_{i \rightarrow \infty} \|(C_\varphi -C_\varphi \mathcal{T}_{{\delta}_i} \|_{\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H}\preceq \max\limits_{1\leq k \leq3}\bigl\{\limsup\limits_{|b| \rightarrow 1} \|C_\varphi h_{b,k}\|_{\mathcal{Z}_H}\bigl\}. \end{eqnarray*} |
Finally, we prove that
\begin{eqnarray*} \|C_{\varphi} \|_{e,\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H}\preceq\max \{ B_1, B_2\}. \end{eqnarray*} |
According to the definition of the essential norm, we only need to prove that
\begin{eqnarray*} \limsup\limits_{i \rightarrow \infty} \|C_\varphi -C_\varphi \mathcal{T}_{{\delta}_i} \|_{\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H}\preceq \max\{B_1, B_2\}. \end{eqnarray*} |
From (4.6), we see that
\begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{1} &\preceq& \limsup\limits_{|\varphi(\zeta)| \rightarrow 1} (1-|\zeta|^2)|\varphi''(\zeta)| \frac{|\varphi(\zeta)|}{(1-|\varphi(\zeta)|^2) } = B_2. \end{eqnarray} | (4.13) |
Similarly,
\begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{2} &\preceq& B_2. \end{eqnarray} | (4.14) |
Moreover, for (4.9), we see that
\begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{3}&\preceq& \limsup\limits_{|\varphi(\zeta)| \rightarrow 1} (1-|\zeta|^2)|\varphi'(\zeta)|^2 \frac{2|\varphi(\zeta)|^2}{3(1-|\varphi(\zeta)|^2)^2 } = B_1. \end{eqnarray} | (4.15) |
Similarly,
\begin{eqnarray} \limsup\limits_{i \rightarrow \infty} R_{4}&\preceq& B_1. \end{eqnarray} | (4.16) |
Hence, by the inequalities (4.13)-(4.16) we obtain
\begin{eqnarray*} \|C_{\varphi} \|_{e,\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H}\preceq\max \{ B_1, B_2\}. \end{eqnarray*} |
The proof is complete.
Theorem 4.2. Let \varphi\in S(\mathbb{D}) such that C_{\varphi}: \mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H is bounded. Then,
\begin{eqnarray*} \|C_{\varphi} \|_{e, \mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H} \approx \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray*} |
Proof. First, we prove that
\begin{eqnarray*} \|C_{\varphi} \|_{e,\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H} \succeq \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray*} |
Set the sequence p_j(w) = w^j+\overline{w}^j , for w\in\mathbb{D} and when j\ge0 is an integer. Then, \|p_j\|_{\infty} = 1 and p_j converges uniformly to 0 on compact subsets \mathbb{\overline D} \subset \mathbb{D} . Therefore, by Lemma 3.1 we see that
\begin{eqnarray*} \lim\limits_{j\to\infty}\|\mathcal{T} p_j\|_{\mathcal{Z}_H} = 0. \end{eqnarray*} |
Hence,
\begin{eqnarray*} \|C_{\varphi}-\mathcal{T}\|_{ \mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H}\succeq \limsup\limits_{j \rightarrow \infty} \|(C_\varphi -\mathcal{T})p_j\|_{\mathcal{Z}_H}\succeq \limsup\limits_{j \rightarrow \infty}\|C_\varphi p_j\|_{\mathcal{Z}_H}. \end{eqnarray*} |
Therefore,
\begin{eqnarray} \|C_{\varphi} \|_{e, \mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H} \succeq \limsup\limits_{j \rightarrow \infty} \|C_\varphi p_j\|_{\mathcal{Z}_H} = \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray} | (4.17) |
Next, we prove that
\|C_{\varphi} \|_{e,\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H} \preceq \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. |
Since C_{\varphi}: \mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H is bounded, by Theorem 2.1
\begin{eqnarray*} L: = \sup\limits_{j\geq 0}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H} < \infty. \end{eqnarray*} |
Now, consider the test function h_{b, k} with b \in \mathbb{D} in (2.4), for k = 1, 2, 3 . By linearity of C_{\varphi} , for any fixed positive integer n \geq 2 , we have
\begin{eqnarray*} \|C_{\varphi}h_{b,1}\|_{\mathcal{Z}_H} &\leq& (1-|b|^2) \sum\limits_{j = 0}^{\infty} |b|^{j} \|C_{\varphi} p_{j}\|_{\mathcal{Z}_H}\nonumber\\ & = & (1-|b|^2) \biggl[ \biggl\{ \sum\limits_{j = 0}^{n-1} + \sum\limits_{j = n}^{\infty} \biggl\} |b|^{j} \|C_{\varphi} p_{j}\|_{\mathcal{Z}_H} \biggl]\nonumber\\ &\leq&n L (1-|b|^2)+ 2\sup\limits_{j\geq n}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray*} |
Letting |b| \rightarrow 1 in the above inequality leads to
\begin{eqnarray*} \limsup\limits_{|b|\to 1} \|C_{\varphi}h_{b,1}\|_{\mathcal{Z}_H} &\leq& 2 \sup\limits_{j\geq n}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}\\ &\preceq& \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray*} |
Similarly, we can prove that
\begin{eqnarray*} \limsup\limits_{|b|\to 1} \|C_{\varphi}h_{b,2}\|_{\mathcal{Z}_H} &\preceq& \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H},\\ \limsup\limits_{|b|\to 1} \|C_{\varphi}h_{b,3}\|_{\mathcal{Z}_H} &\preceq& \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray*} |
Hence,
\begin{eqnarray*} \max\limits_{1\leq k \leq3}\bigl\{\limsup\limits_{|b| \rightarrow 1} \|C_\varphi h_{b,k}\|_{\mathcal{Z}_H}\bigl\} &\preceq& \limsup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j \|_{\mathcal{Z}_H}. \end{eqnarray*} |
By Theorem 4.1, we obtain
\begin{eqnarray} \|C_{\varphi} \|_{e,\mathcal{H}^{\infty} \rightarrow \mathcal{Z}_H}\preceq \max\limits_{1\leq k \leq3}\bigl\{\limsup\limits_{|b| \rightarrow 1} \|C_\varphi h_{b,k}\|_{\mathcal{Z}_H}\bigl\} \preceq \sup\limits_{j\to\infty}\|\varphi^j +\overline{\varphi}^j\|_{\mathcal{Z}_H}. \end{eqnarray} | (4.18) |
By (4.17) and (4.18), we have achieved the desired result.
In this work, an interesting result in harmonic mappings about the operator-theoretic properties of composition operators between \mathcal{H}^{\infty} space and harmonic Zygmund space \mathcal{Z}_H has been obtained. It is well known that the existing similar results in spaces of analytic functions have been applied many times to the composition operators between \mathcal{H}^{\infty} and Zygmund space \mathcal{Z} . We hope that this study can attract people's attention to the operator theory on harmonic mappings.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare no conflict of interest.
[1] |
M. Aljuaid, M. A. Bakit, On characterizations of weighted harmonic Bloch mappings and its Carleson measure criteria, J. Funct. Space., 2023 (2023), 8500633. https://doi.org/10.1155/2023/8500633 doi: 10.1155/2023/8500633
![]() |
[2] |
M. Aljuaid, F. Colonna, Characterizations of Bloch-type spaces of harmonic mappings, J. Funct. Space., 2019 (2019), 5687343. https://doi.org/10.1155/2019/5687343 doi: 10.1155/2019/5687343
![]() |
[3] |
M. Aljuaid, F. Colonna, Composition operators on some Banach spaces of harmonic mappings, J. Funct. Space., 2020 (2020), 9034387. https://doi.org/10.1155/2020/9034387 doi: 10.1155/2020/9034387
![]() |
[4] |
M. Aljuaid, F. Colonna, On the harmonic Zygmund spaces, B. Aust. Math. Soc., 101 (2020), 466–476. https://doi.org/10.1017/S0004972720000180 doi: 10.1017/S0004972720000180
![]() |
[5] |
M. Al-Qurashi, S. Rashid, F. Jarad, E. Ali, Ria H. Egami, Dynamic prediction modelling and equilibrium stability of a fractional discrete biophysical neuron model, Results Phys., 48 (2023), 106405. https://doi.org/10.1016/j.rinp.2023.106405 doi: 10.1016/j.rinp.2023.106405
![]() |
[6] |
M. Al-Qurashi, S. Sultana, S. Karim, S. Rashid, F. Jarad, M. S. Alharthi, Identification of numerical solutions of a fractal-fractional divorce epidemic model of nonlinear systems via anti-divorce counseling, AIMS Mathematics, 8 (2023), 5233–5265. https://doi.org/10.3934/math.2023263 doi: 10.3934/math.2023263
![]() |
[7] |
A. K. Alsharidi, S. Rashid, S. K. Elagan, Short-memory discrete fractional difference equation wind turbine model and its inferential control of a chaotic permanent magnet synchronous transformer in time-scale analysis, AIMS Mathematics, 8 (2023), 19097–19120. doilinkhttps://doi.org/10.3934/math.2023975 doi: 10.3934/math.2023975
![]() |
[8] | S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, 2nd Eds., New York: Springer, 2001. |
[9] |
M. A. Bakhit, Essential norms of Stević–Sharma operators from general Banach spaces into Zygmund-type spaces, J. Math., 2022 (2022), 1230127. https://doi.org/10.1155/2022/1230127 doi: 10.1155/2022/1230127
![]() |
[10] |
C. Boyd, P. Rueda, Isometries of weighted spaces of harmonic functions, Potential Anal., 29 (2008), 37–48. https://doi.org/10.1007/s11118-008-9086-4 doi: 10.1007/s11118-008-9086-4
![]() |
[11] |
R. E. Castillo, J. C. Ramos-Fernández, E. M. Rojas, A new essential norm estimate of composition operators from weighted Bloch space into Bloch spaces, J. Funct. Space., 2013 (2013), 817278. https://doi.org/10.1155/2013/817278 doi: 10.1155/2013/817278
![]() |
[12] |
J. S. Choa, K. J. Izuchi, S. Ohno, Composition Operators on the Space of Bounded Harmonic Functions, Integr. Equ. Oper. Theory, 61 (2008), 167–186. https://doi.org/10.1007/s00020-008-1579-4 doi: 10.1007/s00020-008-1579-4
![]() |
[13] | F. Colonna, The Bloch constant of bounded harmonic mappings, Indiana U. Math. J., 38 (1989), 829–840. |
[14] | C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, Boca Raton: CRC Press, 1995. |
[15] |
J. G. Liu, W. H. Zhu, Y. K. Wu, G. H. Jin, Application of multivariate bilinear neural network method to fractional partial differential equations, Results Phys., 47 (2023), 106341. https://doi.org/10.1016/j.rinp.2023.106341 doi: 10.1016/j.rinp.2023.106341
![]() |
[16] |
E. Jordá, A. M. Zarco, Isomorphisms on weighted Banach spaces of harmonic and holomorphic functions, J. Funct. Space., 2013 (2013), 178460. https://doi.org/10.1155/2013/178460 doi: 10.1155/2013/178460
![]() |
[17] |
E. Jordá, A. M. Zarco, Weighted Banach spaces of harmonic functions, RACSAM, 108 (2014), 405–418. https://doi.org/10.1007/s13398-012-0109-z doi: 10.1007/s13398-012-0109-z
![]() |
[18] |
A. Kamal, S. A. Abd-Elhafeez, M. Hamza Eissa, On product-type operators between H^{\infty} and Zygmund Spaces, Appl. Math. Inf. Sci., 16 (2022), 623–633. https://doi.org/10.18576/amis/160416 doi: 10.18576/amis/160416
![]() |
[19] | J. Laitila, H. O. Tylli, Composition operators on vector-valued harmonic functions and Cauchy transforms, Indiana Univ. Math. J., 55 (2006), 719–746. |
[20] |
W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. Lond. Math. Soc., 51 (1995), 309–320. https://doi.org/10.1112/jlms/51.2.309 doi: 10.1112/jlms/51.2.309
![]() |
[21] |
W. Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic functions, Stud. Math., 175 (2006), 19–45. https://doi.org/10.4064/sm175-1-2 doi: 10.4064/sm175-1-2
![]() |
[22] |
S. Rashid, F. Jarad, S. A. A. El-Marouf, S. K. Elagan, Global dynamics of deterministic-stochastic dengue infection model including multi specific receptors via crossover effects, AIMS Mathematics, 8 (2023), 6466–6503. https://doi.org/10.3934/math.2023327 doi: 10.3934/math.2023327
![]() |
[23] |
R. Yoneda, A characterization of the harmonic Bloch space and the harmonic Besov spaces by an oscillation, Proc. Edinburgh Math. Soc., 45 (2002), 229–239. https://doi.org/10.1017/S001309159900142X doi: 10.1017/S001309159900142X
![]() |
1. | Munirah Aljuaid, M. A. Bakhit, Andrea Scapellato, Norms of Composition Operators from Weighted Harmonic Bloch Spaces into Weighted Harmonic Zygmund Spaces, 2024, 2024, 2314-8888, 1, 10.1155/2024/5581805 |