Processing math: 65%
Research article

Results on a neutrosophic sub-rings

  • Received: 09 May 2023 Revised: 16 June 2023 Accepted: 21 June 2023 Published: 05 July 2023
  • MSC : 20K27, 08A72, 20N25

  • The goal of this paper is to create an algebraic structure based on single-valued neutrosophic sets. We present a novel approach to the neutrosophic sub-ring and ideal by combining the classical ring with neutrosophic sets. We also introduce and investigate some of the fundamental properties of the concepts. Finally, we show how to use a neutrosophic ideal to make a decision.

    Citation: Amr Elrawy, Mohamed Abdalla. Results on a neutrosophic sub-rings[J]. AIMS Mathematics, 2023, 8(9): 21393-21405. doi: 10.3934/math.20231090

    Related Papers:

    [1] Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350
    [2] Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
    [3] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [4] J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092
    [5] Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence of solutions by fixed point theorem of general delay fractional differential equation with p-Laplacian operator. AIMS Mathematics, 2023, 8(5): 10160-10176. doi: 10.3934/math.2023514
    [6] Abeer Al Elaiw, Murugesan Manigandan, Muath Awadalla, Kinda Abuasbeh . Existence results by Mönch's fixed point theorem for a tripled system of sequential fractional differential equations. AIMS Mathematics, 2023, 8(2): 3969-3996. doi: 10.3934/math.2023199
    [7] Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175
    [8] Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394
    [9] Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839
    [10] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
  • The goal of this paper is to create an algebraic structure based on single-valued neutrosophic sets. We present a novel approach to the neutrosophic sub-ring and ideal by combining the classical ring with neutrosophic sets. We also introduce and investigate some of the fundamental properties of the concepts. Finally, we show how to use a neutrosophic ideal to make a decision.



    Fractional calculus is a branch of mathematics that investigates the properties of arbitrary-order differential and integral operators to address various problems. Fractional differential equations provide a more appropriate model for describing diffusion processes, wave phenomena, and memory effects [1,2,3,4] and possess a diverse array of applications across numerous fields, encompassing stochastic equations, fluid flow, dynamical systems theory, biological and chemical engineering, and other domains[5,6,7,8,9].

    Star graph G=(V,E) consists of a finite set of nodes or vertices V(G)={v0,v1,...,vk} and a set of edges E(G)={e1=v1v0,e2=v2v0,...,ek=vkv0} connecting these nodes, where v0 is the joint point and ei is the length of li the edge connecting the nodes vi and v0, i.e., li=|viv0|.

    Graph theory is a mathematical discipline that investigates graphs and networks. It is frequently regarded as a branch of combinatorial mathematics. Graph theory has become widely applied in sociology, traffic management, telecommunications, and other fields[10,11,12].

    Differential equations on star graphs can be applied to different fields, such as chemistry, bioengineering, and so on[13,14]. Mehandiratta et al. [15] explored the fractional differential system on star graphs with n+1 nodes and n edges,

    {CDα0,xui(x)=fi(x,ui,CDβ0,xui(x)),0<x<li,i=1,2,...,k,ui(0)=0,i=1,2,...,k,ui(li)=uj(lj),i,j=1,2,...,k,ij,ki=1ui=0,i=1,2,...,k,

    where CDα0,x,CDβ0,x are the Caputo fractional derivative operator, 1<α2, 0<βα1, fi,i=1,2,...,k are continuous functions on C([0,1]×R×R). By a transformation, the equivalent fractional differential system defined on [0,1] is obtained. The author studied a nonlinear Caputo fractional boundary value problem on star graphs and established the existence and uniqueness results by fixed point theory.

    Zhang et al. [16] added a function λi(x) on the basis of the reference [15]. In addition, Wang et al. [17] discussed the existence and stability of a fractional differential equation with Hadamard derivative. For more papers on the existence of solutions to fractional differential equations, refer to [18,19,20,21]. By numerically simulating the solution of fractional differential systems, we are able to solve problems more clearly and accurately. However, numerical simulation has been rarely used to describe the solutions of fractional differential systems on graphs [22,23].

    The word chemical is used to distinguish chemical graph theory from traditional graph theory, where rigorous mathematical proofs are often preferred to the intuitive grasp of key ideas and theorems. However, graph theory is used to represent the structural features of chemical substances. Here, we introduce a novel modeling of fractional boundary value problems on the benzoic acid graph (Figure 1). The molecular structure of the benzoic acid seven carbon atoms, seven hydrogen atoms, and one oxygen atom. Benzoic acid is mainly used in the preparation of sodium benzoate preservatives, as well as in the synthesis of drugs and dyes. It is also used in the production of mordants, fungicides, and fragrances. Therefore, a thorough understanding of its properties is of utmost importance.

    Figure 1.  Molecular structure of benzoic acid.

    By this structure, we consider atoms of carbon, hydrogen, and oxygen as the vertices of the graph and also the existing chemical bonds between atoms are considered as edges of the graph. To investigate the existence of solutions for our fractional boundary value problems, we label vertices of the benzoic acid graph in the form of labeled vertices by two values, 0 or 1, and the length of each edge is fixed at e (|ei|=e,i=1,2,...,14) (Figure 2). In this case, we construct a local coordinate system on the benzoic acid graph, and the orientation of each vertex is determined by the orientation of its corresponding edge. The labels of the beginning and ending vertices are taken into account as values 0 and 1, respectively, as we move along any edge.

    Figure 2.  Benzene graphs with vertices 0 or 1.

    Motivated by the above work and relevant literature[15,16,17,18,19,20,21,22,23], we discuss a boundary value problem consisting of nonlinear fractional differential equations defined on |ei|=e,i=1,2,,14 by

    HDα1+ri(t)=ϱαiϕp(fi(s,ri(s),HDβ1+ri(s))),t[1,e],

    and the boundary conditions defined at boundary nodes e1,e2,,e14, and

    ri(1)=0,ri(e)=rj(e),i,j=1,2,,14,ij,

    together with conditions of conjunctions at 0 or 1 with

    ki=1ϱ1iri(e)=0,i=1,2,,14.

    Overall, we consider the existence and stability of solutions to the following nonlinear boundary value problem on benzoic acid graphs:

    {HDα1+ri(t)=ϱαiϕp(fi(s,ri(s),HDβ1+ri(s))),t[1,e],ri(1)=0,i=1,2,,14,ri(e)=rj(e),i,j=1,2,,14,ij,ki=1ϱ1iri(e)=0,i=1,2,,14, (1.1)

    where HDα1+,HDβ1+ represent the Hadamard fractional derivative, α(1,2],β(0,1],fiC([1,e]×R×R), ϱi is a real constant, and ϕp(s)=sgn(s)|s|p1. The existence and Hyers-Ulam stability of the solutions to the system (1.1) are discussed. Moreover, the approximate graphs of the solution are obtained.

    It is also noteworthy that solutions obtained from the problem (1.1) can be depicted in various rational applications of organic chemistry. More precisely, any solution on an arbitrary edge can be described as the amount of bond polarity, bond power, bond energy, etc. This paper lies in the integration of fractional differential equations with graph theory, utilizing the formaldehyde graph as a specific case for numerical simulation, and providing an approximate solution graph after iterations.

    In this section, for conveniently researching the problem, several properties and lemmas of fractional calculus are given, forming the indispensable premises for obtaining the main conclusions.

    Definition 2.1. [2,20] The Hadamard fractional integral of order α, for a function gLp[a,b], 0atb, is defined as

    HIqa+g(t)=1Γ(α)ta(logts)α1g(s)sds,

    and the Hadamard fractional integral is a particular case of the generalized Hattaf fractional integral introduced in [24].

    Definition 2.2. [2,20] Let [a,b]R, δ=tddt and ACnδ[a,b]={g:[a,b]R:δn1(g(t))AC[a,b]}. The Hadamard derivative of fractional order α for a function gACnδ[a,b] is defined as

    HDαa+g(t)=δn(HInαa+)(t)=1Γ(nα)(tddt)nta(logts)nα1g(s)sds,

    where n1<α<n, n=[α]+1, and [α] denotes the integer part of the real number α and log()=loge().

    Definition 2.3. [25] Completely continuous operator: A bounded linear operator f, acting from a Banach space X into another space Y, that transforms weakly-convergent sequences in X to norm-convergent sequences in Y. Equivalently, an operator f is completely-continuous if it maps every relatively weakly compact subset of X into a relatively compact subset of Y.

    Compact operator: An operator A defined on a subset M of a topological vector space X, with values in a topological vector space Y, such that every bounded subset of M is mapped by it into a pre-compact subset of Y. If, in addition, the operator A is continuous on M, then it is called completely continuous on this set. In the case when X and Y are Banach or, more generally, bornological spaces and the operator A:XY is linear, the concepts of a compact operator and of a completely-continuous operator are the same.

    Lemma 2.4. [20] For yACnδ[a,b], the following result hold

    HIα0+(HDα0+)y(t)=y(t)n1k=0ci(logta)k,

    where ciR,i=0,1,,n1.

    Lemma 2.5. [21] For p>2, x,y∣≤M, we have

    ϕp(x)ϕp(y)∣≤(p1)Mp2xy.

    Lemma 2.6. [4] Let M be a closed convex and nonempty subset of a Banach space X. Let T,S be the operators TS:MX such that

    (ⅰ) Tx+SyM whenever x,yM;

    (ⅱ) T is contraction mapping;

    (ⅲ) S is completely continuous in M.

    Then T+S has at least one fixed point in M.

    Proof. For every ZS(M), we have T(x)+z:MM. According to (ⅱ) and the Banach contraction mapping principle, Tx+z=x or zx=Tx has only one solution in M. For any z,˜zS(M), we have

    T(t(z))+z=T(z),T(t(˜z))+z=t(˜z).

    So we have

    |t(z)t(˜z)||T(t(z))T(t(˜z))|+|z˜z|ν|t(z)t(˜z)|+|z˜z|,0ν<1.

    Thus, |t(z)t(˜z)|11ν|z˜z|. It indicates that tC(S(M)). Because of S is completely continuous in M, tS is completely continuous. According to the Schauder fixed point theorem, there exists xM, such that tS(x)=x. So we have

    T(t(S(x)))+S(x)=t(S(x)),Tx+Sx=x.

