Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Robust stability and boundedness of uncertain conformable fractional-order delay systems under input saturation

  • Received: 07 April 2023 Revised: 09 June 2023 Accepted: 25 June 2023 Published: 03 July 2023
  • MSC : 34K37, 93D09

  • In this article, a class of uncertain conformable fractional-order delay systems under input saturation is considered. By establishing the Lyapunov boundedness theorem for conformable fractional-order delay systems, some sufficient conditions for robust stability and boundedness of the systems are obtained. Examples are given to illustrate the obtained theory.

    Citation: Danhua He, Baizeng Bao, Liguang Xu. Robust stability and boundedness of uncertain conformable fractional-order delay systems under input saturation[J]. AIMS Mathematics, 2023, 8(9): 21123-21137. doi: 10.3934/math.20231076

    Related Papers:

    [1] Hatice Kübra Sarı, Abdullah Kopuzlu . On topological spaces generated by simple undirected graphs. AIMS Mathematics, 2020, 5(6): 5541-5550. doi: 10.3934/math.2020355
    [2] Yang Yang, Yanyan Song, Haifeng Fan, Haiyan Qiao . A note on the generalized Gaussian Estrada index and Gaussian subgraph centrality of graphs. AIMS Mathematics, 2025, 10(2): 2279-2294. doi: 10.3934/math.2025106
    [3] Adnan Khali, Sh. K Said Husain, Muhammad Faisal Nadeem . On bounded partition dimension of different families of convex polytopes with pendant edges. AIMS Mathematics, 2022, 7(3): 4405-4415. doi: 10.3934/math.2022245
    [4] Fatma Salama, Randa M. Abo Elanin . On total edge irregularity strength for some special types of uniform theta snake graphs. AIMS Mathematics, 2021, 6(8): 8127-8148. doi: 10.3934/math.2021471
    [5] Ufuk Sevim, Leyla Goren-Sumer . Consensus of double integrator multiagent systems under nonuniform sampling and changing topology. AIMS Mathematics, 2023, 8(7): 16175-16190. doi: 10.3934/math.2023827
    [6] Ali N. A. Koam, Adnan Khalil, Ali Ahmad, Muhammad Azeem . Cardinality bounds on subsets in the partition resolving set for complex convex polytope-like graph. AIMS Mathematics, 2024, 9(4): 10078-10094. doi: 10.3934/math.2024493
    [7] Jesús Gómez-Gardeñes, Ernesto Estrada . Network bipartitioning in the anti-communicability Euclidean space. AIMS Mathematics, 2021, 6(2): 1153-1174. doi: 10.3934/math.2021070
    [8] Naila Mehreen, Rashid Farooq, Shehnaz Akhter . On partition dimension of fullerene graphs. AIMS Mathematics, 2018, 3(3): 343-352. doi: 10.3934/Math.2018.3.343
    [9] Dalal Awadh Alrowaili, Uzma Ahmad, Saira Hameeed, Muhammad Javaid . Graphs with mixed metric dimension three and related algorithms. AIMS Mathematics, 2023, 8(7): 16708-16723. doi: 10.3934/math.2023854
    [10] Tariq Alraqad, Hicham Saber, Rashid Abu-Dawwas . Intersection graphs of graded ideals of graded rings. AIMS Mathematics, 2021, 6(10): 10355-10368. doi: 10.3934/math.2021600
  • In this article, a class of uncertain conformable fractional-order delay systems under input saturation is considered. By establishing the Lyapunov boundedness theorem for conformable fractional-order delay systems, some sufficient conditions for robust stability and boundedness of the systems are obtained. Examples are given to illustrate the obtained theory.



    Fractional differential equations (FDEs) can describe various practical problems, but due to the non-locality of fractional operators, their numerical methods and theoretical analysis are in the early stage of development, which brings challenges to the acquisition of exact solutions. Therefore, the search for numerical solutions to these equations is difficult and urgent. FDEs have been widely applied in ecology, medicine, physics, hydrology, and other fields [1,2,3,4,5,6]. For example, space FDEs have been applied in image denoising and enhancement, and have important application value in medical images, transportation, remote sensing images, and other fields [7,8,9].

    The theoretical study for FDEs has been developed rapidly [10,11,12,13,14,15,16]. Luchko [17] established the unique existence for solutions to time FDEs. Sakamoto and Yamamoto [18] proved the unique existence for solutions to space FDEs. Cheng et al. [19] studied the uniqueness for inverse problems to FDEs. Li et al. [20] established the stability for FDEs with non-instantaneous integral pulses and multi-point boundary conditions.

    In terms of numerical methods, references are growing rapidly [21,22,23,24,25]. Qazza, Saadeh, and Salah [26] proposed a direct power series method for FDEs. Hashemi et al. [27] applied shifted Chebyshev polynomials to time-fractional diffusion-wave equations. Peykrayegan et al. [28] proposed the Jacobi-Gauss collocation approach to approximate fractional singular delay integro-differential problems. Turkyilmazoglu [29] applied the adomian decomposition method to FDEs. Shikrani et al. [30] used the hybrid B-spline collocation approach to solve the space FDEs. Jiang and Lin [31] used the reproducing kernel (RK) approach to approximate fractional advection-dispersion equations.

    The following space FDEs [30] are considered in this article:

    u(x,t)t=c(x,t)u(x,t)x+d(x,t)αu(x,t)xα+f(x,t), (x,t)D[0,L]×[0,T], (1.1)
    u(x,0)=ϑ(x),u(L,t)=θ2(t),u(0,t)=θ1(t),t[0,T],x[0,L]. (1.2)

    Here, T>0 and L>0 are fixed, c(x,t),ϑ(x),d(x,t),θ1(t),f(x,t), and θ2(t) are known functions that are smooth enough. The Riemann-Liouville derivative for 2>α>1 is shown in [9] by

    αu(x,t)xα=1Γ(2α)x02η2u(η,t)(xη)α1dη.  (1.3)

    We aim to establish a numerical scheme for space FDEs by the RK method. In addition, the advantages of this approach are as follows:

    1) The high-precision global approximate solution to the equation is obtained.

    2) The numerical calculation program is simple.

    3) Smaller errors can occur when larger step sizes are used. Therefore, high precision approximate solutions can be obtained in a very short time.

    RK functions in Hilbert Spaces and their related theories are widely used in digital image processing, neural network modeling, and numerical simulations [32,33,34,35]. In practical applications, the RK method is widely applied to solve various integral and differential equations because of its global nature and high precision [36,37,38]. Within the last ten years, more scholars have used the RK approach to solve various FDEs [39,40,41,42]. The literature proves that the RK approach has many advantages and deserves further study.

    In this paper, the approximate solution to Eqs (1.1) and (1.2) is given in RK space. Driven by [43], a procedure is presented for improving the existing approach, bypassing the Gram-Schmidt orthogonal (GSO) process proposed in [31], which has lower accuracy and slower operation speed under the same conditions. Subsequently, enlightened by [44], a simpler RK than [45] is applied, promoting greater acceleration of the calculation and further improvements in accuracy [43,46].

    In order to solve Eqs (1.1) and (1.2) in the RK space, the conditions (1.2) need to be homogenized. For convenience, the solution to the new equations is expressed by u(x,t), so,

    Lu(x,t)u(x,t)tc(x,t)u(x,t)xd(x,t)αu(x,t)xα=F(x,t),  (x,t)D, (1.4)
    u(x,0)=0,   u(L,t)=0,   u(0,t)=0,t[0,T],x[0,L], (1.5)

    where L:W(D)˜W(D), W(D) and ˜W(D) will be given in the following sections.

    In this section, RK space W(D) is constructed from [44] as a premier book about numerical approaches of RK spaces, which constructs a much simpler RK than [45].

    First, the RK spaces W1[0,T], W2[0,L] and W3[0,L] are introduced as follows.

    Definition 2.1. W1[0,T]={ν|ν is a real-valued function that is absolutely continuous in [0,T], ν(0)=0, νL2[0,T]}. Its inner product in W1[0,T] is defined by

    ν,ωW1=T0ν(x)ω(x) dx+ν(0)ω(0). (2.1)

    Definition 2.2. W2[0,L]={ν|ν is a real-valued function that is absolutely continuous in [0,L], ν(L)=0, ν(0)=0, νL2[0,L]}. Its inner product in W2[0,L] is defined as

    ν,ωW2=L0ν(x) ω(x)dx+ν(0)ω(0). (2.2)

    Definition 2.3. W3[0,L]={ν|ν is a real-valued function that is absolutely continuous in [0,L], νL2[0,L]}. Its inner product in W3[0,L] is defined as:

    ν,ωW3=L0ν(x) ω(x)dx+ν(0)ω(0). (2.3)

    The norms are defined by νWk=ν,νWk for k=1,2,3. It is shown that W1[0,T], W2[0,L] and W3[0,L] are all RK spaces, whose RKs

    K1(t,τ)={tτ+12tτ216τ3,τt,tτ+12τt216t3,τ>t, (2.4)
    K2(x,ς)={(Lx)ς(120Lx120xς+6L2x2ς4Lx3ς+x4ς5Lxς3+Lς4+xς4)120L2,ςx,x(Lς)(Lx4+120Lς120xς5Lx3ς+x4ς+6L2xς24Lxς3+xς4)120L2,ς>x, (2.5)
    K3(x,ζ)={1+ζ,ζx,1+x,ζ>x, (2.6)

    which are given by (9) and (11) in [31] and [47], respectively.

    Definition 2.4. W(D)={ν|3νx2t is a real-valued function that is absolutely continuous in D, ν(x,0)=0,ν(L,t)=0,ν(0,t)=0,5νx3t2L2(D)}. Its norm and inner product in W(D) are respectively defined as

    νW(D)=ν,νW(D), (2.7)
    ν,uW(D)=ν(x,0)t,u(x,0)tW2+T03ν(0,t)t2x3u(0,t)t2xdt +T0L05ν(x,t)x3t25u(x,t)x3t2dxdt, (2.8)

    with reference to [38], W(D) is an RK space, and its RK is

    K(x,ς,t,τ)=K1(t,τ)K2(x,ς). (2.9)

    Here, K1(,) and K2(,) are respectively shown by (2.4) and (2.5).

    Similarly, ˜W(D) is an RK space, and its RK is

    ˜K(x,ς,t,τ)=K3(t,τ)K3(x,ς). (2.10)

    Here, K3(,) is given by (2.6).

    The series form for the numerical solution of Eqs (1.4) and (1.5) and its implementation in the RK space W(D) are given in this section.

    In (1.4) and (1.5), L:W(D)˜W(D) is a linear bounded operator because F(x,t),c(x,t) and d(x,t) are smooth enough. A countable dense subset {(xl,tl)}lND is chosen. Put φl(x,t)=˜K(x,xl,t,tl) and ϕl(x,t)=Lφl(x,t). Here ˜K is the RK for ˜W(D), L is the adjoint operator for L. Define

    ϕl(x,t)=L(ς,τ)K(x,ς,t,τ)|(ς,τ)=(xl,tl)            =(K(x,ς,t,τ)τc(ς,τ)K(x,ς,t,τ)ςd(ς,τ)αK(x,ς,t,τ)ςα)|(ς,τ)=(xl,tl),  lN. (3.1)

    Here, K(x,ς,t,τ) is the RK in W(D), denoted by (2.9).

    Theorem 3.1. If D is closed, then φlW(D),lN.

    Proof: By Definition 2.4, it is first shown that 5x3t2ϕlL2(D) and that 3x2tϕl is absolutely continuous in D.

    From (2.9) and (3.1),

    ϕl(x,t)=K2(x,xl)τK1(t,τ)|τ=tlc(xl,tl)K1(t,tl)ςK2(x,ς)|ς=xl               d(xl,tl)K1(t,tl)Γ(2α)xl02ς2K2(x,ς)(xlς)α1dς. (3.2)

    Then,

    |5x3t2ϕl(x,t)|=|3x3K2(x,xl)3τt2K1(t,τ)|τ=tlc(xl,tl)2t2K1(t,tl)4ςx3K2(x,ς)|ς=xl                        d(xl,tl)2t2K1(t,tl)Γ(2α)xl05ς2x3K2(x,ς)(xlς)α1dς|. (3.3)

    In view of the Definitions 2.1 and 2.2 and expressions (2.4) and (2.5) of K1(t,τ) and K2(x,ς), there are normal numbers N1, N2, and N3 such that

    |3x3K2(x,xl)3τt2K1(t,τ)|τ=tl|N1,|c(xl,tl)2t2K1(t,tl)4ςx3K2(x,ς)|ς=xl|N2,|d(xl,tl)2t2K1(t,tl)5ς2x3K2(x,ς)Γ(2α)|N3, (3.4)

    for (x,t)D and τ[0,T]. Thus,

    |5x3t2ϕl(x,t)|N1+N2+N3xl0(xlς)1αdς                    N1+N2+N42α, (3.5)

    where N4 is a normal number. Thus, 5x3t2ϕlL2(D). Since D is closed, 3x2tϕl is absolutely continuous in D.

    Then, it is proved that ϕl(x,t) satisfies (1.5). Note that K1(t,τ)W1[0,T] with respect to τ[0,T],K2(x,ς)W2[0,L] with respect to ς[0,L], and 2ς2K2(L,ς)=0, 2ς2K2(0,ς)=0, τK1(0,τ)=0, K2(L,ς)=0, K2(0,ς)=0, K1(0,τ)=0.

    By (3.2), ϕl(x,0)=0, ϕl(0,t)=0, ϕl(L,t)=0, lN.

    Therefore, φlW(D),lN by Definition 2.4.

    The proof methods for the following theorems are similar to those of [43,46].

    Theorem 3.2. Assume the uniqueness of Eqs (1.4) and (1.5). Then in W(D), system {ϕl}lN is complete.

    Proof: By Theorem 3.1, φlW(D),lN. For each uW(D), set ϕl,uW(D)=0,lN, which means that

    L(ς,τ)K(x,ς,t,τ)|(ς,τ)=(xl,tl),u(x,t)W(D)=L(ς,τ)K(x,ς,t,τ),u(x,t)W(D)|(ς,τ)=(xl,tl)=(L(ς,τ)K(x,ς,t,τ),u(x,t)W(D))|(ς,τ)=(xl,tl)=(Lu(ς,τ))|(ς,τ)=(xl,tl)=Lu(xl,tl)=0. (3.6)

    In D, Lu(x,t)=0 because {(xl,tl)}lN is dense. Because of the uniqueness for Eqs (1.4) and (1.5), u(x,t)0.

    The orthonormal system {ˉϕl}lN in W(D) can be obtained by the GSO process of {ϕl}lN,

    ˉϕl(x,t)=lj=1λljϕj(x,t),  λll>0,  lN. (3.7)

    Theorem 3.3. In W(D), the unique solution for Eqs (1.4) and (1.5) is represented by

    u(x,t)=l=1lj=1λljF(xj,tj)ˉϕl(x,t). (3.8)

    Proof: In W(D), u(x,t) is expanded to a Fourier series by the orthonormal basis ˉϕl(x,t):

    u(x,t)=l=1ˉϕl(x,t),u(x,t)W(D)ˉϕl(x,t) =l=1lj=1λljϕj(x,t),u(x,t)W(D)ˉϕl(x,t) =l=1lj=1λljL(ς,τ)K(x,ς,t,τ)|(ς,τ)=(xj,tj),u(x,t)W(D)ˉϕl(x,t) =l=1lj=1λljL(ς,τ)K(x,ς,t,τ),u(x,t)W(D)|(ς,τ)=(xj,tj)ˉϕl(x,t) =l=1lj=1λljL(ς,τ)K(x,ς,t,τ),u(x,t)W(D)|(ς,τ)=(xj,tj)ˉϕl(x,t) =l=1lj=1λlj(Lu(ς,τ))|(ς,τ)=(xj,tj)ˉϕl(x,t) =l=1lj=1λljLu(xj,tj)ˉϕl(x,t) =l=1lj=1λljF(xj,tj)ˉϕl(x,t). (3.9)

    Thus, the approximate solution un(x,t) is acquired by

    un(x,t)=nl=1lj=1λljF(xj,tj)ˉϕl(x,t). (3.10)

    Theorem 3.4. Suppose u is the exact solution to (1.4) and (1.5), un=Pnu, in which Pn is the orthogonal projection of W(D) to Span{ˉϕl}lN, then

    Lun(xl,tl)=F(xl,tl),  l=1,2,...,n. (3.11)

    Proof:

    Lun(xl,tl)=Lun,φl=un,Lφl=Pnu,ϕl =u,Pnϕl=u,ϕl=Lu,φl=Lu(xl,tl)=F(xl,tl),  l=1,2,...,n. (3.12)

    From (3.7) and (3.10),

    un(x,t)=nl=1lj=1λljF(xj,tj)ˉϕl(x,t)=nl=1lj=1lk=1λljλlkF(xj,tj)ϕk(x,t). (3.13)

    Let ¯Cl=lj=1λljF(xj,tj). Then,

    un=nl=1lk=1λlkϕk¯Cl=ϕ1λ11¯C1+ϕ1λ21¯C2+ϕ2λ22¯C2+ϕ1λ31¯C3+ϕ2λ32¯C3+ϕ3λ33¯C3++ϕ1λn1¯Cn+ϕ2λn2¯Cn+ϕ3λn3¯Cn++ϕnλnn¯Cn=nl=1ϕl(nk=lλkl¯Ck)=nl=1ϕl(nk=lλklkj=1λkjF(xj,tj))=nl=1ϕlCl, (3.14)

    where Cl=nk=lλklkj=1λkjF(xj,tj).

    According to Theorem 3.4,

    Lun(xj,tj)=nl=1ClLϕl(xj,tj)=F(xj,tj),j=1,2,,n, (3.15)

    where functions L,F and ϕl are defined in (1.4) and (3.1), respectively.

    In short, the main steps of the approach presented in this article are as follows:

    1) From Eq (3.15), Cl, l=1,2,...,n can be obtained.

    2) By substituting the above Cl, l=1,2,...,n into Eq (3.14), the numerical solution of Eqs (1.4) and (1.5) can be obtained.

    The above calculation steps show that the current numerical algorithm bypasses the GSO procedure used in [31] (the GSO step is required only for proof, not for numerical calculations) Therefore, compared with [31], this method has higher precision and less computation time [43,46]. This approach can solve some model problems efficiently and can obtain the global approximate solution with high precision.

    un(x,t) and u(x,t) are respectively approximate and exact solutions to Eqs (1.4) and (1.5). Set uCmax Similar to [43], the coming theorem can be found.

    Theorem 4.1. Suppose u \in W\left(D \right) . Then,

    1) {\left\| {u - {u_n}} \right\|_{W\left(D \right)}} \to 0, n \to \infty . Furthermore, {\left\| {u - {u_n}} \right\|_{W\left(D \right)}} decreases monotonously with n .

    2) {\left\| {\frac{{{\partial ^{i + k}}u}}{{\partial {x^i}\partial {t^k}}} - \frac{{{\partial ^{i + k}}{u_n}}}{{\partial {x^i}{t^k}}}} \right\|_C} \to 0 , n \to \infty ; k = 0, 1 ; i = 0, 1, 2 ; i + k = 0, 1, 2.

    Proof: 1) From (3.8) and (3.10),

    \begin{array}{l} {\left\| {u - {u_n}} \right\|_{W(D)}} = {\left\| {\sum\limits_{l = 1}^\infty {\sum\limits_{j = 1}^l {{\lambda _{lj}}F\left( {{x_j}, {t_j}} \right){{\bar \phi }_l}\left( {x, t} \right)} } - \sum\limits_{l = 1}^n {\sum\limits_{j = 1}^l {{\lambda _{lj}}F\left( {{x_j}, {t_j}} \right){{\bar \phi }_l}\left( {x, t} \right)} } } \right\|_{_{W(D)}}} \hfill \\ \quad \quad \quad \quad \ \ \ \ \, \, {\kern 1pt} \, = {\left\| {\mathop \sum \limits_{l = n + 1}^\infty \mathop \sum \limits_{j = 1}^l {\lambda _{lj}}F\left( {{x_j}, {t_j}} \right){{\overline \phi }_l}\left( {x, t} \right)} \right\|_{_{W(D)}}}. \hfill \end{array} (4.1)

    Thus,

    {\left\| {u - {u_n}} \right\|_{W(D)}} \to 0, \quad n \to \infty . (4.2)

    Furthermore,

    \begin{array}{l} \left\| {u - {u_n}} \right\|_{W(D)}^2 = \left\| {\mathop \sum \limits_{l = n + 1}^\infty \mathop \sum \limits_{j = 1}^l {\lambda _{lj}}{{\overline \phi }_l}\left( {x, t} \right)F\left( {{x_j}, {t_j}} \right)} \right\|_{W(D)}^2 \hfill \\ \quad \quad \quad \quad \ \ \ \ \;\;{\kern 1pt} = \mathop \sum \limits_{l = n + 1}^\infty {\left( {\mathop \sum \limits_{j = 1}^l {\lambda _{lj}}F\left( {{x_j}, {t_j}} \right)} \right)^2}. \hfill \end{array} (4.3)

    Clearly, {\left\| {u - {u_n}} \right\|_{W(D)}} decreases monotonically with n.

    2) With reference to the properties of RK K\left({x, \varsigma, t, \tau } \right) in [44],

    \frac{{{\partial ^{i + k}}u(x, t)}}{{\partial {x^i}\partial {t^k}}} - \frac{{{\partial ^{i + k}}{u_n}(x, t)}}{{\partial {x^i}\partial {t^k}}} = \left\langle {u(\varsigma , \tau ) - {u_n}(\varsigma , \tau ), \frac{{{\partial ^{i + k}}K(x, \varsigma , t, \tau )}}{{\partial {x^i}\partial {t^k}}}} \right\rangle , (4.4)

    According to (2.9), Definitions 2.1 and 2.2, and expressions (2.4) and (2.5) of K1\left({t, \tau } \right) and K2\left({x, \varsigma } \right) , there are normal numbers {C_l}, \; l = 1, 2, \cdots, 5 such that

    {\left\| {\frac{{{\partial ^{i + k}}K(x, \varsigma , t, \tau )}}{{\partial {x^i}\partial {t^k}}}} \right\|_{W(D)}} \leqslant {C_l}. (4.5)

    To all (x, t) \in D,

    \begin{array}{l} \left| {\frac{{{\partial ^{i + k}}u(x, t)}}{{\partial {x^i}\partial {t^k}}} - \frac{{{\partial ^{i + k}}{u_n}(x, t)}}{{\partial {x^i}\partial {t^k}}}} \right| = \left| {\left\langle {u(\varsigma , \tau ) - {u_n}(\varsigma , \tau ), \frac{{{\partial ^{i + k}}K(x, \varsigma , t, \tau )}}{{\partial {x^i}\partial {t^k}}}} \right\rangle } \right| \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad \;\;\;{\kern 1pt} \leqslant {\left\| {u - {u_n}} \right\|_{W(D)}}{\left\| {\frac{{{\partial ^{i + k}}K(x, \varsigma , t, \tau )}}{{\partial {x^i}\partial {t^k}}}} \right\|_{W(D)}} \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad \;\;\;{\kern 1pt} \leqslant {C_l}{\left\| {u - {u_n}} \right\|_{W(D)}}.\quad \quad \hfill \end{array} (4.6)

    Hence,

    {\left\| {\frac{{{\partial ^{i + k}}u}}{{\partial {x^i}\partial {t^k}}} - \frac{{{\partial ^{i + k}}{u_n}}}{{\partial {x^i}\partial {t^k}}}} \right\|_C} \to 0, n \to \infty ;k = 0, 1;i = 0, 1, 2;i + k = 0, 1, 2. (4.7)

    Numerical experiments verify the effectiveness and reliability for the presented approach in this section. All numerical calculations were performed using Mathematica 13.0 software. D is separated into {m_1} \times {m_2} grids with steps 1/{m_1} and 1/{m_2} in the x and t directions. Here, {m_1}, {m_2} \in \mathbb{N}.

    Example 5.1. Consider Eqs (1.1) and (1.2) under the following conditions [30]:

    \left\{ \begin{array}{l} c\left( {x, t} \right) = 0, {\text{ }}d\left( {x, t} \right) = \Gamma \left( {3 - \alpha } \right){x^\alpha }/2, \hfill \\ u\left( {1, t} \right) = \cos \left( { - t} \right), \ \ u\left( {0, t} \right) = 0, \ \ u\left( {x, 0} \right) = {x^2}, \hfill \\ f\left( {x, t} \right) = \sin \left( { - t} \right){x^2} - \cos \left( { - t} \right){x^2}. \hfill \end{array} \right. (5.1)

    The exact solution is

    u\left( {x, t} \right) = {x^2}\cos \left( { - t} \right). (5.2)

    According to steps 1) and 2) in Section 3, 50 \times 50 points that are the same as [30] are selected on D , the absolute errors of the proposed method and [30] are shown in Tables 13. As can be seen from the tables, the accuracy for the proposed approach is high, and the results obtained using the proposed approach are better than [30].

    Table 1.  Absolute errors with the proposed method (PM) and [30] for {m_1} = {m_2} = 50 and \alpha = 1.2 in Example 5.1.
    x t = 0.1 t = 0.5 t = 1.0
    [30] PM [30] PM [30] PM
    0.2 4.214500E-6 8.19791E-7 1.264265E-4 2.66663E-6 6.186622E-4 3.99230E-6
    0.4 1.683760E-5 9.79366E-7 5.044576E-4 3.58987E-6 2.424003E-3 5.75924E-6
    0.6 3.786940E-5 7.15178E-7 1.125615E-3 3.25967E-6 4.742281E-3 6.25942E-6
    0.8 6.729740E-5 3.11357E-7 1.797010E-3 2.09928E-6 6.271795E-3 5.01380E-6
    1.0 9.311570E-5 0 2.060472E-3 0 6.707507E-3 0

     | Show Table
    DownLoad: CSV
    Table 2.  Absolute errors with the proposed method (PM) and [30] for {m_1} = {m_2} = 50 and \alpha = 1.4 in Example 5.1.
    x t = 0.1 t = 0.5 t = 1.0
    [30] PM [30] PM [30] PM
    0.2 4.212000E-6 1.14526E-6 1.262725E-4 2.44965E-6 6.147080E-4 2.67096E-6
    0.4 1.683260E-5 1.39628E-6 5.030643E-4 3.03668E-6 2.256320E-3 3.47873E-6
    0.6 3.786180E-5 1.04843E-6 1.081010E-3 2.45192E-6 4.044128E-3 3.71983E-6
    0.8 6.703560E-5 4.65691E-7 1.614415E-3 1.38966E-6 5.201407E-3 2.99390E-6
    1.0 8.856190E-5 0 1.817044E-3 0 5.555100E-3 0

     | Show Table
    DownLoad: CSV
    Table 3.  Absolute errors with the proposed method (PM) and [30] for {m_1} = {m_2} = 50 and \alpha = 1.6 in Example 5.1.
    x t = 0.1 t = 0.5 t = 1.0
    [30] PM [30] PM [30] PM
    0.2 4.209500E-6 1.98759E-6 1.260839E-4 1.71001E-6 5.968458E-4 3.74175E-6
    0.4 1.682760E-5 2.56234E-6 4.941251E-4 2.03502E-6 2.000868E-3 6.47819E-6
    0.6 3.784650E-5 2.08248E-6 1.002314E-3 2.08562E-6 3.397228E-3 6.72774E-6
    0.8 6.588950E-5 1.00788E-6 1.430260E-3 1.62926E-6 4.305544E-3 4.38889E-6
    1.0 8.337810E-5 0 1.590903E-3 0 4.595036E-3 0

     | Show Table
    DownLoad: CSV

    Subsequently, root-mean-square errors for u\left({x, t} \right) are given in Table 4, which verifies that the proposed method can achieve a smaller error with a larger step size, and the accuracy increases with the decrease of step size.

    Table 4.  Root-mean-square errors for u\left({x, t} \right) with the proposed method in Example 5.1.
    {m_1} \times {m_2} \alpha = 1.2 \alpha = 1.4 \alpha = 1.6
    5 \times 5 2.96508E-5 5.79045E-5 1.42992E-4
    10 \times 10 1.09202E-5 1.60912E-5 3.68855E-5
    20 \times 20 3.95733E-6 4.67874E-6 9.92730E-6
    30 \times 30 1.97875E-6 2.20781E-6 4.38702E-6
    40 \times 40 1.24741E-6 1.06673E-6 2.40257E-6

     | Show Table
    DownLoad: CSV

    In addition, errors \left| {u - {u_{20 \times 20}}} \right|, \left| {u - {u_{30 \times 30}}} \right|, \left| {u - {u_{40 \times 40}}} \right|:\alpha = 1.2, \alpha = 1.4, \alpha = 1.6 are shown in Figures 13, respectively, which proves that the presented approach provides high-precision global approximate solutions.

    Figure 1.  Errors \left| {u - {u_{20 \times 20}}} \right|: \alpha = 1.2, \alpha = 1.4, \alpha = 1.6 in Example 5.1.
    Figure 2.  Errors \left| {u - {u_{30 \times 30}}} \right|: \alpha = 1.2, \alpha = 1.4, \alpha = 1.6 in Example 5.1.
    Figure 3.  Errors \left| {u - {u_{40 \times 40}}} \right|: \alpha = 1.2, \alpha = 1.4, \alpha = 1.6 in Example 5.1.

    The approach proposed in this paper is successfully applied to space FDEs. Based on RK space, this method improves the method [31,45], avoids the GSO process [31], and obtains a simpler RK than [45]. This approach can improve accuracy and greatly reduce run time. Numerical results verify that the approach has high computational accuracy, and the error to the approximate solution tends to monotonously decrease. According to [46], in which the RK method is extended from one-dimensional to two-dimensional, the proposed approach in this paper is applicable to two-dimensional FDEs, which will be discussed in a later article.

    Boyu Liu: conceptualization, formal analysis, software, writing-original draft preparation; Wenyan Wang: conceptualization, methodology, validation, reviewing and editing, funding acquisition. All authors have read and approved the final version of the manuscript for publication.

    The authors thank the anonymous reviewers and the members of the management editorial board for their valuable comments. This study was funded by Fundamental Research Funds for the Central Universities of China (No. 2572023DJ05), Innovative Training Plan Program for College Students funded by Northeast Forestry University (No. 202410225451) and National Nature Science Foundation of China (No. 11401086).

    All authors declare no conflicts of interest in this paper.



    [1] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [2] F. F. Du, J. G. Lu, Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities, Appl. Math. Comput., 375 (2020), 125079. https://doi.org/10.1016/j.amc.2020.125079 doi: 10.1016/j.amc.2020.125079
    [3] F. F. Du, J. G. Lu, New criteria on finite-time stability of fractional-order Hopfield neural networks with time delays, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 3858–3866. https://doi.org/10.1109/TNNLS.2020.3016038 doi: 10.1109/TNNLS.2020.3016038
    [4] Y. C. Ding, H. Liu, A new fixed-time stability criterion for fractional-order systems, AIMS Math., 7 (2022), 6173–6181. https://doi.org/10.3934/math.2022343 doi: 10.3934/math.2022343
    [5] Y. J. Gu, H. Wang, Y. G. Yu, Synchronization for commensurate Riemann-Liouville fractional-order memristor-based neural networks with unknown parameters, J. Frank. Inst., 357 (2020), 8870–8898. https://doi.org/10.1016/j.jfranklin.2020.06.025 doi: 10.1016/j.jfranklin.2020.06.025
    [6] S. A. Murad, Z. A. Ameen, Existence and Ulam stability for fractional differential equations of mixed Caputo-Riemann derivatives, AIMS Math., 7 (2022), 6404–6419. https://doi.org/10.3934/math.2022357 doi: 10.3934/math.2022357
    [7] N. Sene, Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives, AIMS Math., 4 (2019), 147–165. https://doi.org/10.3934/Math.2019.1.147 doi: 10.3934/Math.2019.1.147
    [8] E. S. A. Shahri, A. Alfia, J. A. T. Machado, Lyapunov method for the stability analysis of uncertain fractional-order systems under input saturation, Appl. Math. Model., 81 (2020), 663–672. https://doi.org/10.1016/j.apm.2020.01.013 doi: 10.1016/j.apm.2020.01.013
    [9] F. A. Rihan, Delay differential equations and applications to biology, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-0626-7
    [10] Z. S. Aghayan, A. Alfi, J. A. T. Machado, Robust stability of uncertain fractional order systems of neutral type with distributed delays and control input saturation, ISA Trans., 111 (2021), 144–155. https://doi.org/10.1016/j.isatra.2020.11.009 doi: 10.1016/j.isatra.2020.11.009
    [11] L. Chen, Y. W. Wang, W. Yang, J. W. Xiao, Robust consensus of fractional-order multi-agent systems with input saturation and external disturbances, Neurocomputing, 303 (2018), 11–19. https://doi.org/10.1016/j.neucom.2018.04.002 doi: 10.1016/j.neucom.2018.04.002
    [12] D. H. He, L. G. Xu, Exponential stability of impulsive fractional switched systems with time delays, IEEE Trans. Circuits Syst. Ⅱ Exp. Briefs, 68 (2021), 1972–1976. https://doi.org/10.1109/TCSII.2020.3037654 doi: 10.1109/TCSII.2020.3037654
    [13] C. Li, K. Chen, J. G. Lu, R. N. Tang, Stability and stabilization analysis of fractional-order linear systems subject to actuator saturation and disturbance, IFAC, 50 (2017), 9718–9723. https://doi.org/10.1016/j.ifacol.2017.08.2055 doi: 10.1016/j.ifacol.2017.08.2055
    [14] Y. H. Lim, K. K. Oh, H. S. Ahn, Stability and stabilization of fractional-order linear systems subject to input saturation, IEEE Trans. Autom. Control, 58 (2013), 1062–1067. https://doi.org/10.1109/TAC.2012.2218064 doi: 10.1109/TAC.2012.2218064
    [15] E. S. A. Shahri, A. Alfi, J. A. T. Machado, Stability analysis of a class of nonlinear fractional-order systems under control input saturation, Int. J. Robust Nonlinear Control, 28 (2018), 2887–2905. https://doi.org/10.1002/rnc.4055 doi: 10.1002/rnc.4055
    [16] L. G. Xu, X. Y. Chu, H. X. Hu, Quasi-synchronization analysis for fractional-order delayed complex dynamical networks, Math. Comput. Simul., 185 (2021), 594–613. https://doi.org/10.1016/j.matcom.2021.01.016 doi: 10.1016/j.matcom.2021.01.016
    [17] D. H. He, L. G. Xu, Ultimate boundedness of nonautonomous dynamical complex networks under impulsive control, IEEE Trans. Circuits Syst. Ⅱ Exp. Briefs, 62 (2015), 997–1001. https://doi.org/10.1109/TCSII.2015.2436191 doi: 10.1109/TCSII.2015.2436191
    [18] Y. C. Liu, Q. D. Zhu, Adaptive neural network asymptotic control design for MIMO nonlinear systems based on event-triggered mechanism, Inform. Sci., 603 (2022), 91–105. https://doi.org/10.1016/j.ins.2022.04.048 doi: 10.1016/j.ins.2022.04.048
    [19] Y. C. Liu, Q. D. Zhu, G. X. Wen, Adaptive tracking control for perturbed strict-feedback nonlinear systems based on optimized backstepping technique, IEEE Trans. Neural Netw. Learn. Syst., 33 (2022), 853–865. https://doi.org/10.1109/TNNLS.2020.3029587 doi: 10.1109/TNNLS.2020.3029587
    [20] L. G. Xu, X. Y. Chu, H. X. Hu, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000. https://doi.org/10.1016/j.aml.2019.106000 doi: 10.1016/j.aml.2019.106000
    [21] L. G. Xu, H. X. Hu, F. J. Qin, Ultimate boundedness of impulsive fractional differential equations, Appl. Math. Lett., 62 (2016), 110–117. https://doi.org/10.1016/j.aml.2016.06.011 doi: 10.1016/j.aml.2016.06.011
    [22] L. G. Xu, J. K. Li, S. S. Ge, Impulsive stabilization of fractional differential systems, ISA Trans., 70 (2017), 125–131. https://doi.org/10.1016/j.isatra.2017.06.009 doi: 10.1016/j.isatra.2017.06.009
    [23] L. G. Xu, W. Liu, H. X. Hu, W. S. Zhou, Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control, Nonlinear Dyn., 96 (2019), 1665–1675. https://doi.org/10.1007/s11071-019-04877-y doi: 10.1007/s11071-019-04877-y
    [24] S. Haghighatnia, H. T. Shandiz, A. Alfi, Conformable fractional order sliding mode control for a class of fractional order chaotic systems, Int. J. Ind. Electron. Control Optim., 2 (2019), 177–188. https://doi.org/10.22111/ieco.2018.25403.1049 doi: 10.22111/ieco.2018.25403.1049
    [25] Y. F. Qi, X. H. Wang, Asymptotical stability analysis of conformable fractional systems, J. Taibah Univ. Sci., 14 (2020), 44–49. https://doi.org/10.1080/16583655.2019.1701390 doi: 10.1080/16583655.2019.1701390
    [26] A. Souahi, A. B. Makhlouf, M. A. Hammami, Stability analysis of conformable fractional-order nonlinear systems, Indagat. Math., 28 (2017), 1265–1274. https://doi.org/10.1016/j.indag.2017.09.009 doi: 10.1016/j.indag.2017.09.009
    [27] X. Y. Chu, L. G. Xu, H. X. Hu, Exponential quasi-synchronization of conformable fractional-order complex dynamical networks, Chaos Solitons Fract., 140 (2020), 110268. https://doi.org/10.1016/j.chaos.2020.110268 doi: 10.1016/j.chaos.2020.110268
    [28] D. H. He, B. Z. Bao, H. X. Hu, L. G. Xu, Asymptotic boundedness of conformable fractional delay differential systems, IEEE Trans. Circuits Syst. Ⅱ Exp. Briefs, 2023. https://doi.org/10.1109/TCSII.2023.3282232 doi: 10.1109/TCSII.2023.3282232
    [29] P. P. Khargonakar, I. R. Petersen, K. Zhou, Robust stabilization of uncertain linear systems: quadratic stabilizability and H_\infty control theory, IEEE Trans. Autom. Control, 35 (1990), 356–361. https://doi.org/10.1109/9.50357 doi: 10.1109/9.50357
    [30] E. S. A. Shahri, S. Balochian, Analysis of fractional-order linear systems with saturation using Lyapunov's second method and convex optimization, Int. J. Autom. Comput., 12 (2015), 440–447. https://doi.org/10.1007/s11633-014-0856-8 doi: 10.1007/s11633-014-0856-8
    [31] E. S. A. Shahri, A. Alfi, J. A. T. Machado, Stabilization of fractional-order systems subject to saturation element using fractional dynamic output feedback sliding mode control, J. Comput. Nonlinear Dyn., 12 (2017), 1–6. https://doi.org/10.1115/1.4035196 doi: 10.1115/1.4035196
    [32] E. S. A. Shahri, A. Alfi, J. A. T. Machado, An extension of estimation of domain of attraction for fractional order linear system subject to saturation control, Appl. Math. Lett., 47 (2015), 26–34. https://doi.org/10.1016/j.aml.2015.02.020 doi: 10.1016/j.aml.2015.02.020
  • This article has been cited by:

    1. Ahmed. M. Zabel, Areej A. Almoneef, Ayat Nassar, Abd-Allah Hyder, Conditional Exponential Convex Functions on White Noise Spaces, 2025, 14, 2075-1680, 223, 10.3390/axioms14030223
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1448) PDF downloads(76) Cited by(2)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog