In many nonlinear partial differential equations, noise or random fluctuation is an inherent part of the system being modeled and have vast applications in different areas of engineering and sciences. This objective of this paper is to construct stochastic solitons of Biswas-Arshed equation (BAE) under the influence of multiplicative white noise in the terms of the Itô calculus. Bright, singular, dark, periodic, singular and combined singular-dark stochastic solitons are attained by using the Sardar subequation method. The results prove that the suggested approach is a very straightforward, concise and dynamic addition in literature. By using Mathematica 11, some 3D and 2D plots are illustrated to check the influence of multiplicative noise on solutions. The presence of multiplicative noise leads the fluctuations and have significant effects on the long-term behavior of the system. So, it is observed that multiplicative noise stabilizes the solutions of BAE around zero.
Citation: Hamood Ur Rehman, Aziz Ullah Awan, Sayed M. Eldin, Ifrah Iqbal. Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise[J]. AIMS Mathematics, 2023, 8(9): 21606-21621. doi: 10.3934/math.20231101
[1] | Biwen Li, Guangyu Wang . Stability of stochastic nonlinear systems under aperiodically intermittent state quantization and event-triggered mechanism. AIMS Mathematics, 2025, 10(4): 10062-10092. doi: 10.3934/math.2025459 |
[2] | Tian Xu, Jin-E Zhang . Intermittent control for stabilization of uncertain nonlinear systems via event-triggered mechanism. AIMS Mathematics, 2024, 9(10): 28487-28507. doi: 10.3934/math.20241382 |
[3] | Tao Xie, Xing Xiong . Finite-time synchronization of fractional-order heterogeneous dynamical networks with impulsive interference via aperiodical intermittent control. AIMS Mathematics, 2025, 10(3): 6291-6317. doi: 10.3934/math.2025287 |
[4] | Junsoo Lee, Wassim M. Haddad . On finite-time stability and stabilization of nonlinear hybrid dynamical systems. AIMS Mathematics, 2021, 6(6): 5535-5562. doi: 10.3934/math.2021328 |
[5] | Siyue Yao, Jin-E Zhang . Exponential input-to-state stability of nonlinear systems under impulsive disturbance via aperiodic intermittent control. AIMS Mathematics, 2025, 10(5): 10787-10805. doi: 10.3934/math.2025490 |
[6] | Chao Ma, Tianbo Wang, Wenjie You . Master-slave synchronization of Lurie systems with time-delay based on event-triggered control. AIMS Mathematics, 2023, 8(3): 5998-6008. doi: 10.3934/math.2023302 |
[7] | Yinjie Qian, Lian Duan, Hui Wei . New results on finite-/fixed-time synchronization of delayed memristive neural networks with diffusion effects. AIMS Mathematics, 2022, 7(9): 16962-16974. doi: 10.3934/math.2022931 |
[8] | P. K. Lakshmi Priya, K. Kaliraj, Panumart Sawangtong . Analysis of relative controllability and finite-time stability in nonlinear switched fractional impulsive systems. AIMS Mathematics, 2025, 10(4): 8095-8115. doi: 10.3934/math.2025371 |
[9] | Ting Yang, Li Cao, Wanli Zhang . Practical generalized finite-time synchronization of duplex networks with quantized and delayed couplings via intermittent control. AIMS Mathematics, 2024, 9(8): 20350-20366. doi: 10.3934/math.2024990 |
[10] | Yidan Wang, Li Xiao, Yanfeng Guo . Finite-time stability of singular switched systems with a time-varying delay based on an event-triggered mechanism. AIMS Mathematics, 2023, 8(1): 1901-1924. doi: 10.3934/math.2023098 |
In many nonlinear partial differential equations, noise or random fluctuation is an inherent part of the system being modeled and have vast applications in different areas of engineering and sciences. This objective of this paper is to construct stochastic solitons of Biswas-Arshed equation (BAE) under the influence of multiplicative white noise in the terms of the Itô calculus. Bright, singular, dark, periodic, singular and combined singular-dark stochastic solitons are attained by using the Sardar subequation method. The results prove that the suggested approach is a very straightforward, concise and dynamic addition in literature. By using Mathematica 11, some 3D and 2D plots are illustrated to check the influence of multiplicative noise on solutions. The presence of multiplicative noise leads the fluctuations and have significant effects on the long-term behavior of the system. So, it is observed that multiplicative noise stabilizes the solutions of BAE around zero.
In 1940, Ulam [25] proposed the following question concerning the stability of group homomorphisms: Under what condition does there is an additive mapping near an approximately additive mapping between a group and a metric group? In the next year, Hyers [7,8] answered the problem of Ulam under the assumption that the groups are Banach spaces. A generalized version of the theorem of Hyers for approximately linear mappings was given by Rassias [22]. Since then, the stability problems of various functional equation have been extensively investigated by a number of authors (see [3,6,13,14,16,17,22,24,26,27,28]). By regarding a large influence of Ulam, Hyers and Rassias on the investigation of stability problems of functional equations the stability phenomenon that was introduced and proved by Rassias [22] in the year 1978 is called the Hyers-Ulam-Rassias stability.
Consider the functional equation
f(x+y)+f(x−y)=2f(x)+2f(y). | (1.1) |
The quadratic function f(x)=cx2 is a solution of this functional Equation (1.1), and so one usually is said the above functional equation to be quadratic [5,10,11,12]. The Hyers-Ulam stability problem of the quadratic functional equation was first proved by Skof [24] for functions between a normed space and a Banach space. Afterwards, the result was extended by Cholewa [2] and Czerwik [4].
Now, we consider the following functional equation:
f(2x+y)+f(2x−y)=4f(x+y)+4f(x−y)+24f(x)−6f(y). | (1.2) |
It is easy to see that the function f(x)=cx4 satisfies the functional equation (1.2). Hence, it is natural that Eq (1.2) is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic mapping (see [15,19]).
The theory of random normed spaces (briefly, RN-spaces) is important as a generalization of deterministic result of normed spaces and also in the study of random operator equations. The notion of an RN-space corresponds to the situations when we do not know exactly the norm of the point and we know only probabilities of possible values of this norm. Random theory is a setting in which uncertainty arising from problems in various fields of science, can be modelled. It is a practical tool for handling situations where classical theories fail to explain. Random theory has many application in several fields, for example, population dynamics, computer programming, nonlinear dynamical system, nonlinear operators, statistical convergence and so forth.
In 2008, Mihet and Radu [18] applied fixed point alternative method to prove the stability theorems of the Cauchy functional equation:
f(x+y)−f(x)−f(y)=0 |
in random normed spaces. In 2008, Najati and Moghimi [20] obtained a stability of the functional equation deriving from quadratic and additive function:
f(2x+y)+f(2x−y)+2f(x)−f(x+y)−f(x−y)−2f(2x)=0 | (1.3) |
by using the direct method. After that, Jin and Lee [9] proved the stability of the above mentioned functional equation in random normed spaces.
In 2011, Saadati et al. [21] proved the nonlinear stability of the quartic functional equation of the form
16f(x+4y)+f(4x−y)=306[9f(x+y3)+f(x+2y)]+136f(x−y)−1394f(x+y)+425f(y)−1530f(x) |
in the setting of random normed spaces. Furthermore, the interdisciplinary relation among the theory of random spaces, the theory of non-Archimedean spaces, the fixed point theory, the theory of intuitionistic spaces and the theory of functional equations were also presented. Azadi Kenary [1] investigated the Ulam stability of the following nonlinear function equation
f(f(x)−f(y))+f(x)+f(y)=f(x+y)+f(x−y), |
in random normed spaces.
In this note, we investigate the general solution for the quartic functional equation of the form
(3n+4)f(n∑i=1xi)+n∑j=1f(−nxj+n∑i=1,i≠jxi)=(n2+2n+1)n∑i=1,i≠j≠kf(xi+xj+xk)−12(3n3−2n2−13n−8)n∑i=1,i≠jf(xi+xj)+12(n3+2n2+n)n∑i=1,i≠jf(xi−xj)+12(3n4−5n3−7n2+13n+12)n∑i=1f(xi) | (1.4) |
(n∈N,n>4) and also investigate the Hyers-Ulam stability of the quartic functional equation in random normed spaces by using the direct approach and the fixed point approach.
In this part, we make some notations and basic definitions used in this article.
Definition 2.1. A function T:[0,1]×[0,1]→[0,1] is called a continuous triangular norm, if T satisfies the following condition
(a) T is commutative and associative;
(b) T is continuous;
(c) T(a,1)=a for all a∈[0,1];
(d) T(a,b)≤T(c,d) when a≤c and b≤d for all a,b,c,d∈[0,1].
Typical examples of continuous t−norms are Tp(a,b)=ab,Tm(a,b)=min(a,b) and TL(a,b)=max(a+b−1,0) (The Lukasiewicz t−norm). Recall [23] that if T is a t−norm and {xn} is a given sequence of numbers in [0,1], then Tni=1xn+i is defined recurrently by T′i=1xi=xi and Tni=1xi=T(Tn−1i=1xi,xn) for n≥2,T∞i=1xi is defined as T∞i=1xn+i. It is known that, for the Lukasiewicz t−norm, the following implication holds:
limn→∞(TL)∞i=1xn+i=1⇔∞∑n=1(1−xn)<∞. |
Definition 2.2. A random normed space (briefly, RN−space) is a triple (X,μ,T), where X is a vector space. T is a continuous t−norm and μ is a mapping from X into D+ satisfying the following conditions:
(RN1) μx(t)=ε0(t) for all t>0 if and only if x=0;
(RN2) μαx(t)=μx(t|α|) for all x∈X, and alpha∈ℜ with α≠0;
(RN3) μx+y(t+s)≥T(μx(t),μy(s)) for all x,y∈X and t,s≥0.
Definition 2.3. Let (X,μ,T) be an RN−space.
1). A sequence {xn} in X is said to be convergent to a point x∈X if, for any ε>0 and λ>0, there exists a positive integer N such that μxn−x(ε)>1−λ for all n>N.
2). A sequence {xn} in X is called a Cauchy sequence if, for any ε>0andλ>0, there exists a positive integer N such that μxn−xm(ε)>1−λ for all n≥m≥N.
3). An RN−space (X,μ,T) is said to be complete, if every Cauchy sequence in X is convergent to a point in X.
Throughout this paper, we use the following notation for a given mapping f:X→Y as
Df(x1,⋯,xn):=(3n+4)f(n∑i=1xi)+n∑j=1f(−nxj+n∑i=1,i≠jxi)−(n2+2n+1)n∑i=1,i≠j≠kf(xi+xj+xk)−12(3n3−2n2−13n−8)n∑i=1,i≠jf(xi+xj)+12(n3+2n2+n)n∑i=1,i≠jf(xi−xj)+12(3n4−5n3−7n2+13n+12)n∑i=1f(xi) |
for all x1,x2,⋯,xn∈X.
In this section we investigate the general solution of the n-variable quartic functional equation (1.4).
Theorem 3.1. Let X and Y be real vector spaces. If a mapping f:X→Y satisfies the functional equation (1.4) for all x1,⋯,xn∈X, then f:X→Y satisfies the functional equation (1.2) for all x,y∈X.
Proof. Assume that f satisfies the functional equation (1.4). Putting x1=x2=⋯=xn=0 in (1.4), we get
(3n+4)f(0)=(n2+2n+1){6n−20+4(n−4)(n−5)2+(n−4)(n−5)(n−6)6}f(0)−12(3n3−2n2−13n−8){4n−10+(n2−9n+20)2}f(0)+12(n3+2n2+n){4n−10+(n2−9n+20)2}f(0)−n2(3n4−5n3−7n2+13n+12)f(0) | (3.1) |
It follows from (3.1) that
f(0)=0. | (3.2) |
Replacing (x1,x2,⋯,xn) by (x,0,⋯,0⏟(n−1)−times) in (1.4), we have
(3n+4)f(x)+n4f(−x)+(n−1)f(x)=(n4−n3−3n2+n+22)f(x)−12(3n4−5n3−11n2+5n+8)f(x)+12(n4+n3+n2−n)f(x)+12(3n4−5n3−7n2+13n+12)f(x) | (3.3) |
for all x∈X. It follows from (3.3) that
f(−x)=f(x) |
for all x∈X. Setting x1=x2=⋯=xn=x in (1.4), we obtain
(3n+4)f(x)+nf(x)=(n2+2n+1){6n−20+4(27)(n−4)(n−5)2+(n−4)(n−5)(n−6)6}f(x)−12(3n3−2n2−13n−8){4n−10+(n2−9n+20)2}f(2x)+12(n3+2n2+n){4n−10+(n2−9n+20)2}f(0)+n2(3n4−5n3−7n2+13n+12)f(x) | (3.4) |
for all x∈X. It follows from (3.4) and (3.2) that
f(2x)=16f(x) |
for all x∈X. Setting x1=x2=⋯=xn=x in (1.4), we get
(3n+4)f(x)+nf(x)=(n2+2n+1){6n−20+4(n2−9n+20)2+(n2−9n+20)(n−6)6}f(3x)−12(3n3−2n2−13n−8){4n−10+16(n2−9n+20)2}f(x)+12(n3+2n2+n){4n−10+(n2−9n+20)2}f(0)+n2(3n4−5n3−7n2+13n+12)f(x) | (3.5) |
for all x∈X. It follows from (3.5) and (3.2) that
f(3x)=81f(x) |
for all x∈X. In general for any positive m, we get
f(mx)=m4f(x) |
for all x∈X. Replacing (x1,x2,⋯,xn) by (x,x,⋯,x⏟(n−1)−times,y) in (1.4), we get
(3n+4)(f((n−1)x+y)+(n−1)f(−2x+y))+f((n−1)x−ny)=(n2+2n+1)(3n−9+(n2−3n+2)2)f(2x+y)(n2+2n+1)(3n−11+(3n2−27n+602)+((n−4)(n−5)(n−6)6))f(3x)−12(3n3−2n2−13n−8){3n−9+(n2−9n+20)2}f(2x)−(n−1)2(3n3−2n2−13n−8)f(x+y)+12(n3+2n2+n)(n−1)f(x−y)+12(3n4−5n3−7n2+13n+12)(f(y)+(n−1)f(x)) | (3.6) |
for all x,y∈X. It follows from (3.6) that
(3n+4)(f((n−1)x+y)+(n−1)f(−2x+y))+f((n−1)x−ny)=(n2+2n+1)(n2−3n+22)f(2x+y)+81(n2+2n+1)(n3−5n2+11n−66)f(x)−16(3n3−2n2−13n−8)(n2−3n+24)f(x)−(n−1)2(3n3−2n2−13n−8)f(x+y)+12(n3+2n2+n)(n−1)f(x−y)+12(3n4−5n3−7n2+13n+12)(f(y)+(n−1)f(x)) | (3.7) |
for all x,y∈X. Replacing y by −y in (3.7), we get
(3n+4)(f((n−1)x−y)+(n−1)f(2x+y))+f(()x+y)=(n2+2n+1)(n2−3n+22)f(2x−y)+81(n2+2n+1)(n3−5n2+11n−66)f(x)−16(3n3−2n2−13n−8)(n2−3n+24)f(x)−(n−1)2(3n3−2n2−13n−8)f(x−y)+12(n3+2n2+n)(n−1)f(x+y)+12(3n4−5n3−7n2+13n+12)(f(y)+(n−1)f(x)) | (3.8) |
for all x,y∈X. Adding (3.7) and (3.8), we get
(3n+4)((n−1)2{f(x+y)+f(x−y)}+2{f((n−1)x)−(n−1)2f(x)}+2{f(y)−(n−1)2f(y)})+(n−1)(f(−2x+y)+f(2x+y))+(f((n−1)x−ny)+f((n−1)x+ny))=(n2+2n+1)(n2−3n+22)(f(2x−y)+f(2x+y))+162(n2+2n+1)(n3−5n2+11n−66)f(x)−32(3n3−2n2−13n−8)(n2−3n+24)f(x)−(n−1)2(3n3−2n2−13n−8)(f(x−y)+f(x+y))+12(n3+2n2+n)(n−1)(f(x+y)+f(x−y))+(3n4−5n3−7n2+13n+12)(f(y)+(n−1)f(x)) | (3.9) |
for all x,y∈X. It follows from (3.9) that
(3n+4)((n−1)2{f(x+y)+f(x−y)}+2{f((n−1)x)−(n−1)2f(x)}+2{f(y)−(n−1)2f(y)})+(n−1)(f(2x−y)+f(2x+y))+n2(n−1)2(f(x+y)+f(x−y))+2{f((n−1)x)−n2(n−1)2f(x)+n4f(y)−n2(n−1)2f(y)}=(n2+2n+1)(n2−3n+22)(f(2x−y)+f(2x+y))+162(n2+2n+1)(n3−5n2+11n−66)f(x)−32(3n3−2n2−13n−8)(n2−3n+24)f(x)−(n−1)2(3n3−2n2−13n−8)(f(x−y)+f(x+y))+12(n3+2n2+n)(n−1)(f(x+y)+f(x−y))+(3n4−5n3−7n2+13n+12)(f(y)+(n−1)f(x)) | (3.10) |
for all x,y∈X. It follows from (3.10) that
−2f(2x+y)−2f(2x−y)=−8f(x+y)−8f(x−y)−48f(x)+12f(y) | (3.11) |
for all x,y∈X. From (3.11), we get
(2x+y)+f(2x−y)=4f(x+y)+4f(x−y)+24f(x)−6f(y) |
for all x,y∈X. Thus the mapping f:X→Y is quartic.
In this section, the Ulam-Hyers stability of the quartic functional equation (1.4) in RN−space is provided. Throughout this part, let X be a linear space and (Y,μ,T) be a complete RN−space.
Theorem 4.1. Let j=±1, f:X→Y be a mapping for which there exists a mapping η:Xn→D+ satisfying
limk→∞T∞i=0(η2(k+i)x1,2(k+i)x2,...,2(k+i)xn(24(k+i+1)jt))=1=limk→∞η2kjx1,2kjx2,..,2kjxn(24kjt) |
such that f(0)=0 and
μDf(x1,x2,...,xn)(t)≥η(x1,x2,...,xn)(t) | (4.1) |
for all x1,x2,...,xn∈X and all t>0. Then there exists a unique quartic mapping Q:X→Y satisfying the functional equation (1.4) and
μQ(x)−f(x)(t)≥T∞i=0(η2(i+1)jx,2(i+1)jx,,...,2(i+1)jx(14(3n5−5n4−11n3+5n2+8n)24(i+1)jt)) |
for all x∈X and all t>0. The mapping Q(x) is defined by
μC(x)(t)=limk→∞μf(2kjx)24kj(t) | (4.2) |
for all x∈X and all t>0.
Proof. Assume j=1. Setting (x1,x2,...,xn) by (x,x,...,x⏟n−times) in (4.1), we obtain
μ(3n5−5n4−11n3+5n2+8n)4f(2x)−4(3n5−5n4−11n3+5n2+8n)f(x)(t)≥η(x,x,...,x⏟n−times)(t) | (4.3) |
for all x∈X and all t>0. It follows from (4.2) and (RN2) that
μf(2x)16−f(x)(t)≥η(x,x,...,x⏟n−times)(24(3n5−5n4−11n3+5n2+8n)t) |
for all x∈X and all t>0. Replacing x by 2kx in (4.3), we have
μf(2k+1x)24(k+1)−f(2kx)24k(t)≥η(2kx,2kx,...,2kx⏟n−times)(24k(3n5−5n4−11n3+5n2+8n)16t)≥η(x,x,...,x⏟n−times)(24k(3n5−5n4−11n3+5n2+8n)16αkt) | (4.4) |
for all x∈X and all t>0. It follows from f(2nx)24n−f(x)=n−1∑k=0f(2k+1x)24(k+1)−f(2kx)24k and (4.4) that
μf(2nx)24n−f(x)(tn−1∑k=0αk24k(3n5−5n4−11n3+5n2+8n)16)≥Tn−1k=0(ηx,x,0,...,0(t))=η(x,x,...,x⏟n−times)(t), |
μf(2nx)24n−f(x)(t)≥η(x,x,...,x⏟n−times)(tn−1∑k=0αk24k(3n5−5n4−11n3+5n2+8n)24) | (4.5) |
for all x∈X and all t>0. Replacing x by 2mx in (4.5), we get
μf(2n+mx)24(n+m)−f(2mx)24m(t)≥η(x,x,...,x⏟n−times)(tn+m∑k=mαk24k(3n5−5n4−11n3+5n2+8n)16). | (4.6) |
Since η(x,x,...,x⏟n−times)(tn+m∑k=mαk24k(3n5−5n4−11n3+5n2+8n)16)→1 as m,n→∞, {f(2nx)24n} is a Cauchy sequence in (Y,μ,T). Since (Y,μ,T) is a complete RN-space, this sequence converges to some point C(x)∈Y. Fix x∈X and put m=0 in (4.6). Then we have
μf(2nx)24n−f(x)(t)≥η(x,x,...,x⏟n−times)(tn−1∑k=0αk24k(3n5−5n4−11n3+5n2+8n)16) |
and so, for every δ>0, we get
μC(x)−f(x)(t+δ)≥T(μQ(x)−f(2nx)24n(δ),μf(2nx)24n−f(x)(t))≥T(μQ(x)−f(2nx)24n(δ),η(x,x,...,x⏟n−times)(tn−1∑k=0αk24k(3n5−5n4−11n3+5n2+8n)16)). | (4.7) |
Taking the limit as n→∞ and using (4.7), we have
μC(x)−f(x)(t+δ)≥η(x,x,...,x⏟n−times)((3n5−5n4−11n3+5n2+8n)(24−α)t). | (4.8) |
Since δ is arbitrary, by taking δ→0 in (4.8), we have
μQ(x)−f(x)(t)≥η(x,x,...,x⏟n−times)((3n5−5n4−11n3+5n2+8n)(24−α)t). | (4.9) |
Replacing (x1,x2,...,xn) by (2nx1,2nx2,...,2nxn) in (4.1), respectively, we obtain
μDf(2nx1,2nx2,...,2nxn)(t)≥η2nx1,2nx2,...,2nxn(24nt) |
for all x1,x2,...,xn∈X and for all t>0. Since
limk→∞T∞i=0(η2k+ix1,2k+ix2,...,2k+ixn(24(k+i+1)jt))=1, |
we conclude that Q fulfils (1.1). To prove the uniqueness of the quartic mapping Q, assume that there exists another quartic mapping D from X to Y, which satisfies (4.9). Fix x∈X. Clearly, Q(2nx)=24nQ(x) and D(2nx)=24nD(x) for all x∈X. It follows from (4.9) that
μQ(x)−D(x)(t)=limn→∞μQ(2nx)24nD(2nx)24n(t)μQ(2nx24n(t)≥min{μQ(2nx)24nf(2nx)24n(t2),μD(2nx)24nf(2nx)24n(t2)} |
≥η(2nx,2nx,...,2nx⏟n−times)(24n(3n5−5n4−11n3+5n2+8n)(24−α)t)≥η(x,x,...,x⏟n−times)(24n(3n5−5n4−11n3+5n2+8n)(24−α)tαn). |
Since limn→∞(24n(3n5−5n4−11n3+5n2+8n)(24−α)tαn)=∞, we get
limn→∞ηx,x,0,...,0(24n(3n5−5n4−11n3+5n2+8n)(24−α)tαn)=1.
Therefore, it follows that μQ(x)−D(x)(t)=1 for all t>0 and so Q(x)=D(x).
This completes the proof.
The following corollary is an immediate consequence of Theorem 4.1, concerning the stability of (1.4).
Corollary 4.2. Let Ω and ℧ be nonnegative real numbers. Let f:X→Y satisfy the inequality
μDf(x1,x2,...,xn)(t)≥{ηΩ(t),ηΩn∑i=1‖xi‖℧(t)ηΩ(n∏i=1‖xi‖n℧)(t),ηΩ(n∏i=1‖xi‖℧+n∑i=1‖xi‖n℧)(t) |
for all x1,x2,x3,...,xn∈X and all t>0, then there exists a unique quartic mapping Q:X→Y such that
μf(x)−Q(x)(t)≥{ηΩ|60|(3n5−5n4−11n3+5n2+8n)(t)ηΩ‖x‖℧|4|(3n5−5n4−11n3+5n2+8n)|24−2℧|(t),℧≠4ηΩ‖x‖n℧|4|(3n5−5n4−11n3+5n2+8n)|24−2n℧|(t),℧≠4nη(n+1)Ω‖x‖n℧|4|(3n5−5n4−11n3+5n2+8n)|24−2n℧|(t),℧≠4n |
for all x∈X and all t>0.
In this section, we prove the Ulam-Hyers stability of the functional equation (1.4) in random normed spaces by the using fixed point method.
Theorem 5.1. Let f:X→Y be a mapping for which there exists a mapping η:Xn→D+ with the condition
limk→∞ηδkix1,δkix2,...,δkixn(δkit)=1 |
for all x1,x2,x3,...,xn∈X and all 0, where
δi={2i=0;12i=1; |
and satisfy the functional inequality
μDf(x1,x2,...,xn)(t)≥ηx1,x2,...,xn(t) |
for all x1,x2,x3,...,xn∈X and all 0. If there exists L=L(i) such that the function x→β(x,t)=η(x2,x2,...,x2⏟n−times)((3n5−5n4−11n3+5n2+8n)t) has the property that
β(x,t)≤L1δ4iβ(δix,t) | (5.1) |
for all x∈X and t>0, then there exists a unique quartic mapping Q:X→Y satisfying the functional equation (1.4) and
μQ(x)−f(x)(L1−i1−Lt)≥β(x,t) |
for all x∈X and t>0.
Proof. Let d be a general metric on Ω such that
d(p,q)=inf{k∈(0,∞)/μ(p(x)−q(x))(kt)≥β(x,t),x∈X,t>0}. |
It is easy to see that (Ω,d) is complete. Define T:Ω→Ω by Tp(x)=1δ4ip(δix) for all x∈X. Now assume that for p,q∈Ω, we have d(p,q)≤K. Then
μ(p(x)−q(x))(kt)≥β(x,t)⇒μ(p(x)−q(x))(Ktδ4i)≥β(x,t)⇒d(Tp(x),Tq(x))≤KL⇒d(Tp,Tq)≤Ld(p,q) | (5.2) |
for all p,q∈Ω. Therefore, T is a strictly contractive mapping on Ω with Lipschitz constant L. It follows from (5.2) that
μ(3n5−5n4−11n3+5n2+8n)4f(2x)−4(n3n5−5n4−11n3+5n2+8n)f(x)(t)≥η(x,x,...,x⏟n−times)(t) | (5.3) |
for all x∈X. It follows from (5.3) that
μf(2x)16−f(x)(t)≥η(x,x,...,x⏟n−times)((3n5−5n4−11n3+5n2+8n)16t) | (5.4) |
for all x∈X. By using (5.1) for the case i=0, it reduce to
μf(2x)16−f(x)(t)≥Lβ(x,t) |
for all x∈X. Hence we obtain
d(μTf,f)≤L=L1−i<∞ | (5.5) |
for all x∈X. Replacing x by x2 in (5.4), we get
μf(x)16−f(x2)(t)≥η(x2,x2,...,x2⏟n−times)((3n5−5n4−11n3+5n2+8n)16t) |
for all x∈X. By using (5.1) for the case i=1, it reduce to
μ16f(x2)−f(x)(t)≥β(x,t)⇒μTf(x)−f(x)(t)≥β(x,t) |
for all x∈X. Hence we get
d(μTf,f)≤L=L1−i<∞ | (5.6) |
for all x∈X. From (5.5) and (5.6), we can conclude
d(μTf,f)≤L=L1−i<∞ |
for all x∈X.
The remaining proof is similar to the proof of Theorem 4.1. So Q is a unique fixed point of T in the set such that
μ(f(x)−Q(x))(L1−i1−Lt)≥β(x,t) |
for all x∈X and t>0. This completes the proof of the theorem.
From Theorem 4.1, we obtain the following corollary concerning the stability for the functional equation (1.4).
Corollary 5.2. Suppose that a mapping f:X→Y satisfies the inequality
μDf(x1,x2,...,xn)(t)≥{ηΩ(t),ηΩn∑i=1‖xi‖℧(t)ηΩ(n∏i=1‖xi‖℧)(t),ηΩ(n∏i=1‖xi‖℧+n∑i=1‖xi‖n℧)(t), |
for all x1,x2,...,xn∈X and all t>0, where Ω,℧ are constants with Ω>0. Then there exists a unique quartic mapping Q:X→Y such that
μf(x)−Q(x)(t)≥{ηΩ|60|(3n5−5n4−11n3+5n2+8n)(t)ηΩ‖x‖℧|4|(3n5−5n4−11n3+5n2+8n)|24−2℧|(t),℧≠4ηΩ‖x‖n℧|4|(3n5−5n4−11n3+5n2+8n)|24−2n℧|(t),℧≠4nη(n+1)Ω‖x‖n℧|4|(3n5−5n4−11n3+5n2+8n)|24−2n℧|(t),℧≠4n |
for all x∈X and all t>0.
Proof. Set
μDf(x1,x2,...,xn)(t)≥{ηΩ(t),ηΩn∑i=1‖xi‖℧(t),ηΩ(n∏i=1‖xi‖℧)(t),ηΩ(n∏i=1‖xi‖℧+n∑i=1‖xi‖n℧)(t) |
for all x1,x2,...,xn∈X and all t>0. Then
η(δkix1,δkix2,...,δkixn)(δ4kit)={ηΩδ4ki(t),ηΩn∑i=1‖xi‖℧δ(4−n℧)ki(t),ηΩ(n∏i=1‖xi‖℧δ(4−n℧)ki)(t),ηΩ(n∏i=1‖xi‖℧δ(4−n℧)ki+n∑i=1‖xi‖n℧)(t), |
={→ 1 as k→∞→ 1 as k→∞→ 1 as k→∞→ 1 as k→∞. |
But we have β(x,t)=η(x2,x2,...,x2⏟n−times)(14(3n5−5n4−11n3+5n2+8n)t) has the property L1δ4iβ(δix,t) for all x∈X and t>0. Now
β(x,t)={η4Ω3n5−5n4−11n3+5n2+8n(t)η4Ω‖x‖℧24℧(3n5−5n4−11n3+5n2+8n)(t)η4Ω‖x‖n℧24℧(3n5−5n4−11n3+5n2+8n)(t)η4Ω‖x‖ns2n℧(3n5−5n4−11n3+5n2+8n)(t), |
L1δ4iβ(δix,t)={ηδ−4iβ(x)(t)ηδ℧−4iβ(x)(t)ηδ℧−4iβ(x)(t)ηδn℧−4iβ(x)(t). |
By (4.1), we prove the following eight cases:
L=2−4 ifi=0 and L=24 if i=1L=2℧−4 for ℧<4 ifi=0 and L=24−℧ for ℧>4 if i=1L=2n℧−4 for ℧<4n ifi=0 and L=24−n℧ for ℧>4n if i=1L=2n℧−4 for ℧<4n ifi=0 and L=24−n℧ for ℧>4n if i=1 |
Case 1: L=2−4 if i=0
μf(x)−Q(x)(t)≥L1δ4iβ(δix,t)(t)≥η(Ω60(3n5−5n4−11n3+5n2+8n))(t). |
Case 2: L=24 if i=1
μf(x)−Q(x)(t)≥L1δ4iβ(δix,t)(t)≥η(Ω−60(3n5−5n4−11n3+5n2+8n))(t). |
Case 3: L=2℧−4 for ℧<4 if i=0
μf(x)−Q(x)(t)≥L1δ4iβ(δix,t)(t)≥η(Ωn‖x‖℧4(3n5−5n4−11n3+5n2+8n)(24−2℧))(t). |
Case 4: L=24−℧ for ℧>4 if i=1
μf(x)−Q(x)(t)≥L1δ4iβ(δix,t)(t)≥η(nΩ‖x‖s4(3n5−5n4−11n3+5n2+8n)(2℧−24))(t). |
Case 5: L=2n℧−4 for ℧<4n if i=0
μf(x)−Q(x)(t)≥L1δ4iβ(δix,t)(t)≥η(Ω‖x‖n℧4(3n5−5n4−11n3+5n2+8n)(24−2n℧))(t). |
Case 6: L=24−n℧ for ℧>4n if i=1
μf(x)−Q(x)(t)≥L1δ4iβ(δix,t)(t)≥η(Ω‖x‖n℧−4(3n5−5n4−11n3+5n2+8n)(2n℧−24))(t). |
Case 7: L=2n℧−4 for ℧<4n if i=0
μf(x)−Q(x)(t)≥L1δ4iβ(δix,t)(t)≥η((n+1)‖x‖n℧4(3n5−5n4−11n3+5n2+8n)(24−2n℧))(t). |
Case 8 : L=24−n℧ for ℧>4n if i=1
μf(x)−Q(x)(t)≥L1δ4iβ(δix,t)(t)≥η((n+1)Ω‖x‖n℧−4(3n5−5n4−11n3+5n2+8n)(2n℧−24))(t). |
Hence the proof is complete.
In this note we investigated the general solution for the quartic functional equation (1.4) and also investigated the Hyers-Ulam stability of the quartic functional equation (1.4) in random normed space using the direct approach and the fixed point approach. This work can be applied to study the stability in various spaces such as intuitionistic random normed spaces, quasi-Banach spaces and fuzzy normed spaces. Moreover, the results can be applied to investigate quartic homomorphisms and quratic derivations in Banach algebras, random normed algebras, fuzzy Banach algebras and C∗-ternary algebras.
This work was supported by Incheon National University Research Grant 2020-2021. We would like to express our sincere gratitude to the anonymous referee for his/her helpful comments that will help to improve the quality of the manuscript.
The authors declare that they have no competing interests.
[1] |
Z. Li, C. Huang, Bifurcation, phase portrait, chaotic pattern and optical soliton solutions of the conformable Fokas-Lenells model in optical fibers, Chaos, Soliton. Fract., 169 (2023), 113237. https://doi.org/10.1016/j.chaos.2023.113237 doi: 10.1016/j.chaos.2023.113237
![]() |
[2] |
Z. Li, C. Huang, B. Wang, Phase portrait, bifurcation, chaotic pattern and optical soliton solutions of the Fokas-Lenells equation with cubic-quartic dispersion in optical fibers, Phys. Lett. A, 465 (2023), 128714. https://doi.org/10.1016/j.physleta.2023.128714 doi: 10.1016/j.physleta.2023.128714
![]() |
[3] |
Z. Li, T. Han, C. Huang, Bifurcation and new exact traveling wave solutions for time-space fractional Phi-4 equation, AIP Adv., 10 (2020), 115113. https://doi.org/10.1063/5.0029159 doi: 10.1063/5.0029159
![]() |
[4] |
L. Tang, Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation, Chaos, Soliton. Fract., 161 (2022), 112383. https://doi.org/10.1016/j.chaos.2022.112383 doi: 10.1016/j.chaos.2022.112383
![]() |
[5] |
L. Tang, Bifurcations and dispersive optical solitons for the nonlinear Schrödinger-Hirota equation in DWDM networks, Optik, 262 (2022), 169276. https://doi.org/10.1016/j.ijleo.2022.169276 doi: 10.1016/j.ijleo.2022.169276
![]() |
[6] |
L. Tang, Bifurcations and dispersive optical solitons for the cubic-quartic non-linear Lakshmanan-Porsezian-Daniel equation in polarization-preserving fibers, Optik, 270 (2022), 170000. https://doi.org/10.1016/j.ijleo.2022.170000 doi: 10.1016/j.ijleo.2022.170000
![]() |
[7] |
L. Tang, Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings, J. Opt., 2022 (2022), 1–11. https://doi.org/10.1007/s12596-022-00963-4 doi: 10.1007/s12596-022-00963-4
![]() |
[8] |
S. F. Tian, M. J. Xu, T. T. Zang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. R. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
![]() |
[9] |
Y. Li, S. F. Tian, J. J. Yang, Riemann-Hilbert problem and interactions of solitons in the-component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
![]() |
[10] |
Z. Y. Wang, S. F. Tian, J. Cheng, The dressing method and soliton solutions for the three-component coupled Hirota equations, J. Math. Phys., 62 (2021), 093510. https://doi.org/10.1063/5.0046806 doi: 10.1063/5.0046806
![]() |
[11] |
H. U. Rehman, A. U. Awan, K. A. Abro, E. M. T. Eldin, S. Jafar, A. M. Galal, A non-linear study of optical solitons for Kaup-Newell equation without four-wave mixing, J. King Saud Univ. Sci., 34 (2022), 102056. https://doi.org/10.1016/j.jksus.2022.102056 doi: 10.1016/j.jksus.2022.102056
![]() |
[12] |
J. J. Yang, S. F. Tian, Z. Q. Li, Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions, Physica D, 432 (2022), 133162. https://doi.org/10.1016/j.physd.2022.133162 doi: 10.1016/j.physd.2022.133162
![]() |
[13] |
A. Biswas, D. Milovic, R. Kohl, Optical soliton perturbation in a log-law medium with full nonlinearity by He's semi-inverse variational principle, Inverse Probl. Sci. En., 20 (2012), 227–232. https://doi.org/10.1080/17415977.2011.603088 doi: 10.1080/17415977.2011.603088
![]() |
[14] |
A. Biswas, M. Ekici, A. Sonmezoglu, M. R. Belic, Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion, Optik, 181 (2019), 1028–1038. https://doi.org/10.1016/j.ijleo.2018.12.164 doi: 10.1016/j.ijleo.2018.12.164
![]() |
[15] |
Y. Yildirim, A. Biswas, A. H. Kara, P. Guggilla, S. Khan, A. K. Alzahrani, et al., Optical soliton perturbation and conservation law with Kudryashov's refractive index having quadrupled power-law and dual form of generalized nonlocal nonlinearity, Optik, 240 (2021), 166966. https://doi.org/10.1016/j.ijleo.2021.166966 doi: 10.1016/j.ijleo.2021.166966
![]() |
[16] |
E. M. Zayed, M. E. Alngar, A. Biswas, A. H. Kara, M. Ekici, A. K. Alzahrani, et al., Cubic-quartic optical solitons and conservation laws with Kudryashov's sextic power-law of refractive index, Optik, 227 (2021), 166059. https://doi.org/10.1016/j.ijleo.2020.166059 doi: 10.1016/j.ijleo.2020.166059
![]() |
[17] |
M. Mirzazadeh, M. Eslami, A. Biswas, Dispersive optical solitons by Kudryashov's method, Optik, 125 (2014), 6874–6880. https://doi.org/10.1016/j.ijleo.2014.02.044 doi: 10.1016/j.ijleo.2014.02.044
![]() |
[18] |
I. Samir, N. Badra, H. M. Ahmed, A. H. Arnous, Optical soliton perturbation with Kudryashov's generalized law of refractive index and generalized non-local laws by improved modified extended tanh method, Alex. Eng. J., 61 (2022), 3365–3374. https://doi.org/10.1016/j.aej.2021.08.050 doi: 10.1016/j.aej.2021.08.050
![]() |
[19] |
A. Biswas, S. Arshed, Application of semi-inverse variational principle to cubic-quartic optical solitons with kerr and power law nonlinearity, Optik, 172 (2018), 847–850. https://doi.org/10.1016/j.ijleo.2018.07.105 doi: 10.1016/j.ijleo.2018.07.105
![]() |
[20] |
S. W. Yao, L. Akinyemi, M. Mirzazadeh, M. Inc, K. Hosseini, M. Senol, Dynamics of optical solitons in higher-order Sasa-Satsuma equation, Results Phys., 30 (2021), 104825. https://doi.org/10.1016/j.rinp.2021.104825 doi: 10.1016/j.rinp.2021.104825
![]() |
[21] |
M. Mirzazadeh, M. Eslami, B. F. Vajargah, A. Biswas, Optical solitons and optical rogons of generalized resonant dispersive nonlinear Schrödinger's equation with power law nonlinearity, Optik, 125 (2014), 4246–4256. https://doi.org/10.1016/j.ijleo.2014.04.014 doi: 10.1016/j.ijleo.2014.04.014
![]() |
[22] |
A. Biswas, Y. Yildirim, E. Yasar, M. F. Mahmood, A. S. Alshomrani, Q. Zhou, et al., Optical soliton perturbation for Radhakrishnan-Kundu-Lakshmanan equation with a couple of integration schemes, Optik, 163 (2018), 126–136. https://doi.org/10.1016/j.ijleo.2018.02.109 doi: 10.1016/j.ijleo.2018.02.109
![]() |
[23] |
A. Biswas, M. Mirzazadeh, M. Eslami, D. Milovic, M. Belic, Solitons in optical metamaterials by functional variable method and first integral approach, Frequenz, 68 (2014), 525–530. https://doi.org/10.1515/freq-2014-0050 doi: 10.1515/freq-2014-0050
![]() |
[24] |
B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684–693. https://doi.org/10.1016/j.jmaa.2012.05.066 doi: 10.1016/j.jmaa.2012.05.066
![]() |
[25] |
A. Biswas, Quasi-stationary non-Kerr law optical solitons, Opt. Fiber Technol., 9 (2003), 224–259. https://doi.org/10.1016/S1068-5200(03)00044-0 doi: 10.1016/S1068-5200(03)00044-0
![]() |
[26] |
Y. Yan, Z. Liu, Q. Zhou, A. Biswas, Dromion-like structures and periodic wave solutions for variable-coefficients complex cubic-quintic Ginzburg-Landau equation influenced by higher-order effects and nonlinear gain, Nonlinear Dyn., 99 (2020), 1313–1319. https://doi.org/10.1007/s11071-019-05356-0 doi: 10.1007/s11071-019-05356-0
![]() |
[27] |
A. Biswas, Y. Yildirim, E. Yasar, Q. Zhou, S. P. Moshokoa, M. Belic, Optical soliton solutions to Fokas-Lenells equation using some different methods, Optik, 173 (2018), 21–31. https://doi.org/10.1016/j.ijleo.2018.07.098 doi: 10.1016/j.ijleo.2018.07.098
![]() |
[28] |
A. Biswas, Y. Yildirim, E. Yasar, Q. Zhou, M. F. Mahmood, S. P. Moshokoa, et al., Optical solitons with differential group delay for coupled Fokas-Lenells equation using two integration schemes, Optik, 165 (2018), 74–86. https://doi.org/10.1016/j.ijleo.2018.03.100 doi: 10.1016/j.ijleo.2018.03.100
![]() |
[29] |
S. Arshed, A. Biswas, M. Abdelaty, Q. Zhou, S. P. Moshokoa, M. Belic, Optical soliton perturbation for Gerdjikov-Ivanov equation via two analytical techniques, Chinese J. Phys., 56 (2018), 2879–2886. https://doi.org/10.1016/j.cjph.2018.09.023 doi: 10.1016/j.cjph.2018.09.023
![]() |
[30] |
S. Arshed, A. Biswas, Optical solitons in presence of higher order dispersions and absence of self-phase modulation, Optik, 174 (2018), 452–459. https://doi.org/10.1016/j.ijleo.2018.08.037 doi: 10.1016/j.ijleo.2018.08.037
![]() |
[31] |
F. M. Al-Askar, W. W. Mohammed, The analytical solutions of the stochastic fractional RKL equation via Jacobi elliptic function method, Adv. Math. Phys., 2022 (2022), 1534067. https://doi.org/10.1155/2022/1534067 doi: 10.1155/2022/1534067
![]() |
[32] |
S. Albosaily, W. W. Mohammed, A. Rezaiguia, M. El-Morshedy, E. M. Elsayed, The influence of the noise on the exact solutions of a Kuramoto-Sivashinsky equation, Open Math., 20 (2022), 108–116. https://doi.org/10.1515/math-2022-0012 doi: 10.1515/math-2022-0012
![]() |
[33] |
P. Imkeller, A. H. Monahan, Conceptual stochastic climate models, Stoch. Dynam., 02 (2002), 311–326. https://doi.org/10.1142/S0219493702000443 doi: 10.1142/S0219493702000443
![]() |
[34] | E. Weinan, X. Li, E. Vanden-Eijnden, Some recent progress in multiscale modeling, In: Multiscale modelling and simulation, Berlin: Springer, 2004, 3–21. https://doi.org/10.1007/978-3-642-18756-8_1 |
[35] |
W. W. Mohammed, D. Blömker, Fast-diffusion limit for reaction-diffusion equations with multiplicative noise, J. Math. Anal. Appl., 496 (2021), 124808. https://doi.org/10.1016/j.jmaa.2020.124808 doi: 10.1016/j.jmaa.2020.124808
![]() |
[36] |
W. W. Mohammed, Modulation equation for the stochastic Swift-Hohen-berg equation with cubic and quintic non-linearities on the real line, Mathematics, 7 (2019), 1217. https://doi.org/10.3390/math7121217 doi: 10.3390/math7121217
![]() |
[37] | A. M. Wazwaz, Partial differential equations and solitary waves theory, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-00251-9 |
[38] |
S. Khan, A. Biswas, Q. Zhou, S. Adesanya, M. Alfiras, M. Belic, Stochastic perturbation of optical solitons having anti-cubic nonlinearity with bandpass filters and multi-photon absorption, Optik, 178 (2019), 1120–1124. https://doi.org/10.1016/j.ijleo.2018.10.124 doi: 10.1016/j.ijleo.2018.10.124
![]() |
[39] |
A. Secer, Stochastic optical solitons with multiplicative white noise via Itô calculus, Optik, 268 (2022), 169831. https://doi.org/10.1016/j.ijleo.2022.169831 doi: 10.1016/j.ijleo.2022.169831
![]() |
[40] |
H. M. Yin, B. Tian, J. Chai, X. Y. Wu, Stochastic soliton solutions for the (2+1)-dimensional stochastic Broer-Kaup equations in a fluid or plasma, Appl. Math. Lett., 82 (2018), 126–131. https://doi.org/10.1016/j.aml.2017.12.005 doi: 10.1016/j.aml.2017.12.005
![]() |
[41] |
S. Arshed, N. Raza, A. Javid, H. M. Baskonus, Chiral solitons of (2+1)-dimensional stochastic chiral nonlinear Schrödinger equation, Int. J. Geom. Methods M., 19 (2022), 2250149. https://doi.org/10.1142/S0219887822501493 doi: 10.1142/S0219887822501493
![]() |
[42] | G. Chen, Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, arXiv: 1305.4426. https://doi.org/10.48550/arXiv.1305.4426 |
[43] |
A. M. Sultan, D. Lu, M. Arshad, H. U. Rehman, M. S. Saleem, Soliton solutions of higher order dispersive cubic-quintic nonlinear Schrödinger equation and its applications, Chinese J. Phys., 67 (2020), 405–413. https://doi.org/10.1016/j.cjph.2019.10.003 doi: 10.1016/j.cjph.2019.10.003
![]() |
[44] |
H. U. Rehman, M. A. Imran, M. Bibi, M. Riaz, A. Akgül, New soliton solutions of the 2D-chiral nonlinear Schrodinger equation using two integration schemes, Math. Method. Appl. Sci., 44 (2021), 5663–5682. https://doi.org/10.1002/mma.7140 doi: 10.1002/mma.7140
![]() |
[45] |
S. W. Yao, N. Ullah, H. U. Rehman, M. S. Hashemi, M. Mirzazadeh, M. Inc, Dynamics on novel wave structures of non-linear Schrödinger equation via extended hyperbolic function method, Results Phys., 48 (2023), 106448. https://doi.org/10.1016/j.rinp.2023.106448 doi: 10.1016/j.rinp.2023.106448
![]() |
[46] |
A. Biswas, S. Arshed, Optical solitons in presence of higher order dispersions and absence of self-phase modulation, Optik, 174 (2018), 452–459. https://doi.org/10.1016/j.ijleo.2018.08.037 doi: 10.1016/j.ijleo.2018.08.037
![]() |
[47] |
Y. Yildirim, Optical solitons of Biswas-Arshed equation in birefringent fibers by trial equation technique, Optik, 182 (2019), 810–820. https://doi.org/10.1016/j.ijleo.2019.01.085 doi: 10.1016/j.ijleo.2019.01.085
![]() |
[48] |
E. M. Zayed, R. M. A. Shohib, Optical solitons and other solutions to Biswas-Arshed equation using the extended simplest equation method, Optik, 185 (2019), 626–635. https://doi.org/10.1016/j.ijleo.2019.03.112 doi: 10.1016/j.ijleo.2019.03.112
![]() |
[49] |
H. U. Rehman, N. Ullah, M. A. Imran, Optical solitons of Biswas-Arshed equation in birefringent fibers using extended direct algebraic method, Optik, 226 (2021), 165378. https://doi.org/10.1016/j.ijleo.2020.165378 doi: 10.1016/j.ijleo.2020.165378
![]() |
[50] |
H. U. Rehman, M. Younis, S. Jafar, M. Tahir, M. S. Saleem, Optical solitons of biswas-arshed model in birefrigent fiber without four wave mixing, Optik, 213 (2020), 164669. https://doi.org/10.1016/j.ijleo.2020.164669 doi: 10.1016/j.ijleo.2020.164669
![]() |
[51] |
E. M. E. Zayed, R. M. A. Shohib, M. E. M. Alngar, K. A. Gepreel, T. A. Nofal, Y. Yildirim, Optical solitons for Biswas-Arshed equation with multiplicative noise via Itô calculus using three integration algorithms, Optik, 258 (2022), 168847. https://doi.org/10.1016/j.ijleo.2022.168847 doi: 10.1016/j.ijleo.2022.168847
![]() |
[52] |
H. Rezazadeh, M. Inc, D. Baleanu, New solitary wave solutions for variants of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations, Front. Phys., 8 (2020), 332. https://doi.org/10.3389/fphy.2020.00332 doi: 10.3389/fphy.2020.00332
![]() |
[53] |
H. Rezazadeh, R. Abazari, M. M. Khater, M. Inc, D. Baleanu, New optical solitons of conformable resonant non-linear Schrödinger's equation, Open Phys., 18 (2020), 761–769. https://doi.org/10.1515/phys-2020-0137 doi: 10.1515/phys-2020-0137
![]() |
[54] |
H. U. Rahman, M. I. Asjad, N. Munawar, F. Parvaneh, T. Muhammad, A. A. Hamoud, et al., Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique, AIMS Mathematics, 7 (2022), 11134–11149. https://doi.org/10.3934/math.2022623 doi: 10.3934/math.2022623
![]() |
[55] |
H. U. Rehman, A. U. Awan, A. Habib, F. Gamaoun, E. M. T. Eldin, A. M. Galal, Solitary wave solutions for a strain wave equation in a microstructured solid, Results Phys., 39 (2022), 105755. https://doi.org/10.1016/j.rinp.2022.105755 doi: 10.1016/j.rinp.2022.105755
![]() |
[56] |
M. Cinar, A. Secer, M. Ozisik, M. Bayram, Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method, Opt. Quant. Electron., 54 (2022), 402. https://doi.org/10.21203/rs.3.rs-1428466/v1 doi: 10.21203/rs.3.rs-1428466/v1
![]() |
[57] |
H. U. Rehman, M. I. Asjad, M. Inc, I. Iqbal, Exact solutions for new coupled Konno-Oono equation via Sardar subequation method, Opt. Quant. Electron., 54 (2022), 798. https://doi.org/10.1007/s11082-022-04208-3 doi: 10.1007/s11082-022-04208-3
![]() |
[58] |
H. U. Rehman, I. Iqbal, S. S. Aiadi, N. Mlaiki, M. S. Saleem, Soliton solutions of Klein-Fock-Gordon equation using Sardar sub-equation method, Mathematics, 10 (2022), 3377. https://doi.org/10.3390/math10183377 doi: 10.3390/math10183377
![]() |
[59] |
F. M. Al-Askar, W. W. Mohammed, M. Alshammari, M. El-Morshedy, Effects of the Wiener process on the solutions of the stochastic fractional Zakharov system, Mathematics, 10 (2022), 1194. https://doi.org/10.3390/math10071194 doi: 10.3390/math10071194
![]() |
[60] |
F. M. Al-Askar, W. W. Mohammed, A. M. Albalahi, M. El-Morshedy, The impact of the Wiener process on the analytical solutions of the stochastic (2+1)-dimensional breaking soliton equation by using tanh-coth method, Mathematics, 10 (2022), 817. https://doi.org/10.3390/math10050817 doi: 10.3390/math10050817
![]() |