    Lemma 2.7. Let hi(t)AC([1,e],R),i=1,2,,14; then the solution of the fractional differential equations

    {HDα1+ri(t)=ζi(t),t[1,e],ri(1)=0,i=1,2,,14,ri(e)=rj(e),i,j=1,2,,14,ij,ki=1ϱ1iri(e)=0,i=1,2,,14, (2.1)

    is given by

    ri(t)=1Γ(α)t1(logts)α1ζi(s)sds +logt[1Γ(α1)kj=1(ϱ1jkj=1ϱ1j)e1(loges)α2ζj(s)sds 1Γ(α)kj=1ji(ϱ1jkj=1ϱ1j)(e1(loges)α1(ζj(s)ζi(s)s))ds]. (2.2)

    Proof. By Lemma 2.4, we have

    ri(t)=HIα1+ζi(t)+c(1)i+c(2)ilogt,i=1,2,,14,

    where c(1)i,c(2)i are constants. The boundary condition ri(1)=0 gives c(1)i=0, for i=1,2,,14.

    Hence,

    ri(t)=HIα1+ζi(t)+c(2)ilogt =1Γ(α)t1(logts)α1ζ(s)sds+c(2)ilogt,i=1,2,,14. (2.3)

    Also

    ri(t)=1Γ(α1)t11t(logts)α2ζ(s)sds+1tc(2)i.

    Now, the boundary conditions ri(e)=rj(e) and ki=1ϱ1iri(e)=0 implies that c(2)i must satisfy

    1Γ(α)e1(loges)α1ζi(s)sds+c(2)i=1Γ(α)e1(loges)α1ζj(s)sds+c(2)j, (2.4)
    ki=1ϱ1i(1Γ(α1)e1(loges)α2ζi(s)sdsc(2)i)=0. (2.5)

    On solving above Eqs (2.4) and (2.5), we have

    kj=1ϱ1j(1Γ(α1)e1(loges)α2ζj(s)sds)+λ1ic(2)i=kj=1jiϱ1j[1Γ(α)e1(loges)α1ζj(s)sds1Γ(α)e1(loges)α1ζi(s)sds+c(2)i],

    which implies

    kj=1ϱ1jc(2)i=kj=1ϱ1j1Γ(α1)e1(loges)α2ζj(s)sds+kj=1jiϱ1j1Γ(α)e1(loges)α1(ζj(s)ζi(s)s)ds.

    Hence, we get

    c(2)i=1Γ(α1)kj=1(ϱ1jkj=1ϱ1j)e1(loges)α2ζj(s)sds +1Γ(α)kj=1ji(ϱ1jkj=1ϱ1j)(e1(loges)α1(ζj(s)ζi(s)s))ds. (2.6)

    Hence, inserting the values of c(2)i, we get the solution (2.2). This completes the proof.

    In this section, we discuss the existence and uniqueness of solutions of system (1.1) by using fixed point theory.

    We define the space X={r:rC([1,e],R),HDβ1+rC([1,e],R)} with the norm

    rX=r+HDβ1+u=supt[1,e]|r(t)|+supt[1,e]|HDβ1+r(t)|.

    Then, (X,.X) is a Banach space, and accordingly, the product space (Xk=X1×X2×X14,.Xk) is a Banach space with norm

    rXk=(r1,r2,,r14)X=ki=1riX,(r1,r2,,rk)Xk.

    In view of Lemma 2.7, we define the operator T:XkXk by

    T(r1,r2,,rk)(t):=(T1(r1,r2,,rk)(t),,Tk(r1,r2,,rk)(t)),

    where

    Ti(r1,r2,,rk)(t)=ϱαiΓ(α)t1(logts)α1ϕp(gi(s,ri(s),HDβ1+ri(s)))ds+logtΓ(α1)kj=1(ϱ1jkj=1ϱ1j)ϱαje1(loges)α2ϕp(gj(s,rj(s),HDβ1+rj(s)))dslogtΓ(α)kj=1ji(ϱ1jkj=1ϱ1j)ϱαje1(loges)α1ϕp(gj(s,rj(s),HDβ1+rj(s)))ds+logtΓ(α)kj=1ji(ϱ1jkj=1ϱ1j)ϱαie1(loges)α1ϕp(gi(s,ri(s),HDβ1+ri(s)))ds, (3.1)

    where ϕp(fi(s,ri(s),HDβ1+ri(s))s)=ϕp(gi(s,ri(s),HDβ1+ri(s))).

    Assume that the following conditions hold:

    (H1) gi:[1,e]×R×RR,i=1,2,,14 be continuous functions, and there exists nonnegative functions li(t)C[1,e] such that

    |gi(t,x,y)gi(t,x1,y1)|ui(t)(|xx1|+|yy1|),

    where t[1,e],(x,y),(x1,y1)R2;

    (H2) ιi=supt[1,e]|ui(t)|,i=1,2,,14;

    (H3) There exists Qi>0, such that

    |gi(t,x,y)|Qi,t[1,e],(x,y)R×R,i=1,2,,14;

    (H4)sup1tegi(t,0,0)∣=κ<,i=1,2,...,14.

    For computational convenience, we also set the following quantities:

    χi=e(p1)Qp2i(ϱαi+ϱαβi) ×[1Γ(α)+2Γ(α+1)+1Γ(αβ+1)+1Γ(α)Γ(2β)+1Γ(α+1)Γ(2β)] +ekj=1ji(ϱαj+ϱαβj)(p1)Qp2j ×[1Γ(α)+1Γ(α+1)+1Γ(α)Γ(2β)+1Γ(α+1)Γ(2β)], (3.2)
    Υi=e(p1)Qp2i(ϱαi+ϱαβi) ×[1Γ(α)+1Γ(α+1)+1Γ(α)Γ(2β)+1Γ(α+1)Γ(2β)] +ekj=1ji(ϱαj+ϱαβj)(p1)Qp2j ×[1Γ(α)+1Γ(α+1)+1Γ(α)Γ(2β)+1Γ(α+1)Γ(2β)]. (3.3)

    Theorem 3.1. Assume that (H1) and (H2) hold; then the fractional differential system (1.1) has a unique solution on [1,e] if

    (ki=1χi)(ki=1ιi)<1,

    where χi,i=1,2,,14 are given by Eq (3.2).

    Proof. Let u=(r1,r2,,r14),v=(v1,v2,,v14)Xk,t[1,e], we have

    |Tir(t)Tiv(t)|ϱαiΓ(α)t1(logts)α1|ϕp(gi(s,ri(s),HDβ1+ri(s))ϕp(gi(s,vi(s),HDβ1+vi(s))|ds+logtΓ(α1)kj=1(ϱ1jkj=1ϱ1j)ϱαje1(loges)α2[|ϕp(gj(s,rj(s),HDβ1+rj(s))ϕp(gj(s,vj(s),HDβ1+vj(s))|ds]+logtΓ(α)kj=1ji(ϱ1jkj=1ϱ1j)ϱαje1(loges)α1[|ϕp(gj(s,rj(s),HDβ1+rj(s))ϕp(gj(s,vj(s),HDβ1+vj(s))|ds]+logtΓ(α)kj=1ji(ϱ1jkj=1ϱ1j)ϱαie1(loges)α1[|ϕp(gi(s,ri(s),HDβ1+ri(s))ϕp(gi(s,vi(s),HDβ1+vi(s))|ds].

    Using Lemma 2.5, (H1) and (H2), t[1,e] and (ϱ1jkj=1ϱ1j)<1 for j=1,2,,k, we obtain

    |Tir(t)Tiv(t)|eϱαiΓ(α+1)(p1)Qp2iιirivi+eϱαβiΓ(α+1)(p1)Qp2iιiHDβ1+riHDβ1+vi+e(p1)Qp2jkj=1(ϱαjΓ(α)ιjrjvj+ϱαβjΓ(α)ιjHDβ1+rjHDβ1+vj)+e(p1)Qp2jkj=1ji(ϱαjΓ(α+1)ιjrjvj+ϱαβjΓ(α+1)ιjHDβ1+rjHDβ1+vj)+eϱαiΓ(α+1)(p1)Qp2iιirivi+eϱαβiΓ(α+1)(p1)Qp2iιiHDβ1+riHDβ1+vi2e(ϱαi+ϱαβi)Γ(α+1)(p1)Qp2iιi(rivi+HDβ1+riHDβ1+vi)+ekj=1ϱαj+ϱαβjΓ(α)(p1)Qp2jιj(rjvj+HDβ1+rjHDβ1+vj)+ekj=1jiϱαj+ϱαβjΓ(α+1)(p1)Qp2jιj(rjvj+HDβ1+rjHDβ1+vj)=e(1Γ(α)+2Γ(α+1))(ϱαi+ϱαβi)(p1)Qp2iιi(rivi+HDβ1+riHDβ1+vi)+e(1Γ(α)+1Γ(α+1))kj=1ji(ϱαj+ϱαβj)(p1)Qp2jιj(rjvj+HDβ1+rjHDβ1+vj).

    Hence,

    Tir(t)Tiv(t) e(1Γ(α)+2Γ(α+1))(ϱαi+ϱαβi)(p1)Qp2iιi(rivi+HDβ1+riHDβ1+vi) +e(1Γ(α)+1Γ(α+1))kj=1ji(ϱαj+ϱαβj)(p1)Qp2jιj(rjvj+HDβ1+rjHDβ1+vj). (3.4)

    By the formula in reference[3],

    HDβ1+(logts)β1=Γ(β)Γ(βα)(logts)βα1,β>1,

    we have

    |HDβ1+Tir(t)HDβ1+Tiv(t)|ϱαiΓ(αβ)t1(logts)αβ1|ϕp(gi(s,ri(s),HDβ1+ri(s))ϕp(gi(s,vi(s),HDβ1+vi(s))|ds+(logt)1βΓ(α1)Γ(2β)kj=1(ϱ1jkj=1ϱ1j)ϱαje1(loges)α2[|ϕp(gj(s,rj(s),HDβ1+rj(s))ϕp(gj(s,vj(s),HDβ1+vj(s))|ds]+(logt)1βΓ(α)Γ(2β)kj=1ji(ϱ1jkj=1ϱ1j)ϱαje1(loges)α1[|ϕp(gj(s,rj(s),HDβ1+rj(s))ϕp(gj(s,vj(s),HDβ1+vj(s))|ds]+(logt)1βΓ(α)Γ(2β)kj=1ji(ϱ1jkj=1ϱ1j)ϱαie1(loges)α1[|ϕp(gi(s,ri(s),HDβ1+ri(s))ϕp(gi(s,vi(s),HDβ1+vi(s))|ds].

    Using Lemma 2.5, (H1) and (H2), Γ(2β)1 and (ϱ1jkj=1ϱ1j)<1 for j=1,2,,k, we obtain

    |HDβ1+Tir(t)HDβ1+Tiv(t)|eϱαiΓ(αβ+1)(p1)Qp2iιirivi+eϱαiΓ(α+1)Γ(2β)(p1)Qp2iιirivi+eϱαβiΓ(αβ+1)(p1)Qp2iιiHDβ1+riHDβ1+vi+eϱαβiΓ(α+1)Γ(2β)(p1)Qp2iιiHDβ1+riHDβ1+vi+e(p1)Qp2jkj=1(ϱαiΓ(α)Γ(2β)ιjrjvj+ϱαβiΓ(α)Γ(2β)ιjHDβ1+rjHDβ1+vj)+e(p1)Qp2jkj=1ji(λαjΓ(α+1)ιjrjvj+ϱαβjΓ(α+1)ιjHDβ1+rjHDβ1+vj)e(ϱαi+ϱαβi)Γ(αβ+1)(p1)Qp2iιi(rivi+HDβ1+riHDβ1+vi)+ekj=1ϱαj+ϱαβjΓ(α)Γ(2β)(p1)Qp2jιj(rjvj+HDβ1+rjHDβ1+vj)+ekj=1jiϱαj+ϱαβjΓ(α+1)Γ(2β)(p1)Qp2jιj(rjvj+HDβ1+rjHDβ1+vj)+e(ϱαi+ϱαβi)Γ(α+1)Γ(2β)(p1)Qp2iιi(rivi+HDβ1+riHDβ1+vi).

    Hence,

    HDβ1+Tir(t)HDβ1+Tiv(t) e(1Γ(αβ+1)+1(Γ(α)Γ(2β)+1Γ(α+1)Γ(2β)) ×(ϱαi+ϱαβi)(p1)Qp2iιi(rivi+HDβ1+riHDβ1+vi) +e(1Γ(α)Γ(2β)+1Γ(α+1)Γ(2β))kj=1ji(ϱαj+ϱαβj) ×(p1)Qp2jιj(rjvj+HDβ1+rjHDβ1+vj). (3.5)

    From (3.4) and (3.5), we have

    Tir(t)Tiv(t)+HDβ1+Tir(t)HDβ1+Tiv(t)e(1Γ(α)+2Γ(α+1)+1Γ(αβ+1)+1(Γ(α)Γ(2β)+1Γ(α+1)Γ(2β))×(ϱαi+ϱαβi)(p1)Qp2iιi(rivi+HDβ1+riHDβ1+vi)+e(1Γ(α)+1Γ(α+1)+1Γ(α)Γ(2β)+1Γ(α+1)Γ(2β))kj=1ji(ϱαj+ϱαβj)×(p1)Qp2jιj(rjvj+HDβ1+rjHDβ1+vj).

    Hence,

    Tir(t)Tiv(t)X e(p1)[(1Γ(α)+2Γ(α+1)+1Γ(αβ+1)+1Γ(α)Γ(2β)+1Γ(α+1)Γ(2β)) ×Qp2i(ϱαi+ϱαβi)+(1Γ(α)+1Γ(α+1)+1Γ(α)Γ(2β)+1Γ(α+1)Γ(2β)) ×Qp2jkj=1ji(ϱαj+ϱαβj)](ki=1ιi)(rjvj+HDβ1+rjHDβ1+vj) =χi(ki=1ιi)rvXk, (3.6)

    where χi,i=1,2,,k are given by (3.2).

    From the above Eq (3.6), it follows that

    TrTv)Xk=ki=1TirTivX(ki=1χi)(ki=1ιi)rvXk.

    Since

    (ki=1χi)(ki=1ιi)<1,

    we obtain that T is a contraction map. According to Banach's contraction principle, the original system (1.1) has a unique solution on [1,e].

    Theorem 3.2. Assume that (H1) and (H2) hold; then system (2.1) has at least one solution on [1,e] if

    (ki=1Υi)(ki=1ιi)<1,

    where Υi,i=1,2,,14 are given by Eq (3.3).

    By Theorem 3.1, T is defined under the consideration of Krasnoselskii's fixed point theorem as follows:

    Tμ=ϖ1μ+ϖ2μ,

    where

    ϖ1μ=ϱαiΓ(α)t1(logts)α1ϕp(gi(s,ri(s),HDβ1+ri(s)))ds,ϖ2μ=logtΓ(α1)kj=1(ϱ1jkj=1ϱ1j)ϱαje1(loges)α2ϕp(gj(s,rj(s),HDβ1+rj(s)))dslogtΓ(α)kj=1ji(ϱ1jkj=1ϱ1j)ϱαje1(loges)α1ϕp(gj(s,rj(s),HDβ1+rj(s)))ds+logtΓ(α)kj=1ji(ϱ1jkj=1ϱ1j)ϱαie1(loges)α1ϕp(gi(s,ri(s),HDβ1+ri(s)))ds.

    Proof. For any δ=(δ1,δ2,,δ14)(t), μ=(μ1,μ2,,μ14)(t)Xk, we have

    |ϖ2δ(t)ϖ2μ(t)|logtΓ(α1)kj=1(ϱ1jkj=1ϱ1j)ϱαje1(loges)α2[|ϕp(gi(s,δi(s),HDβ1+δi(s))ϕp(gi(s,μi(s),HDβ1+μi(s))|ds]+logtΓ(α)kj=1ji(ϱ1jkj=1ϱ1j)ϱαje1(loges)α1[|ϕp(gj(s,δj(s),HDβ1+δj(s))ϕp(gj(s,μj(s),HDβ1+μj(s))|ds]+logtΓ(α)kj=1ji(ϱ1jkj=1ϱ1j)ϱαie1(loges)α1[|ϕp(gi(s,δi(s),HDβ1+δi(s))ϕp(gi(s,μi(s),HDβ1+μi(s))|ds],

    which implies that

    ϖ2δ(t)ϖ2μ(t)e(p1)Qp2jkj=1(ϱαjΓ(α)uj(t)δjμj+ϱαβjΓ(α)uj(t)HDβ1+δjHDβ1+μj)+e(p1)Qp2jkj=1ji(ϱαjΓ(α+1)uj(t)δjμj+ϱαβjΓ(α+1)uj(t)HDβ1+δjHDβ1+μj)+eϱαiΓ(α+1)(p1)Qp2iui(t)δiμi+eϱαβiΓ(α+1)(p1)Qp2iui(t)HDβ1+δiHDβ1+μie(ϱαi+ϱαβi)Γ(α+1)(p1)Qp2iui(t)(δiμi+HDβ1+δiHDβ1+μi)+ekj=1ϱαj+ϱαβjΓ(α)(p1)Qp2juj(t)(δjμj+HDβ1+δjHDβ1+μj)+ekj=1jiϱαj+ϱαβjΓ(α+1)(p1)Qp2juj(t)(δjμj+HDβ1+δjHDβ1+μj)=e(1Γ(α)+1Γ(α+1))(ϱαi+ϱαβi)(p1)Qp2iui(t)(δiμi+HDβ1+δiHDβ1+μi)+e(1Γ(α)+1Γ(α+1))kj=1ji(ϱαj+ϱαβj)(p1)Qp2juj(t)(δjμj+HDβ1+δjHDβ1+μj).

    In a similar way, we get

    |HDβ1+ϖ2δ(t)HDβ1+ϖ2μ(t)|eϱαiΓ(α+1)Γ(2β)(p1)Qp2iui(t)δiμi+eϱαβiΓ(α+1)Γ(2β)(p1)Qp2iui(t)HDβ1+δiHDβ1+μi+e(p1)Qp2jkj=1(ϱαiΓ(α)Γ(2β)uj(t)δjμj+ϱαβiΓ(α)Γ(2β)uj(t)HDβ1+δjHDβ1+μj)+e(p1)Qp2jkj=1ji(ϱαjΓ(α+1)uj(t)δjμj+ϱαβjΓ(α+1)uj(t)HDβ1+δjHDβ1+μj)ekj=1ϱαj+ϱαβjΓ(α)Γ(2β)(p1)Qp2juj(t)(δjμj+HDβ1+δjHDβ1+μj)+ekj=1jiϱαj+ϱαβjΓ(α+1)Γ(2β)(p1)Qp2juj(t)(δjμj+HDβ1+δjHDβ1+μj)+e(λαi+λαβi)Γ(α+1)Γ(2β)(p1)Qp2iuj(t)(δiμi+HDβ1+δiHDβ1+μi).

    Then,

    ϖ2δ(t)ϖ2μ(t)X e(p1)[(1Γ(α)+1Γ(α+1)+1Γ(α)Γ(2β)+1Γ(α+1)Γ(2β))Qp2i(ϱαi+ϱαβi) +(1Γ(α)+1Γ(α+1)+1Γ(α)Γ(2β)+1Γ(α+1)Γ(2β))Qp2jkj=1ji(ϱαj+ϱαβj)] ×(ki=1ιi)(δjμj+HDβ1+δjHDβ1+μj) =Υi(ki=1ωi)δμXk. (3.7)

    Hence,

    ϖ2δ(t)ϖ2μ(t)Xk=ki=1ϖ2δϖ2μX (ki=1Υi)(ki=1ιi)δμXk. (3.8)

    It follows from (ki=1Υi)(ki=1ιi)<1 that ϖ2 is a contraction operator. In addition, we shall prove that ϖ1 is continuous and compact. For any δ=(δ1,δ2,,δ14)(t)Xk, we have

    ϖ1δ(t)ϱαiΓ(α)t1(logts)α1|ϕp(gi(s,δi(s),HDβ1+δi(s)))|dsϱαiΓ(α)t1(logts)α1|ϕp(gi(s,δi(s),HDβ1+δi(s)))ϕp(gi(s,0,0))|ds+ϱαiΓ(α)t1(logts)α1|ϕp(gi(s,0,0))|dseϱαiΓ(α+1)(p1)Qp2iιi(δi+HDβ1+δi)+eϱαiΓ(α+1)|ϕp(κ)|=eϱαiΓ(α+1)(p1)Qp2iιiδiX+eϱαiΓ(α+1)|ϕp(κ)|.

    Then,

    \begin{eqnarray*} \|{}^{H}D^{\beta}_{1^{+}}\varpi_{1}\delta(t)\| &\leq&\frac{\varrho_{i}^{\alpha}}{\Gamma(\alpha-\beta)}\int_{1}^{t}\big(\log\frac{t}{s}\Big)^{\alpha-\beta-1} \left|\phi_{p}\left(g_{i}\big(s,\delta_{i}(s),{}^{H}D^{\beta}_{1^{+}}\delta_{i}(s)\right)\right|ds\\ &\leq&\frac{\varrho_{i}^{\alpha}}{\Gamma(\alpha-\beta)}\int_{1}^{t}\Big(\log\frac{t}{s}\Big)^{\alpha-\beta-1} \left|\phi_{p}\left(g_{i}\big(s,\delta_{i}(s),{}^{H}D^{\beta}_{1^{+}}\delta_{i}(s)\big)\right)-\phi_{p}(g_{i}(s,0,0))\right|ds \\ &&+\frac{\varrho_{i}^{\alpha}}{\Gamma(\alpha-\beta)}\int_{1}^{t}\Big(\log\frac{t}{s}\Big)^{\alpha-\beta-1} \Big|\phi_{p}(g_{i}(s,0,0))\Big|ds \\ &\leq&\frac{e\varrho_{i}^{\alpha}}{\Gamma(\alpha-\beta+1)}(p-1)Q_{i}^{p-2}\iota_{i} \Big(\|\delta_{i}\|+\left\|{}^{H}D^{\beta}_{1^{+}}\delta_{i}\right\|\Big) +\frac{e\varrho_{i}^{\alpha}}{\Gamma(\alpha-\beta+1)}|\phi_{p}(\kappa)| \\ & = &\frac{e\varrho_{i}^{\alpha}}{\Gamma(\alpha+1)}(p-1)Q_{i}^{p-2}\iota_{i}\|\delta_{i}\|_{X} +\frac{e\lambda_{i}^{\alpha}}{\Gamma(\alpha-\beta+1)}|\phi_{p}(\kappa)|, \end{eqnarray*}

    which implies

    \begin{eqnarray} \|\varpi_{1}\delta(t)\|_{X}\leq\left(\frac{1}{\Gamma(\alpha+1)}+\frac{1}{\Gamma(\alpha-\beta+1)}\right) \left((p-1)Q_{i}^{p-2}\iota_{i}\|\delta_{i}\|_{X}+|\phi_{p}(\kappa)|\right). \end{eqnarray} (3.9)

    Hence,

    \begin{eqnarray} \|\varpi_{1}\delta(t)\|_{X^{k}}\leq\left(\frac{1}{\Gamma(\alpha+1)}+\frac{1}{\Gamma(\alpha-\beta+1)}\right) \times\left( \sum\limits_{i = 1}^{k}(p-1)Q_{i}^{p-2}\iota_{i}\|\delta_{i}\|_{X} + \sum\limits_{i = 1}^{k}|\phi_{p}(\kappa)|\right) < \infty. \end{eqnarray} (3.10)

    This shows that \varpi_{1} is bounded. In addition, we will prove that \varpi_{1} is equi-continuous. Let t_{1} , t_{2}\in[1, e] ; we have

    \begin{eqnarray} |\varpi_{1}\delta(t_{2})-\varpi_{1}\delta(t_{1})| \ &\leq& \frac{\varrho_{i}^{\alpha}}{\Gamma(\alpha)}\int_{1}^{t_{1}}\Bigg (\Big(\log\frac{t_{2}}{s}\Big)^{\alpha-1}-\Big(\log\frac{t_{1}}{s}\Big)^{\alpha-1}\Bigg) \left|\phi_{p}\left(g_{i}\big(s,\delta_{i}(s),{}^{H}D^{\beta}_{1^{+}}\delta_{i}(s)\big)\right)\right|ds \notag\ \\ &&+ \frac{\varrho_{i}^{\alpha}}{\Gamma(\alpha)}\int_{t_{1}}^{t_{2}} \Big(\log\frac{t_{2}}{s}\Big)^{\alpha-1} \left|\phi_{p}\left(g_{i}\big(s,\delta_{i}(s),{}^{H}D^{\beta}_{1^{+}}\delta_{i}(s)\big)\right)\right|ds \ \\ &\leq&\frac{e\varrho_{i}^{\alpha}\phi_{p}(Q_{i})}{\Gamma(\alpha+1)}((\log t_{2})^{\alpha}-(\log t_{1})^{\alpha}) +\frac{\varrho_{i}^{\alpha}\phi_{p}(Q_{i})}{\Gamma(\alpha)}\int_{t_{1}}^{t_{2}} \Big(\log\frac{t_{2}}{s}\Big)^{\alpha-1}ds, \end{eqnarray} (3.11)

    and

    \begin{eqnarray} &&\left|{}^{H}D^{\beta}_{1^{+}}\varpi_{1}\delta(t_{2})-{}^{H}D^{\beta}_{1^{+}}\varpi_{1}\delta(t_{1})\right|\ \\ & \leq& \frac{\varrho_{i}^{\alpha}}{\Gamma(\alpha-\beta)}\int_{1}^{t_{1}}\Bigg (\Big(\log\frac{t_{2}}{s}\Big)^{\alpha-\beta-1}-\Big(\log\frac{t_{1}}{s}\Big)^{\alpha-\beta-1}\Bigg) \left|\phi_{p}\left(g_{i}\big(s,\delta_{i}(s),{}^{H}D^{\beta}_{1^{+}}\delta_{i}(s)\big)\right)\right|ds \ \\ &&+ \frac{\varrho_{i}^{\alpha}}{\Gamma(\alpha-\beta)}\int_{t_{1}}^{t_{2}} \Big(\log\frac{t_{2}}{s}\Big)^{\alpha-\beta-1} \left|\phi_{p}\left(g_{i}\big(s,\delta_{i}(s),{}^{H}D^{\beta}_{1^{+}}\delta_{i}(s)\big)\right)\right|ds \ \\ &\leq& \frac{e\varrho_{i}^{\alpha}\phi_{p}(Q_{i})}{\Gamma(\alpha-\beta+1)}((\log t_{2})^{\alpha-\beta}-(\log t_{1})^{\alpha-\beta})+\frac{\lambda_{i}^{\alpha}\phi_{p}(Q_{i})}{\Gamma(\alpha-\beta+1)}\int_{t_{1}}^{t_{2}} \Big(\log\frac{t_{2}}{s}\Big)^{\alpha-\beta-1}ds. \end{eqnarray} (3.12)

    Therefore, from (3.10) and (3.12), we obtain

    \begin{eqnarray} \|\varpi_{1}\delta(t_{2})-\varpi_{1}\delta(t_{1})\|_{X} &\leq&\frac{e\varrho_{i}^{\alpha}\phi_{p}(Q_{i})}{\Gamma(\alpha-\beta+1)}((\log t_{2})^{\alpha-\beta}-(\log t_{1})^{\alpha-\beta})+\frac{\varrho_{i}^{\alpha}\phi_{p}(Q_{i})}{\Gamma(\alpha-\beta+1)}\int_{t_{1}}^{t_{2}} \Big(\log\frac{t_{2}}{s}\Big)^{\alpha-\beta-1}ds \\ &&+\frac{e\varrho_{i}^{\alpha}\phi_{p}(Q_{i})}{\Gamma(\alpha+1)}((\log t_{2})^{\alpha}-(\log t_{1})^{\alpha}) +\frac{\varrho_{i}^{\alpha}\phi_{p}(Q_{i})}{\Gamma(\alpha)}\int_{t_{1}}^{t_{2}} \Big(\log\frac{t_{2}}{s}\Big)^{\alpha-1}ds. \end{eqnarray} (3.13)

    This indicates that \|\varpi_{1}\delta(t_{2})-\varpi_{1}\delta(t_{1})\|_{X}\rightarrow0 , as t_{2}\rightarrow t_{1} .Thus, \|\varpi_{1}\delta(t_{2})-\varpi_{1}\delta(t_{1})\|_{X^{^{k}}}\rightarrow0 , as t_{2}\rightarrow t_{1} . By the Arzela-Ascoli theorem, we obtain that \omega_{1} is completely continuous. According to Lemma 2.6, system (2.1) has at least one solution on [1, e] , which denotes that the original system (1.1) has at least one solution on [1, e] .

    Let \varepsilon_{i} > 0 . Consider the following inequality

    \begin{equation} \left|{}^{H}D^{\alpha}_{1^+}r_{i}(t)-\varrho_{i}^{\alpha} \phi_{p}\left({f}_{i}\big(t,r_{i}(t),{}^{H}D^{\beta}_{1^+}r_{i}(t)\big)\right)\right| \leq\varepsilon_{i},\; t\in [1,e]. \end{equation} (4.1)

    Definition 4.1. [16] The fractional differential system (1.1) is called Hyers-Ulam stable if there is a constant c_{f_{1}, f_{2}, ..., f_{k}} > 0 such that for each \varepsilon = \varepsilon(\varepsilon_{1}, \varepsilon_{2}, ..., \varepsilon_{k}) > 0 and for each solution r = (r_{1}, r_{2}, ..., r_{k})\in X^{k} of the inequality (4.1), there exists a solution \bar{r} = (\bar{r}_{1}, \bar{r}_{2}, ..., \bar{r}_{k})\in X^{k} of (1.1) with

    \|r-\bar{r}\|_{X^{k}}\leq c_{f_{1}, f_{2},..., f_{k}}\varepsilon, \; t\in[1,e].

    Definition 4.2. [16] The fractional differential system (1.1) is called generalized Hyers-Ulam stable if there exists-function \psi_{f_{1}, f_{2}, ..., f_{k}}\in \mathbb C(\mathbb R^{+}, \mathbb R^{+}) with \psi_{f_{1}, f_{2}, ..., f_{k}}(0) = 0 such that for each \varepsilon = \varepsilon(\varepsilon_{1}, \varepsilon_{2}, ..., \varepsilon_{k}) > 0 , and for each solution r = (r_{1}, r_{2}, ..., r_{k})\in X^{k} of the inequality (4.1), there exists a solution \bar{r} = (\bar{r}_{1}, \bar{r}_{2}, ..., \bar{r}_{k})\in X^{k} of (1.1) with

    \|r-\bar{r}\|_{X}\leq \psi_{f_{1}, f_{2},..., f_{k}}(\varepsilon), \; t\in[1,e].

    Remark 4.3. Let function r = (r_{1}, r_{2}, \cdots, r_{k})\in X^k, \; k = 1, 2, \cdots, 14 , be the solution of system (4.1). If there are functions \varphi_{i}:[1, e]\rightarrow \mathbb R^+ dependent on u_{i} respectively, then

    (ⅰ) |\varphi_{i}(t)|\leq\varepsilon_{i} , t\in [1, e] , i = 1, 2, \cdots, 14;

    (ⅱ) ^{H}D^{\alpha}_{1^+}r_{i}(t) = \varrho_{i}^{\alpha}\phi_{p}\left({f}_{i}\big(t, r_{i}(t), ^{H}D^{\beta}_{1^+}r_{i}(t)\big)\right) +\varphi_{i}(t), t\in [1, e], i = 1, 2, ..., 14.

    Remark 4.4. It is worth noting that Hyers-Ulam stability is different from asymptotic stability, which means that the system can gradually return to equilibrium after being disturbed. If the Lyapunov function satisfies certain conditions, the system is asymptotically stable. This stability emphasizes the behavior of the system over a long period of time, that is, as time goes on, the state of the system will return to the equilibrium state, while the error of Hyers-Ulam stability is bounded (proportional to the size of the disturbance).

    Lemma 4.5. Suppose r = (r_{1}, r_{2}, ..., r_{k})\in X^k is the solution of inequality (4.1). Then, the following inequality holds:

    \begin{eqnarray*} |r_{i}(t)-r_{i}^{*}(t)|&\leq& \varepsilon_{i}e\Big(\frac{1}{\Gamma(\alpha)}+\frac{2}{\Gamma(\alpha+1)}\Big)+\varepsilon_{j}e \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Big(\frac{1}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha+1)}\Big),\\ |{}^{H}D^{\beta}_{1^{+}}r_{i}(t)-{}^{H}D^{\beta}_{1^{+}}r_{i}^{*}(t)| &\leq& \varepsilon_{j}e \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Big(\frac{1}{\Gamma(\alpha)\Gamma(2-\beta)}+\frac{1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\Big) \\ &&+\varepsilon_{i}e\Big(\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{1}{\Gamma(\alpha)\Gamma(2-\beta)} +\frac{1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\Big), \end{eqnarray*}

    where

    \begin{align*} r_{i}^{*}(t) = &\frac{1}{\Gamma(\alpha)}\int_{1}^{t}\Big(\log\frac{t}{s}\Big)^{\alpha-1} z_{i}(s)ds \notag\ -\frac{\log t}{\Gamma(\alpha-1)} \sum\limits_{j = 1}^{k}\Bigg(\frac{\lambda_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\lambda_{j}^{-1}}\Bigg) \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-2} z_{j}(s)ds \notag\ \\ &+\frac{\log t}{\Gamma(\alpha)} \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Bigg(\frac{\lambda_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\lambda_{j}^{-1}}\Bigg) \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-1}z_{j}(s)ds \notag\ -\frac{\log t}{\Gamma(\alpha)} \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Bigg(\frac{\lambda_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\lambda_{j}^{-1}}\Bigg) \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-1}z_{i}(s)ds,\\ {}^{H}D^{\beta}_{1^{+}}r_{i}^{*}(t) = & \frac{1}{\Gamma(\alpha-\beta)}\int_{1}^{t}\big(\log\frac{t}{s}\big)^{\alpha-\beta-1} z_{i}(s)ds \\ &-\frac{(\log t)^{1-\beta}}{\Gamma(\alpha-1)\Gamma(2-\beta)} \sum\limits_{j = 1}^{k} \Bigg(\frac{\lambda_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\lambda_{j}^{-1}}\Bigg) \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-2}z_{j}(s)ds \\ &+\frac{(\log t)^{1-\beta}}{\Gamma(\alpha)\Gamma(2-\beta)} \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Bigg(\frac{\lambda_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\lambda_{j}^{-1}}\Bigg) \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-1} z_{j}(s)ds \\ &-\frac{(\log t)^{1-\beta}}{\Gamma(\alpha)\Gamma(2-\beta)} \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Bigg(\frac{\lambda_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\lambda_{j}^{-1}}\Bigg) \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-1} z_{i}(s)ds, \end{align*}

    and here

    z_{i}(s) = \frac{h_{i}(s)}{s},\; h_{i}(s) = \varrho_{i}^{\alpha}f_{i}\big(s,r_{i}(s),{}^{H}D^{\beta}_{1^{+}}r_{i}(s)\big),\; i = 1,2,\cdots,14.

    Proof. From Remark 4.3, we have

    \begin{eqnarray} \left\{\begin{array}{l} {}^{H}D^{\alpha}_{1^{+}} r_{i}(t) = \varrho_{i}^{\alpha}\phi_{p}\left(f_{i}\big(s,r_{i}(s),{}^{H}D^{\beta}_{1^{+}}r_{i}(s)\big)\right)+\varphi_{i}(t),\; t \in [1,e], \\ r_{i}(1) = 0,\; i = 1,2,\cdots,14,\\ r_{i}(e) = r_{j}(e),\; i,j = 1,2,\cdots,14,\; i\neq j,\\ \sum\limits_{i = 1}^{k}\varrho_{i}^{-1}r'_{i}(e) = 0,\; i = 1,2,\cdots,14. \end{array}\right. \end{eqnarray} (4.2)

    By Lemma 2.7, the solution of (4.2) can be given in the following form:

    \begin{eqnarray*} r_{i}(t)& = &\frac{1}{\Gamma(\alpha)}\int_{1}^{t}\Big(\log\frac{t}{s}\Big)^{\alpha-1} \left(z_{i}(s)+\frac{\varphi_{i}(s)}{s}\right)ds \notag\ \\ &&-\frac{\log t}{\Gamma(\alpha-1)} \sum\limits_{j = 1}^{k}\Bigg(\frac{\lambda_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\lambda_{j}^{-1}}\Bigg) \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-2} \left(z_{j}(s)+\frac{\varphi_{j}(s)}{s}\right)ds \notag\ \\ &&+\frac{\log t}{\Gamma(\alpha)} \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Bigg(\frac{\lambda_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\lambda_{j}^{-1}}\Bigg) \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-1}\left(z_{j}(s)+\frac{\varphi_{j}(s)}{s}\right)ds \notag\ \\ &&-\frac{\log t}{\Gamma(\alpha)} \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Bigg(\frac{\lambda_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\lambda_{j}^{-1}}\Bigg) \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-1}\left(z_{i}(s)+\frac{\varphi_{i}(s)}{s}\right)ds, \end{eqnarray*}

    and

    \begin{eqnarray*} {}^{H}D^{\beta}_{1^{+}}r_{i}(t)& = & \frac{1}{\Gamma(\alpha-\beta)}\int_{1}^{t}\big(\log\frac{t}{s}\big)^{\alpha-\beta-1} \left(z_{i}(s)+\frac{\varphi_{i}(s)}{s}\right)ds \\ &&-\frac{(\log t)^{1-\beta}}{\Gamma(\alpha-1)\Gamma(2-\beta)} \sum\limits_{j = 1}^{k} \Bigg(\frac{\lambda_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\lambda_{j}^{-1}}\Bigg) \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-2}\left(z_{j}(s)+\frac{\varphi_{j}(s)}{s}\right)ds \\ &&+\frac{(\log t)^{1-\beta}}{\Gamma(\alpha)\Gamma(2-\beta)} \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Bigg(\frac{\lambda_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\lambda_{j}^{-1}}\Bigg) \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-1} \left(z_{j}(s)+\frac{\varphi_{j}(s)}{s}\right)ds \\ &&-\frac{(\log t)^{1-\beta}}{\Gamma(\alpha)\Gamma(2-\beta)} \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Bigg(\frac{\lambda_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\lambda_{j}^{-1}}\Bigg) \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-1} \left(z_{i}(s)+\frac{\varphi_{i}(s)}{s}\right)ds. \end{eqnarray*}

    Then, we deduce that

    \begin{eqnarray*} |r_{i}(t)-r_{i}^{*}(t)|&\leq& \varepsilon_{i}\frac{2e}{\Gamma(\alpha+1)} + \sum\limits_{j = 1}^{k}\varepsilon_{j}\frac{e}{\Gamma(\alpha)} + \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\varepsilon_{j}\frac{e}{\Gamma(\alpha+1)} \\ & = &\varepsilon_{i}e\Big(\frac{1}{\Gamma(\alpha)}+\frac{2}{\Gamma(\alpha+1)}\Big)+\varepsilon_{j}e \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Big(\frac{1}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha+1)}\Big) \end{eqnarray*}

    and

    \begin{eqnarray*} |{}^{H}D^{\beta}_{1^{+}}r_{i}(t)-{}^{H}D^{\beta}_{1^{+}}r_{i}^{*}(t)| &\leq&\varepsilon_{i}\frac{e}{\Gamma(\alpha-\beta+1)}+\varepsilon_{j}\frac{e}{\Gamma(\alpha+1)\Gamma(2-\beta)} \\ &&+\varepsilon_{j} \sum\limits_{j = 1}^{k}\frac{e}{\Gamma(\alpha)\Gamma(2-\beta)} +\varepsilon_{i} \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\frac{e}{\Gamma(\alpha+1)\Gamma(2-\beta)} \\ & = &\varepsilon_{j}e \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Big(\frac{1}{\Gamma(\alpha)\Gamma(2-\beta)}+\frac{1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\Big) \\ &&+\varepsilon_{i}e\Big(\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{1}{\Gamma(\alpha)\Gamma(2-\beta)} +\frac{1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\Big). \end{eqnarray*}

    Theorem 4.6. Assume that Theorem 3.1 hold; then the fractional differential system (1.1) is Hyers-Ulam stable if the eigenvalues of matrix A are in the open unit disc. There exists |\lambda| < 1 for \lambda\in \mathbb C with det(\lambda I-A) = 0 , where

    A = \begin{pmatrix} \theta_{1}(\varrho_{1}^{\alpha}+\varrho_{1}^{\alpha-\beta})(p-1)Q_{1}^{p-2}u_{1} & \theta_{2}(\varrho_{2}^{\alpha}+\varrho_{2}^{\alpha-\beta})(p-1)Q_{2}^{p-2}u_{2} & \cdots & \theta_{2}(\varrho_{12}^{\alpha}+\varrho_{12}^{\alpha-\beta})(p-1)Q_{12}^{p-2}u_{14} \\ \theta_{2}(\varrho_{1}^{\alpha}+\varrho_{1}^{\alpha-\beta})(p-1)Q_{1}^{p-2}u_{1} & \theta_{1}(\varrho_{2}^{\alpha}+\varrho_{2}^{\alpha-\beta})(p-1)Q_{2}^{p-2}u_{2} & \cdots & \theta_{2}(\varrho_{12}^{\alpha}+\varrho_{12}^{\alpha-\beta})(p-1)Q_{12}^{p-2}u_{14} \\ \vdots & \vdots & \ddots & \vdots\\ \theta_{2}(\varrho_{1}^{\alpha}+\varrho_{1}^{\alpha-\beta})(p-1)Q_{1}^{p-2}u_{1} & \theta_{2}(\varrho_{2}^{\alpha}+\varrho_{2}^{\alpha-\beta})(p-1)Q_{2}^{p-2}u_{2} & \cdots & \theta_{1}(\varrho_{12}^{\alpha}+\varrho_{12}^{\alpha-\beta})(p-1)Q_{12}^{p-2}u_{14} \end{pmatrix}.

    Proof. Let r = (r_{1}, r_{2}, ..., r_{14})\in X^k, \; k = 1, 2, \cdots14, be the solution of the inequality given by

    \begin{equation*} \left|{}^{H}D^{\alpha}_{1^+}r_{i}(t)-\varrho_{i}^{\alpha}\phi_{p}\left( {f}_{i}\big(t,r_{i}(t),{}^{H}D^{\beta}_{1^+}r_{i}(t)\big)\right)\right| \leq\varepsilon_{i},\; t\in [1,e], \end{equation*}

    and \bar{r} = (\bar{r}_{1}, \bar{r}_{2}, ..., \bar{r}_{14})\in X^k be the solution of the following system:

    \begin{eqnarray} \left\{\begin{array}{l} ^{H}D^{\alpha}_{1^{+}} \bar{r}_{i}(t) = \varrho_{i}^{\alpha}\phi_{p}\left(f_{i}\big(s,\bar{r}_{i}(s),{}^{H}D^{\beta}_{1^{+}}\bar{r}_{i}(s)\big)\right),\; t \in [1,e], \\ \bar{r}_{i}(1) = 0,\; i = 1,2,\cdots,14,\\ \bar{r}_{i}(e) = \bar{r}_{j}(e),\; i,j = 1,2,\cdots,14,\; i\neq j,\\ \sum\limits_{i = 1}^{k}\varrho_{i}^{-1}\bar{r}'_{i}(e) = 0,\; i = 1,2,\cdots,14. \end{array}\right. \end{eqnarray} (4.3)

    By Lemma 2.7, the solution of (4.3) can be given in the following form:

    \begin{eqnarray*} \bar{r}_{i}(t) & = &\frac{\varrho_{i}^{\alpha}}{\Gamma(\alpha)}\int_{1}^{t}\Big(\log\frac{t}{s}\Big)^{\alpha-1} \phi_{p}\left(g_{i}\big(s,\bar{r}_{i}(s),{}^{H}D^{\beta}_{1^{+}}\bar{r}_{i}(s)\big)\right)ds \\ &&-\frac{\log t}{\Gamma(\alpha-1)} \sum\limits_{j = 1}^{k}\Bigg(\frac{\varrho_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\varrho_{j}^{-1}}\Bigg) \varrho_{j}^{\alpha}\int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-2} \phi_{p}\left(g_{j}\big(s,\bar{r}_{j}(s),{}^{H}D^{\beta}_{1^{+}}\bar{r}_{j}(s)\big)\right)ds \\ &&+\frac{\log t}{\Gamma(\alpha)} \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Bigg(\frac{\varrho_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\varrho_{j}^{-1}}\Bigg)\varrho_{j}^{\alpha} \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-1} \phi_{p}\left(g_{j}\big(s,\bar{r}_{j}(s),{}^{H}D^{\beta}_{1^{+}}\bar{r}_{j}(s)\big)\right)ds \\ &&-\frac{\log t}{\Gamma(\alpha)} \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Bigg(\frac{\varrho_{j}^{-1}}{\sum\nolimits_{j = 1}^{k}\varrho_{j}^{-1}}\Bigg)\varrho_{i}^{\alpha} \int_{1}^{e}\Big(\log\frac{e}{s}\Big)^{\alpha-1} \phi_{p}\left(g_{i}\big(s,\bar{r}_{i}(s),{}^{H}D^{\beta}_{1^{+}}\bar{r}_{i}(s)\big)\right)ds. \end{eqnarray*}

    Now, by Lemma 4.5, for t\in[1, e] , we can get

    \begin{eqnarray*} |r_{i}(t)-\bar{r}_{i}(t)| &\leq& |r_{i}(t)-r_{i}^{*}(t)|+|r_{i}^{*}(t)-\bar{r}_{i}(t)|\\ &\leq& \varepsilon_{i}e\Big(\frac{1}{\Gamma(\alpha)}+\frac{2}{\Gamma(\alpha+1)}\Big)+\varepsilon_{j}e \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Big(\frac{1}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha+1)}\Big)\\ &&+e\Big(\frac{1}{\Gamma(\alpha)}+\frac{2}{\Gamma(\alpha+1)}\Big) (\varrho_{i}^{\alpha}+\varrho_{i}^{\alpha-\beta})(p-1)Q_{i}^{p-2}u_{i}(t) \left(\|r_{i}-\bar{r}_{i}\|+\left\|{}^{H}D^{\beta}_{1^{+}}r_{i}-{}^{H}D^{\beta}_{1^{+}}\bar{r}_{i}\right\|\right) \\ &&+e\Big(\frac{1}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha+1)}\Big) \sum\limits_{\substack{j = 1\\ j\neq i}}^{k} (\varrho_{j}^{\alpha}+\varrho_{j}^{\alpha-\beta})(p-1)Q_{i}^{p-2}u_{j}(t) \left(\|r_{j}-\bar{r}_{j}\|+\left\|{}^{H}D^{\beta}_{1^{+}}r_{j}-{}^{H}D^{\beta}_{1^{+}}\bar{r}_{j}\right\|\right) \end{eqnarray*}

    and

    \begin{eqnarray*} \left|{}^{H}D^{\beta}_{1^+}r_{i}(t)-{}^{H}D^{\beta}_{1^+}\bar{r}_{i}(t)\right| &\leq& \left|{}^{H}D^{\beta}_{1^+}r_{i}(t)-{}^{H}D^{\beta}_{1^+}r_{i}^{*}(t)\right| +\left|{}^{H}D^{\beta}_{1^+}r_{i}^{*}(t)-{}^{H}D^{\beta}_{1^+}\bar{r}_{i}(t)\right|\\ &\leq&\varepsilon_{j}e \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\Big(\frac{1}{\Gamma(\alpha)\Gamma(2-\beta)}+\frac{1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\Big) \\ &&+\varepsilon_{i}e\Big(\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{1}{\Gamma(\alpha)\Gamma(2-\beta)} +\frac{1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\Big)\\ &&+e\Big(\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{1}{(\Gamma(\alpha)\Gamma(2-\beta)} +\frac{1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\Big)\notag\ \\ &&\times(\varrho_{i}^{\alpha}+\varrho_{i}^{\alpha-\beta})(p-1)Q_{i}^{p-2}u_{i}(t) \left(\|r_{i}-\bar{r}_{i}\|+\left\|{}^{H}D^{\beta}_{1^{+}}r_{i}-{}^{H}D^{\beta}_{1^{+}}\bar{r}_{i}\right\|\right)\notag\ \\ &&+e\Big(\frac{1}{\Gamma(\alpha)\Gamma(2-\beta)}+\frac{1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\Big) \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}(\varrho_{j}^{\alpha}+\varrho_{j}^{\alpha-\beta})\notag\ \\ &&\times (p-1)Q_{i}^{p-2}u_{j}(t)\left(\|r_{j}-\bar{r}_{j}\|+\left\|{}^{H}D^{\beta}_{1^{+}}r_{j}-{}^{H}D^{\beta}_{1^{+}}\bar{r}_{j}\right\|\right). \end{eqnarray*}

    Hence, we have

    \begin{eqnarray*} \|r_{i}-\bar{r}_{i}\|_{X} & = &\|r_{i}-\bar{r}_{i}\|+\left\|{}^{H}D^{\beta}_{1^+}r_{i}(t)-{}^{H}D^{\beta}_{1^+}\bar{r}_{i}(t)\right\|\\ &\leq& e\left(\frac{\alpha+2}{\Gamma(\alpha+1)}+\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{\alpha+1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\right) \varepsilon_{i} \\ &&+e \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\left(\frac{\alpha+1}{\Gamma(\alpha+1)}+\frac{\alpha+1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\right)\varepsilon_{j} \\ &&+e\left(\frac{\alpha+2}{\Gamma(\alpha+1)}+\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{\alpha+1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\right)\\ &&\times(\varrho_{i}^{\alpha}+\varrho_{i}^{\alpha-\beta})(p-1)Q_{i}^{p-2}u_{i}(t) (\|r_{i}-\bar{r}_{i}\|_{X} \\ &&+e \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\left(\frac{\alpha+1}{\Gamma(\alpha+1)}+\frac{\alpha+1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\right) (\varrho_{j}^{\alpha}+\varrho_{j}^{\alpha-\beta})(p-1)Q_{i}^{p-2}u_{j}(t) \|r_{j}-\bar{r}_{j}\|_{X} \\ & = &\theta_{1}\varepsilon_{i}+ \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\theta_{2}\varepsilon_{i}+\theta_{1}(\varrho_{i}^{\alpha}+\varrho_{i}^{\alpha-\beta})(p-1)Q_{i}^{p-2}u_{i}(t) \|r_{i}-\bar{r}_{i}\|_{X} \\ &&+ \sum\limits_{\substack{j = 1\\ j\neq i}}^{k}\theta_{2}(\varrho_{j}^{\alpha}+\varrho_{j}^{\alpha-\beta})(p-1)Q_{i}^{p-2}u_{j}(t) \|r_{j}-\bar{r}_{j}\|_{X}, \end{eqnarray*}

    where

    \begin{eqnarray*} &&\theta_{1} = e\left(\frac{\alpha+2}{\Gamma(\alpha+1)} +\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{\alpha+1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\right),\\ &&\theta_{2} = e\left(\frac{\alpha+1}{\Gamma(\alpha+1)}+\frac{\alpha+1}{\Gamma(\alpha+1)\Gamma(2-\beta)}\right). \end{eqnarray*}

    Then we have

    \begin{eqnarray*} &&(\|r_{1}-\bar{r}_{1}\|_{X}, \|r_{2}-\bar{r}_{2}\|_{X},..., \|r_{14}-\bar{r}_{14}\|_{X})^{T}\\ &\leq& B(\varepsilon_{1}, \varepsilon_{2},..., \varepsilon_{12})^{T} + A(\|r_{1}-\bar{r}_{1}\|_{X}, \|r_{2}-\bar{r}_{2}\|_{X},..., \|r_{14}-\bar{r}_{14}\|_{X})^{T}, \end{eqnarray*}

    where

    B_{14\times 14} = \begin{pmatrix} \theta_{1} & \theta_{2} & \cdots & \theta_{2}\\ \theta_{2} & \theta_{1} & \cdots & \theta_{2}\\ \vdots & \vdots & \ddots & \vdots\\ \theta_{2} & \theta_{2} & \cdots & \theta_{1} \end{pmatrix}.

    Then, we can get

    \begin{eqnarray*} (\|r_{1}-\bar{r}_{1}\|_{X}, \|r_{2}-\bar{r}_{2}\|_{X},..., \|r_{14}-\bar{r}_{14}\|_{X})^{T} \leq (I-A)^{-1}B(\varepsilon_{1}, \varepsilon_{2},..., \varepsilon_{14})^{T}. \end{eqnarray*}

    Let

    H = (I-A)^{-1}B = \begin{pmatrix} h_{1,1} & h_{1,2} & \cdots & h_{1,14}\\ h_{2,1} & h_{2,2} & \cdots & h_{2,14}\\ \vdots & \vdots & \ddots & \vdots\\ h_{14,1} & h_{14,2} & \cdots & h_{14,14} \end{pmatrix}.

    Obviously, h_{i, j} > 0, \; i, j = 1, 2, \cdots, 14 . Set \varepsilon = max\{\varepsilon_{1}, \varepsilon_{2}, ..., \varepsilon_{14} \} , then we can get

    \begin{equation} \|r-\bar{r}\|_{X^{k}}\leq \big(\sum\limits_{\substack{j = 1}}^{k} \sum\limits_{\substack{i = 1}}^{k}h_{i,j}\big)\varepsilon. \end{equation} (4.4)

    Thus, we have derived that system (1.1) is Hyers-Ulam stable.

    Remark 4.7. Making \psi_{f_{1}, f_{2}, ..., f_{k}}(\varepsilon) in (4.4). We have \psi_{f_{1}, f_{2}, ..., f_{k}}(0) = 0 . Then by Definition 4.2, we deduce that the fractional differential system (1.1) is generalized Hyers-Ulam stable.

    The benzoic acid graph we studied in the system (1.1) can be extended to other types of graphs. For example, star graphs and chord bipartite graphs provide a theoretical basis for physics, computer networks, and other fields. Here we only discuss the fractional differential system on the star graphs (i = 1, 2, 3). We discuss the solution of a fractional differential equation on a formaldehyde graph, and the approximate graphs of solutions are presented by using iterative methods and numerical simulation.

    Example 5.1. Consider the following fractional differential equation:

    \begin{eqnarray} \left\{\begin{array}{l} {}^{H}D_{1^{+}}^{\frac{7}{4}} r_{1}(t)+(\frac{1}{3})^{\frac{7}{4}}\phi_{3}\left(1+\frac{t}{5(t+3)^{5}}\left(sin(r_{1}(t)+ \frac{|{}^{H}D_{1^{+}}^{\frac{3}{4}} r_{1}(t)|}{1+|{}^{H}D_{1^{+}}^{\frac{3}{4}} r_{1}(t)|}\right)\right) = 0, \\ {}^{H}D_{1^{+}}^{\frac{7}{4}} r_{2}(t)+(\frac{1}{2})^{\frac{7}{4}}\phi_{3}\left(1+\frac{t}{(t+2)^{7}}\left(sin(r_{2}(t)+ \frac{|{}^{H}D_{1^{+}}^{\frac{3}{4}} r_{2}(t)|}{1+|{}^{H}D_{1^{+}}^{\frac{3}{4}} r_{2}(t)|}\right)\right) = 0,\\ {}^{H}D_{1^{+}}^{\frac{7}{4}} r_{3}(t)+(\frac{2}{3})^{\frac{7}{4}}\phi_{3}\left(1+\frac{t}{1000}|arcsin(r_{3}(t))|+ \frac{t|{}^{H}D_{1^{+}}^{\frac{3}{4}} r_{3}(t)|}{1000(1+|{}^{H}D_{1^{+}}^{\frac{3}{4}} r_{3}(t)|)}\right) = 0,\\ r_{1}(1) = r_{2}(1) = r_{3}(1) = 0,\\ r_{1}(e) = r_{2}(e) = r_{3}(e),\\ (\frac{1}{3})^{-1}r'_{1}(e)+(\frac{1}{2})^{-1}r'_{2}(e)+(\frac{2}{3})^{-1}r'_{3}(e) = 0, \end{array}\right. \end{eqnarray} (5.1)

    corresponding to the system (1.1), we obtain

    \alpha = \frac{7}{4},\; \beta = \frac{3}{4},\; k = 3,\; \varrho_{1} = \frac{1}{3},\; \varrho_{2} = \frac{1}{2},\; \varrho_{3} = \frac{2}{3}.

    Figure 3 (The structure of formaldehyde) is from reference[22]. Coordinate systems with r_{1}, \; r_{2}, and r_{3} are established, respectively, on the formaldehyde graph with 3 edges (Figure 4).

    Figure 3.  A sketch of CH_{2}0 .
    Figure 4.  Formaldehyde graph with labeled vertices.

    For t\in [1, e],

    \begin{eqnarray*} g_{1}\big(t,r_{1}(t),{}^{H}D^{\beta}_{1^{+}}r_{1}(t)\big)& = &1+\frac{1}{5(t+3)^{2}}\left(sin(r_{1}(t)+ \frac{|{}^{H}D_{1^{+}}^{\frac{3}{4}} r_{1}(t)|}{1+|{}^{H}D_{1^{+}}^{\frac{3}{4}} r_{1}(t)|}\right),\\ g_{2}\big(t,r_{2}(t),{}^{H}D^{\beta}_{1^{+}}r_{2}(t)\big)& = &1+\frac{1}{(t+2)^{7}}\left(sin(r_{2}(t)+ \frac{|{}^{H}D_{1^{+}}^{\frac{3}{4}} r_{2}(t)|}{1+|{}^{H}D_{1^{+}}^{\frac{3}{4}} r_{2}(t)|}\right),\\ g_{3}\big(t,r_{3}(t),{}^{H}D^{\beta}_{1^{+}}r_{3}(t)\big)& = &1+\frac{t}{1000}|arcsin(r_{3}(t))|+ \frac{t|{}^{H}D_{1^{+}}^{\frac{3}{4}} r_{3}(t)|}{1000(1+|{}^{H}D_{1^{+}}^{\frac{3}{4}} r_{3}(t)|)}. \end{eqnarray*}

    For any x, \; y, \; x_{1}, \; y_{1} , it is clear that

    g_{1}(t,x,y)-g_{1}(t,x_{1},y_{1})\leq\frac{1}{5(t+3)^{2}}(|x-x_{1}|+|y-y_{1}|),
    g_{2}(t,x,y)-g_{2}(t,x_{2},y_{2})\leq\frac{1}{(t+2)^{7}}(|x-x_{2}|+|y-y_{2}|),
    g_{3}(t,x,y)-g_{3}(t,x_{3},y_{3})\leq \frac{t}{1000}(|x-x_{3}|+|y-y_{3}|).

    So we get

    u_{1} = \sup\limits_{t\in[1,e]}|u_{1}(t)| = \frac{1}{5120}, u_{2} = \sup\limits_{t\in[1,e]}|u_{2}(t)| = \frac{1}{2187}, u_{3} = \sup\limits_{t\in[1,e]}|u_{3}(t)| = \frac{e}{1000},
    \chi_{1} = 51.9811, \chi_{2} = 54.7872, \chi_{3} = 58.0208,

    and

    (\chi_{1}+\chi_{2}+\chi_{3})(u_{1}+u_{2}+u_{3}) = 0.5555 < 1.

    Therefore, by Theorem 3.1, system (5.1) has a unique solution on [1, e] .

    Meanwhile,

    \theta_{1} = 14.1839,\; \; \; \; \theta_{2} = 9.7755,
    A = \begin{pmatrix} 2.6581e-03 & 7.134e-03 & 6.1901e-02\\ 1.832e-03 & 1.0351e-02 & 6.1901e-02\\ 1.832e-03 & 7.134e-03 & 8.9816e-02 \end{pmatrix}.

    Let

    det(\lambda I-A) = (\lambda-0.0964)(\lambda-0.0011)(\lambda-0.0054) = 0,

    so we have

    \lambda_{1} = 0.0964 < 1, \; \; \; \lambda_{2} = 0.0011 < 1, \; \; \; \lambda_{3} = 0.0054 < 1.

    It follows from Theorem 4.6 that system (5.1) is Hyer-Ulams stable, and by Remark 4.4, it will be generalized Hyer-Ulams stable.

    Ultimately, the iterative process curve and approximate solution to the fractional differential system (5.1) are carried out by using the iterative method and numerical simulation. Let u_{i, 0} = 0 , the iteration sequence is as follows:

    \begin{eqnarray*} r_{1,n+1}(t)& = & -\frac{(\frac{1}{3})^{\frac{7}{4}}}{\Gamma{(\frac{7}{4})}} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\frac{3}{4}}\phi_{3}\left(1+\frac{1}{5(t+3)^{2}} \left(sin(r_{1,n}(t)) + \frac{|{}^{H}D_{1^+}^{\frac{3}{4}}r_{1,n}(t)|} {1+|{}^{H}D_{1^+}^{\frac{3}{4}}r_{1,n}(t)|}\right)\right) ds\\ &&- \frac{(\frac{1}{3})^{\frac{7}{4}}(\frac{1}{2})^{-1}(\log t)} {\bigg((\frac{1}{3})^{-1}+(\frac{1}{2})^{-1} +(\frac{2}{3})^{-1}\bigg)\Gamma(\frac{7}{4})} \int_{1}^{e}(1-\log s)^{\frac{3}{4}}\phi_{3}\Bigg(1+\frac{1}{(t+2)^7} \Bigg(sin|r_{2,n}(t)|\\ &&+ \frac{|{}^{H}D^{\frac{3}{4}}_{1^+}r_{2,n}(t)|}{1+|{}^{H}D^{\frac{3}{4}}_{1^+}r_{2,n}(t)|}\Bigg)\Bigg)ds - \frac{(\frac{1}{3})^{\frac{7}{4}}(\frac{1}{2})^{-1}(\log t)} {\bigg((\frac{1}{3})^{-1}+(\frac{1}{2})^{-1} +(\frac{2}{3})^{-1}\bigg)\Gamma(\frac{7}{4})}\int_{1}^{e}(1-\log s)^{\frac{3}{4}}\\ &&\times\phi_{3}\left(\Bigg(1+0.001t |arcsin(r_{3,n}(t))| + \frac{t |{}^{H}D^{\frac{3}{4}}_{1^+}r_{3,n}(t)|} {1000+1000 |{}^{H}D^{\frac{3}{4}}_{1^+}r_{3,n}(t)|}\Bigg)\right) ds\\ &&+ \frac{(\frac{1}{2})^{-1}(\frac{1}{3})^{\frac{7}{4}}(\log t)} {\bigg((\frac{1}{3})^{-1}+(\frac{1}{2})^{-1} +(\frac{2}{3})^{-1}\bigg)\Gamma(\frac{7}{4})} \int_{1}^{e}(1-\log s)^{\frac{3}{4}} \phi_{3}\Bigg(1+\frac{1}{5(t+3)^{2}} \Bigg(sin(r_{1,n}(t))\\ &&+ \frac{|{}^{H}D_{1^+}^{\frac{3}{4}}r_{1,n}(t)|} {1+|{}^{H}D_{1^+}^{\frac{3}{4}}r_{1,n}(t)|}\Bigg)\Bigg)ds +\frac{(\frac{1}{3})^{\frac{7}{4}}(\frac{2}{3})^{-1}(\log t)} {\bigg((\frac{1}{3})^{-1}+(\frac{1}{2})^{-1} +(\frac{2}{3})^{-1}\bigg)\Gamma(\frac{7}{4})}\int_{1}^{e}(1-\log s)^{\frac{3}{4}}\\ &&\times \phi_{3}\Bigg(1+\frac{1}{5(t+3)^{2}} \Bigg(sin(r_{1,n}(t)) + \frac{|{}^{H}D_{1^+}^{\frac{3}{4}}r_{1,n}(t)|} {1+|{}^{H}D_{1^+}^{\frac{3}{4}}r_{1,n}(t)|}\Bigg)\Bigg) ds\\ &&+ \frac{(\frac{1}{3})^{\frac{7}{4}}(\frac{1}{3})^{-1}(\log t)} {\bigg((\frac{1}{3})^{-1}+(\frac{1}{2})^{-1} +(\frac{2}{3})^{-1}\bigg)}\frac{1}{\Gamma(\frac{3}{4})}\int_{1}^{e}(1-\log s)^{-\frac{1}{2}} \phi_{3}\Bigg(1+\frac{1}{5(t+3)^{2}}\\ &&\times\Bigg(sin(r_{1,n}(t)) +\frac{|{}^{H}D_{1^+}^{\frac{3}{4}}r_{1,n}(t)|} {1+|{}^{H}D_{1^+}^{\frac{3}{4}}r_{1,n}(t)|}\Bigg)\Bigg)ds +\frac{(\frac{1}{2})^{\frac{5}{2}}(\frac{1}{2})^{-1}(\log t)} {\bigg((\frac{1}{4})^{-1}+(\frac{1}{2})^{-1} +(\frac{2}{3})^{-1}\bigg)\Gamma(\frac{3}{4})}\\ &&\times\int_{1}^{e}(1-\log s)^{-\frac{1}{2}}\phi_{3}\Bigg(1+\frac{1}{(t+2)^7}\Bigg(sin|r_{2,n}(t)| +\frac{|D^{\frac{3}{4}}_{1^+}r_{2,n}(t)|}{1+ |D^{\frac{3}{4}}_{1^+}r_{2,n}(t)|}\Bigg)\Bigg)ds\\ &&+ \frac{(\frac{2}{3})^{\frac{7}{4}}(\frac{2}{3})^{-1}(\log t)} {\bigg((\frac{1}{3})^{-1}+(\frac{1}{2})^{-1} +(\frac{2}{3})^{-1}\bigg)\Gamma(\frac{3}{2})}\int_{1}^{e}(1-\log s)^{-\frac{1}{2}} \phi_{3}\Bigg(1+0.003t \\ &&\times|arcsin(r_{3,n}(t))|+ \frac{t|{}^{H}D^{\frac{3}{4}}_{1^+}r_{3,n}(t)|} {1000+1000|{}^{H}D^{\frac{3}{4}}_{1^+}r_{3,n}(t)|}\Bigg)\Bigg)ds. \end{eqnarray*}

    The iterative sequence of r_{2, n+1} and r_{3, n+1} is similar to r_{1, n+1} . After several iterations, the approximate solution of fractional differential system (5.1) can be obtained by using the numerical simulation. Figure 5 is the approximate graph of the solution of \overrightarrow{r_{1}r_{0}} after iterations. Figure 6 is the approximate graph of the solution of \overrightarrow{r_{2}r_{0}} after iterations. Figure 7 is the approximate graph of the solution of \overrightarrow{r_{3}r_{0}} after iterations.

    Figure 5.  Approximate solution of u_{1} .
    Figure 6.  Approximate solution of u_{2} .
    Figure 7.  Approximate solution of u_{3} .

    Using the idea of star graphs, several scholars have studied the solutions of fractional differential equations. They chose to utilize star graphs since their method required a central node connected to nearby vertices through interconnections, but there are no edges between the nodes.

    The purpose of this study was to extend the technique's applicability by introducing the concept of a benzoic acid graph, a fundamental molecule in chemistry with the formula C_{7}H_{6}O_{2} . In this manner, we explored a network in which the vertices were either labeled with 0 or 1, and the structure of the chemical molecule benzoic acid was shown to have an effect on this network. To study whether or not there were solutions to the offered boundary value problems within the context of the Caputo fractional derivative with p -Laplacian operators, we used the fixed-point theorems developed by Krasnoselskii. Meanwhile, the Hyers-Ulam stability has been considered. In conclusion, an example was given to illustrate the significance of the findings obtained from this research line.

    The following open problems are presented for the consideration of readers interested in this topic: At present, the research prospects of fractional boundary value problems and their numerical solutions on graphs are very broad, which can be extended to other graphs, such as chord bipartite graphs. The follow-up research process, especially the research on chemical graph theory, has a certain practical significance. This is because such research does not need chemical reagents and experimental equipment. In the absence of experimental conditions and reagents, the molecular structure is studied, and the same results are obtained under experimental conditions. Although the differential equation on the benzoic acid graph is studied in this paper, the molecular structure is not studied by the topological index in the research process. It can be tried later to provide a theoretical basis for the study of reverse engineering and provide new ideas for the study of mathematics, chemistry, and other fields.

    Yunzhe Zhang: Writing-original draft, formal analysis, investigation; Youhui Su: Supervision, writing-review, editing and project administration; Yongzhen Yu: Resources, editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the Xuzhou Science and Technology Plan Project (KC23058) and the Natural Science Research Project of Jiangsu Colleges and Universities (22KJB110026).

    The author declares no conflicts of interest.



    [1] A. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96.
    [2] M. A. Basset, R. Mohamed, A. E. N. H. Zaied, F. Smarandache, A hybrid plithogenic decision-making approach with quality function deployment for selecting supply string sustainability metrics, Symmetry, 11 (2019), 903. https://doi.org/10.3390/sym11070903 doi: 10.3390/sym11070903
    [3] M. A. Basset, A. Atef, F. Smarandache, A hybrid Neutrosophic multiple criteria group decision making approach for project selection, Cogn. Syst. Res., 57 (2019), 216–227. https://doi.org/10.1016/j.cogsys.2018.10.023 doi: 10.1016/j.cogsys.2018.10.023
    [4] A. A. A. Agboola, S. A. Akinleye, Neutrosophic vector spaces, Neutrosophic Sets Sy., 4 (2014), 9–18.
    [5] S. Biswas, S. Moi, S. P. Sarkar, Neutrosophic riemann integration and its properties, Soft Comput., 25 (2021), 13987–13999. https://doi.org/10.1007/s00500-021-06200-7 doi: 10.1007/s00500-021-06200-7
    [6] V. Cetkin, H. Aygün, An approach to neutrosophic sub-ring, Sakarya U. J. Sci., 23 (2019), 472–477. https://doi.org/10.16984/saufenbilder.451979 doi: 10.16984/saufenbilder.451979
    [7] P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl., 84 (1981), 264–269. https://doi.org/10.1016/0022-247X(81)90164-5 doi: 10.1016/0022-247X(81)90164-5
    [8] A. Elrawy, The neutrosophic vector spaces-another approach, Neutrosophic Set. Sy., 51 (2022), 484–494.
    [9] Elrawy, M. Abdalla, M. A. Saleem, Another approach to neutrosophic group, J. Math., 2023.
    [10] W. V. Kandasamy, F. Smarandache, Basic neutrosophic algebraic structures and their application to fuzzy and neutrosophic models, Infinite Study, 2004.
    [11] W. V. Kandasamy, F. Smarandache, Some neutrosophic algebraic structures and neutrosophic n-algebraic structures, Infinite Study, 2006.
    [12] W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Set. Syst., 8 (1982), 133–139. https://doi.org/10.1016/0165-0114(82)90003-3 doi: 10.1016/0165-0114(82)90003-3
    [13] S. Omran, A. Elrawy, Continuous and bounded operators on neutrosophic normed spaces, Neutrosophic Set. Sy., 46 (2021), 276–289.
    [14] Y. T. Oyebo, Neutrosophic groups and subgroups, Math. Comb., 3 (2012), 1–9. https://doi.org/10.4310/JOC.2012.v3.n1.a1 doi: 10.4310/JOC.2012.v3.n1.a1
    [15] M. A. Saleem, M. Abdalla, A. Elrawy, On a matrix over NC and multiset NC semigroups, J. Math., 2022 (2022). https://doi.org/10.1155/2022/8095073 doi: 10.1155/2022/8095073
    [16] S. Siddique, U. Ahmad, M. Akram, A study on generalized graphs representations of complex neutrosophic information, J. Appl. Math. Comput., 65 (2021), 481–514. https://doi.org/10.1007/s12190-020-01400-0 doi: 10.1007/s12190-020-01400-0
    [17] F. Smarandache, Neutrosophy: Neutrosophic probability, set, and logic: Analytic synthesis & synthetic analysis, Rehoboth, NM: American Research Press, 1998.
    [18] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., 24 (2005), 287.
    [19] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, IEEE International Conference on Granular Computing, 2006.
    [20] F. Smarandache, Neutrosophic perspectives: Triplets, duplets, multisets, hybrid operators, modal logic, hedge algebras, and applications, Infinite Study, 2017.
    [21] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single valued neutrosophic sets, Infinite Study, 2010.
    [22] L. A. Zadeh, Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers, 1996.
    [23] X. Zhang, C. Bo, F. Smarandache, J. Dai, New inclusion relation of neutrosophic sets with applications and related lattice structure, Int. J. Mach. Lear. Cyb., 9 (2018), 1753–1763.
  • This article has been cited by:

    1. Si-Yuan Lin, Heng-You Lan, Ji-Hong Li, Solvability of Fuzzy Partially Differentiable Models for Caputo–Hadamard-Type Goursat Problems Involving Generalized Hukuhara Difference, 2025, 9, 2504-3110, 395, 10.3390/fractalfract9060395
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1747) PDF downloads(72) Cited by(3)

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog