
The single valued neutrosophic probabilistic hesitant fuzzy rough Einstein aggregation operator (SV-NPHFRE-AO) is an extension of the neutrosophic probabilistic hesitant fuzzy rough set theory. It is a powerful decision-making tool that combines the concepts of neutrosophic logic, probability theory, hesitant fuzzy sets, rough sets, and Einstein aggregation operators. SV-NPHFRE-AO can be applied in many fields, including livestock decision making. Making judgments about a wide range of issues, including feed formulation, breeding program design, disease diagnostics, and market analysis, is part of the process of managing livestock. By combining data from many sources, SV-NPHFRE-AO can assist decision-makers in livestock management in integrating and evaluating diverse criteria, which can result in more informed choices. It also provides a more accurate and comprehensive representation of decision-making problems by considering the multiple criteria involved and the relationships between them. The single valued neutrosophic set (SV-NS) aggregation operators (AOs) based on Einstein properties using hesitant fuzzy sets (HFSs) and probabilistic hesitant fuzzy sets (PHFSs) with rough sets (RSs) are proposed in this study and can handle a large volume of data, making them suitable for complex and large-scale livestock decision-making problems. We first defined SV-neutrosophic probabilistic hesitant fuzzy rough weighted averaging (SV-NPHFRWA), SV-neutrosophic probabilistic hesitant fuzzy rough weighted geometric (SV-NPHFRWG), SV-neutrosophic probabilistic hesitant fuzzy rough ordered weighted averaging (SV-NPHFROWA) and SV-neutrosophic probabilistic hesitant fuzzy rough hybrid weighted averaging (SV-NPHFRHWA) AOs. Then, based on Einstein properties, we extended these operators and developed the single-valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging (SV-NPHFREWA) operator. Additionally, an illustrative scenario to show the applicability of the suggested decision-making approach is provided, along with a sensitivity analysis and comparison analysis, which demonstrate that its outcomes are realistic and reliable. We also provide another relation between criteria and alternatives of decision-making using neutrosophic information with quaternion context. By using such type of operators, livestock managers can make more informed decisions, leading to better animal health, higher productivity, and increased profitability.
Citation: Jia-Bao Liu, Rashad Ismail, Muhammad Kamran, Esmail Hassan Abdullatif Al-Sabri, Shahzaib Ashraf, Ismail Naci Cangul. An optimization strategy with SV-neutrosophic quaternion information and probabilistic hesitant fuzzy rough Einstein aggregation operator[J]. AIMS Mathematics, 2023, 8(9): 20612-20653. doi: 10.3934/math.20231051
[1] | Muhammad Kamran, Shahzaib Ashraf, Nadeem Salamat, Muhammad Naeem, Thongchai Botmart . Cyber security control selection based decision support algorithm under single valued neutrosophic hesitant fuzzy Einstein aggregation information. AIMS Mathematics, 2023, 8(3): 5551-5573. doi: 10.3934/math.2023280 |
[2] | Muhammad Kamran, Rashad Ismail, Shahzaib Ashraf, Nadeem Salamat, Seyma Ozon Yildirim, Ismail Naci Cangul . Decision support algorithm under SV-neutrosophic hesitant fuzzy rough information with confidence level aggregation operators. AIMS Mathematics, 2023, 8(5): 11973-12008. doi: 10.3934/math.2023605 |
[3] | Misbah Rasheed, ElSayed Tag-Eldin, Nivin A. Ghamry, Muntazim Abbas Hashmi, Muhammad Kamran, Umber Rana . Decision-making algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set and Choquet integral. AIMS Mathematics, 2023, 8(5): 12422-12455. doi: 10.3934/math.2023624 |
[4] | Attaullah, Shahzaib Ashraf, Noor Rehman, Asghar Khan, Muhammad Naeem, Choonkil Park . Improved VIKOR methodology based on q-rung orthopair hesitant fuzzy rough aggregation information: application in multi expert decision making. AIMS Mathematics, 2022, 7(5): 9524-9548. doi: 10.3934/math.2022530 |
[5] | Shougi S. Abosuliman, Abbas Qadir, Saleem Abdullah . Multi criteria group decision (MCGDM) for selecting third-party logistics provider (3PL) under Pythagorean fuzzy rough Einstein aggregators and entropy measures. AIMS Mathematics, 2023, 8(8): 18040-18065. doi: 10.3934/math.2023917 |
[6] | Attaullah, Shahzaib Ashraf, Noor Rehman, Asghar Khan, Choonkil Park . A decision making algorithm for wind power plant based on q-rung orthopair hesitant fuzzy rough aggregation information and TOPSIS. AIMS Mathematics, 2022, 7(4): 5241-5274. doi: 10.3934/math.2022292 |
[7] | Attaullah, Asghar Khan, Noor Rehman, Fuad S. Al-Duais, Afrah Al-Bossly, Laila A. Al-Essa, Elsayed M Tag-eldin . A novel decision model with Einstein aggregation approach for garbage disposal plant site selection under q-rung orthopair hesitant fuzzy rough information. AIMS Mathematics, 2023, 8(10): 22830-22874. doi: 10.3934/math.20231163 |
[8] | D. Jeni Seles Martina, G. Deepa . Some algebraic properties on rough neutrosophic matrix and its application to multi-criteria decision-making. AIMS Mathematics, 2023, 8(10): 24132-24152. doi: 10.3934/math.20231230 |
[9] | Esmail Hassan Abdullatif Al-Sabri, Muhammad Rahim, Fazli Amin, Rashad Ismail, Salma Khan, Agaeb Mahal Alanzi, Hamiden Abd El-Wahed Khalifa . Multi-criteria decision-making based on Pythagorean cubic fuzzy Einstein aggregation operators for investment management. AIMS Mathematics, 2023, 8(7): 16961-16988. doi: 10.3934/math.2023866 |
[10] | Muhammad Naeem, Aziz Khan, Shahzaib Ashraf, Saleem Abdullah, Muhammad Ayaz, Nejib Ghanmi . A novel decision making technique based on spherical hesitant fuzzy Yager aggregation information: application to treat Parkinson's disease. AIMS Mathematics, 2022, 7(2): 1678-1706. doi: 10.3934/math.2022097 |
The single valued neutrosophic probabilistic hesitant fuzzy rough Einstein aggregation operator (SV-NPHFRE-AO) is an extension of the neutrosophic probabilistic hesitant fuzzy rough set theory. It is a powerful decision-making tool that combines the concepts of neutrosophic logic, probability theory, hesitant fuzzy sets, rough sets, and Einstein aggregation operators. SV-NPHFRE-AO can be applied in many fields, including livestock decision making. Making judgments about a wide range of issues, including feed formulation, breeding program design, disease diagnostics, and market analysis, is part of the process of managing livestock. By combining data from many sources, SV-NPHFRE-AO can assist decision-makers in livestock management in integrating and evaluating diverse criteria, which can result in more informed choices. It also provides a more accurate and comprehensive representation of decision-making problems by considering the multiple criteria involved and the relationships between them. The single valued neutrosophic set (SV-NS) aggregation operators (AOs) based on Einstein properties using hesitant fuzzy sets (HFSs) and probabilistic hesitant fuzzy sets (PHFSs) with rough sets (RSs) are proposed in this study and can handle a large volume of data, making them suitable for complex and large-scale livestock decision-making problems. We first defined SV-neutrosophic probabilistic hesitant fuzzy rough weighted averaging (SV-NPHFRWA), SV-neutrosophic probabilistic hesitant fuzzy rough weighted geometric (SV-NPHFRWG), SV-neutrosophic probabilistic hesitant fuzzy rough ordered weighted averaging (SV-NPHFROWA) and SV-neutrosophic probabilistic hesitant fuzzy rough hybrid weighted averaging (SV-NPHFRHWA) AOs. Then, based on Einstein properties, we extended these operators and developed the single-valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging (SV-NPHFREWA) operator. Additionally, an illustrative scenario to show the applicability of the suggested decision-making approach is provided, along with a sensitivity analysis and comparison analysis, which demonstrate that its outcomes are realistic and reliable. We also provide another relation between criteria and alternatives of decision-making using neutrosophic information with quaternion context. By using such type of operators, livestock managers can make more informed decisions, leading to better animal health, higher productivity, and increased profitability.
Fuzzy set theory (FST) is a potent tool that can be used to handle difficult decision-making problems involving numerous criteria [1]. This method is known as multi-criteria decision-making (MCDM). There are several situations in livestock management where MCDM with FST can be used. It can be used in feed formulation to choose the best mixture of feed ingredients that meets the nutritional needs of the animals while lowering the cost. The technique can be used to assess various feed formulations based on numerous factors such as nutritional value, digestibility, and cost. FST can also be utilized to reflect the uncertainty and ambiguity in the nutritional requirements of the animals. In breeding program design, it can also be used to select the best breeding strategy that maximizes the genetic potential of the animals while minimizing the risk of inbreeding. FST can be used to model the uncertainty and vagueness in the genetic parameters, and the MCDM strategy can be used to evaluate different breeding strategies based on multiple criteria such as genetic diversity, productivity, and genetic risk [2,3].
In disease diagnosis, MCDM can be used to identify the best treatment strategy that maximizes the chances of recovery while minimizing the risk of side effects. This theory can be used to model the uncertainty and vagueness in the symptoms and diagnostic test results, and the MCDM method can be used to evaluate different treatment strategies based on multiple criteria such as effectiveness, safety, and cost. In market analysis, this type of methodology can be used to identify the best marketing strategy that maximizes the profitability of the livestock business while minimizing the risk of losses. Fuzzy set theory can be used to model the uncertainty and vagueness in the market conditions and customer preferences, and the MCDM technique can be used to evaluate different marketing strategies based on multiple criteria such as profitability, market share, and customer satisfaction. By incorporating the principles of fuzzy set theory and MCDM, livestock managers can make more informed decisions based on multiple criteria and handle the uncertainty and vagueness that are inherent in many livestock management problems [4,5].
A group of elements (objects) having fuzzy boundaries is represented mathematically as a fuzzy set (FS), which allows for the possibility of a gradual change in an element's belongingness to a group, from fully belonging to not belonging. This concept is put forth in the fuzzy sets theory as a means of mathematically expressing fuzzy concepts that individuals use to explain, among other things, how they view real systems, their preferences, and goals [6,7]. One can select the most effective food loss and waste drivers to promote sustainability by applying fuzzy decision theory. Systems for reducing food loss and waste face numerous difficulties that make it difficult to select the appropriate course of action. When dealing with unstructured scenarios in decision-making situations, classic or crisp methods may not always be the most effective. In 1965, Zadeh [8] designed fuzzy sets (FS) as a method to deal with this contradiction. In FSs, Zadeh assigns membership grades in the range [0,1] to a set of components. Since many of the set theoretic components of crisp conditions were given for fuzzy sets, Zadeh's work on this area is noteworthy [9].
An improved version of the fuzzy set (FS) that contains membership and non-membership degrees was the intuitionistic fuzzy set (IFS), which was the subject of Atanassov's [10] research. Over the past few decades, IFSs have been demonstrated to be helpful and frequently used by academics to assess uncertainty and instability in data. A single-valued neutrosophic set (SV-NS), which can deal with inaccurate, ambiguous, and incompatible data issues, was proposed by Wang et al. [11]. SV-NS has received a lot of attention from academics because it is a potent universal systematic approach. Ye discussed the correlation and information energy of SV-NSs in [12]. The use of SV-NSs as a decision-making tool was subsequently investigated by many researchers [13,14,15]. The idea of a neutrosophic rough set (RS) has been described [16], as a the generalization of fuzzy rough sets (FRSs).
Despite the fact that these methods effectively capture uncertainty, they are unable to simulate circumstances where an expert's refusal to make a conclusion plays a significant role. Consider a scenario where a panel of six experts is asked to choose the best applicant throughout the hiring process, but two of them decline to make a choice. The number of decision makers is regarded to be 4 as opposed to 6, i.e., the refusal-providing professionals are completely disregarded, and the decision is established using the responses given by the 4 determination-providing experts only, when analyzing the informative data using the existing methodologies [17]. This leads to a huge loss of knowledge and might produce subpar outcomes. Zhu and Xu [18] developed probabilistic hesitant fuzzy sets (PHFSs) to handle such refusal-oriented instances. The review makes it obvious that (i) the HFS is a dynamic support structure with a capacity to reduce subjective randomness, (ii) it also makes it easier for experts to gain insight into preferences, and (iii) it ignores the likelihood that each element will occur. Zhou and Xu [19] proposed a generalized structure known as probabilistic hesitant fuzzy information (PHFI) that assigns an occurrence probability to each element in response to the claims stated in the systematic review. By doing this, it is possible to determine the confidence of each element, which serves as potential data for MCDM [20].
When making decisions, especially in MCDM, where several criteria or considerations must be taken into account, aggregation operators (AOs) are essential. The knowledge or preferences of decision-makers or stake holders are combined using aggregate operators to get an overall score or ranking for each alternative under consideration. The ordered weighted averaging (OWA), weighted product, weighted average, and Choquet integral are some common AOs used in MCDM [21,22,23]. Depending on the preferences of the decision maker and the characteristics of the choice problem, these operators have various qualities and are useful for various decision-making scenarios.
The Einstein aggregation operator (EAO) is a powerful and flexible aggregation operator used in MCDM. It was introduced by C. Carlsson and R. Fuller [24] in 2001 as an extension of the well-known weighted average operator. One of the unique features of the EAO is that it allows the decision maker to specify a set of "aggregation weights" for each criterion, which represent the relative importance of that criterion compared to the others. These weights can be different for each alternative being considered, and can even vary across different levels or dimensions of the criteria. In order to more accurately represent complex and uncertain decision-making problems, neutrosophic information with quaternion context and a hybrid model that combines various uncertainty measures and builds a relationship between alternatives and criteria are also presented. The literature still lacks research on the new operators for decision-making used in this study. The creation of novel AOs is specifically required in order to manage the complexity and inherent uncertainty of decision-making situations employing SV-NPHFRS in a more effective and efficient manner. There is a need for their application to larger and more sophisticated decision-making situations, as the previous literature has mostly concentrated on using these AOs to solve small-scale decision-making challenges. The potential of these AOs in domains other than decision-making, such as forecasting and pattern recognition, also needs to be investigated. The development of new operators for SV-NPHFRS that can better capture the complexity and uncertainty of decision-making problems, as well as assessing their efficacy on larger and more complicated decision-making problems, could thus be the main areas of future research. To fully explore their potential and limitations, research on the use of these operators in contexts other than decision-making is also necessary. Based on SV-neutrosophic rough sets (SV-NRSs), in this article, we propose some new AOs because of the following reasons:
(1) Decision-makers have more discretion as a result of SV-NPHFRE-AO's integration of neutrosophic logic, probability theory, hesitant fuzzy sets, rough sets, and Einstein aggregation operator.
(2) SV-NPHFRE-AO can handle different types of information, such as qualitative and quantitative data, linguistic terms, and probabilistic information, which gives more flexibility in decision-making.
(3) SV-NPHFRE-AO can integrate multiple criteria in decision making, allowing decision-makers to consider multiple factors that are relevant to the decision problem. This is important because many real-world decisions involve multiple factors that must be considered, and SV-NPHFRE-AO can help decision-makers to prioritize and weigh these factors appropriately.
(4) For first evaluation, SV-neutrosophic weighted averaging (SV-NWA) and SV-neutrosophic weighted geometric (SV-NWG) AOs are unable to take into account the familiarity of experts with the investigated items, while SV-NPHFREWA and SV-NPHFREOWA AOs may.
(5) This article sought to address more complicated and advanced data due to the clarity of the SV-NPHFREWA and SV-NPHFREOWA AOs and the fact that they cover the decision-making technique.
(6) We also use the neutrosophic data in quaternion context to find the relationship between the decision making objectives.
(7) Two types of information are typically needed from evaluation specialists in real-world decision-making challenges (called Positive and Negative): Performance of the assessment objects and expertise in the evaluation sectors. All currently used methods only consider positive data and lack negative information in the experts' assessments. The proposed work covers the limitation of all existing drawbacks.
Consequently, the following are the research's results:
● To begin, we recognize from the scientific literature the theory of SV-neutrosophic probabilistic hesitant fuzzy rough sets.
● We undertake the development of new AOs like SV-NPHFREWA and SV-NPHFREOWA AOs.
● An illustrative scenario to show the applicability of the suggested decision-making approach is provided, along with a sensitivity analysis and comparison analysis, that demonstrate that its outcomes are realistic and reliable.
Let us through the basics of fuzzy sets, including intuitionistic fuzzy sets, neutrosophic sets, single-valued neutrosophic sets, and probabilistic fuzzy sets, in this part. Once they have been vetted, these ideas will be applied here.
Definition 1. For a fixed set β, a FS [8] ℑ in β is denoted as
ℑ={⟨ξ♭,υℑ(ξ♭)⟩|ξ♭∈β}, |
where each ξ♭∈β, the membership grade υℑ:β→Δ specifies the degree to which the element ξ♭∈ℑ, where Δ=[0,1] is the interval.
Definition 2. For a fixed set β, an IFS [10] ℑ in β is mathematically described as
ℑ={⟨ξ♭,υℑ(ξ♭),τℑ(ξ♭)⟩|ξ♭∈β}. |
For each ξ♭∈β, the membership grade υℑ:β→Δ and the non-membership grade τℑ:β→Δ specify the membership and non-membership of ξ♭ to the intuitionistic fuzzy set ℑ, respectively, where Δ=[0,1] is the unit interval. Moreover, it is required that 0≤υℑ(ξ♭)+τℑ(ξ♭)≤1, for each ξ♭∈β.
Definition 3. Let N be a fixed set, and ξ♭∈N. A neutrosophic set [11] ς in N is denoted as belongingness function υℑ(ξ♭), an indeterminacy function τℑ(ξ♭) and a non-belongingness function Υℑ(ξ♭). υℑ(ξ♭),τℑ(ξ♭) and Υℑ(ξ♭) are real subsets of ]0−,1+[ and
υℑ(ξ♭),τℑ(ξ♭),Υℑ(ξ♭):N⟶]0−,1+[ |
The representation of neutrosophic set (NS) ς is mathematically defined as:
ς={⟨ξ♭,υℑ(ξ♭),τℑ(ξ♭),Υℑ(ξ♭))⟩|ξ♭∈N}, |
where
0−<ξ♭,υℑ(ξ♭)+τℑ(ξ♭)+Υℑ(ξ♭)≤3+. |
Definition 4. [11,25] Let N be a fixed set and ξ♭∈N. A single-valued neutrosophic set (SV-NS) B in N is defined as truth membership grade υℑ(ξ♭), an indeterminacy membership grade τℑ(ξ♭) and a falsity membership grade Υℑ(ξ♭). υℑ(ξ♭),τℑ(ξ♭) and Υℑ(ξ♭) are real subsets of [0,1], and
υℑ(ξ♭),τℑ(ξ♭),Υℑ(ξ♭):N⟶[0,1]. |
The representation of single valued neutrosophic set (SV-NS) B is mathematically defined as:
B={⟨ξ♭,υℑ(ξ♭),τℑ(ξ♭),Υℑ(ξ♭))⟩|ξ♭∈N}, |
where
0<υℑ(ξ♭)+τℑ(ξ♭)+Υℑ(ξ♭)≤3. |
Definition 5. For a fixed set β, a probabilistic fuzzy set (PFS) [26,27] ℑ in β is presented as
ℑ={⟨ξ♭,(ξ♭)/Ξ♭⟩|ξ♭∈β}, |
where (ξ♭) a subset of [0,1], and (ξ♭)/Ξ♭ represents the membership degree of ξ♭∈β in ℑ. And Ξ♭ represent the possibilities of (ξ♭), with constraint that ∑♭Ξ♭=1.
Definition 6. A quaternion neutrosophic set (QNS) is given by ˊNQ:N→[0,1] such that
ˊNQ(ξi+τj+Υk)=min{¯X(ξ),¯Y(τ),¯Z(Υ)} |
for some (ξ,τ,Υ)∈NQ and ¯X,¯Y,¯Z∈ℜNQ, where ℜNQ is a quaternion neutrosophic set. For better understanding ¯X, is called the membership function, ¯Y is called the indeterminacy function, and ¯Z is called the non membership function. Here the function satisfied the following condition for a quaternion neutrosophic set (QNS) as
0≤ξ+τ+Υ≤3 |
and
(ξ,τ,Υ)→[0,1]. |
Definition 7. Let ℑ1=(υ1/Ξ1,τ1/ϖ1,Υ1/ϕ1) and ℑ2=(υ2/Ξ2,τ2/ϖ2,Υ2/ϕ2) be two SV-NPFNs. The basic operational laws [28,29] are defined as
(1) ℑ1∪ℑ2={⋃ξ1∈υ1,Ξ1∈Ξ1ξ2∈υ2,Ξ2∈Ξ2(max(ξ1/Ξ1,ξ2/Ξ2)),⋃Λ1∈τ1,ϖ1∈ϖ1Λ2∈τ2,ϖ2∈ϖ2(min(Λ1/ϖ1,Λ2/ϖ2)),⋃ϱ1∈Υ1,ϕ1∈ϕ1ϱ2∈Υ2,ϕ2∈ϕ2(min(ϱ1/ϕ1,ϱ2/ϕ2))},
(2) ℑ1∩ℑ2={⋃ξ1∈υ1,Ξ1∈Ξ1ξ2∈υ2,Ξ2∈Ξ2(min(ξ1/Ξ1,ξ2/Ξ2)),⋃Λ1∈τ1,ϖ1∈ϖ1Λ2∈τ2,ϖ2∈ϖ2(max(Λ1/ϖ1,Λ2/ϖ2)),⋃ϱ1∈Υ1,ϕ1∈ϕ1ϱ2∈Υ2,ϕ2∈ϕ2(max(ϱ1/ϕ1,ϱ2/ϕ2))},
(3) ℑc1={Υς/ϕ,τς/ϖ,υς/Ξ}.
Definition 8. Let ℑ1=(υ1/Ξ1,τ1/ϖ1,Υ1/ϕ1) and ℑ2=(υ2/Ξ2,τ2/ϖ2,Υ2/ϕ2)
be two SV-neutrosophic probabilistic hesitant fuzzy numbers (SV-NPHFNs) and η>0(∈R). Then, their operations [30] are presented as:
(1) ℑ1⊕ℑ2={⋃ξ1∈υ1,ξ2∈υ2Ξ1∈Ξ1,Ξ2∈Ξ2(ξ1+ξ2−ξ1ξ2/Ξ1Ξ2),⋃Λ1∈τ1,Λ2∈τ2ϖ1∈ϖ1,ϖ2∈ϖ2(Λ1Λ2/ϖ1ϖ2),⋃ϱ1∈Υ1,ϱ2∈Υ2ϕ1∈ϕ1,ϕ2∈ϕ2(ϱ1ϱ2/ϕ1ϕ2)},
(2) ℑ1⊗ℑ2={⋃ξ1∈υ1,ξ2∈υ2Ξ1∈Ξ1,Ξ2∈Ξ2(ξ1ξ2/Ξ1Ξ2),⋃Λ1∈τ1,Λ2∈τ2ϖ1∈ϖ1,ϖ2∈ϖ2(Λ1+Λ2−Λ1Λ2/ϖ1ϖ2)⋃ϱ1∈Υ1,ϱ2∈Υ2ϕ1∈ϕ1,ϕ2∈ϕ2(ϱ1+ϱ2−ϱ1ϱ2/ϕ1ϕ2)},
(3) ηℑ1={⋃ξ1∈υ1,Ξ1∈Ξ1(1−(1−ξ1)η/Ξ1),⋃Λ1∈τ, ϖ1∈ϖ1(Λη1/ϖ1),⋃ϱ1∈Υ1,ϕ1∈ϕ1(ϱη1/ϕ1)},
(4) ℑη1={⋃ξ1∈υ1,Ξ1∈Ξ1(ξη1/Ξ1),⋃Λ1∈τ1,ϖ1∈ϖ1(Λη1/ϖ1),⋃ϱ1∈Υ,ϕ1∈ϕ1(1−(1−ϱ1)η/ϕ1)}.
Definition 9. [31,32] For any SV-NPHFN ℑ=(υℓς/Ξ♭,τℓς/ϖ♭,Υℓς/ϕ♭), a score function can defined as
{p(ℑ)=(1Mℑ∑ξℷ∈υℓ♭,Ξℷ∈Ξℓ♭(ξℷ⋅Ξℷ))−(1Nℑ∑Λℷ∈τℓς,ϖℷ∈ϖℓ♭(Λℷ⋅ϖℷ))−(1Zℑ∑ϱℷ∈Υℓς,ϕℷ∈ϕℓ♭(ϱℷ⋅ϕℷ))} | (2.1) |
where Mℑ represents the number of elements in υℓς,Nℑ represents the number of elements in τℓς, and Zℑ represents the number of elements in Υℓς.
Definition 10. [31] For any SV-NPHFN ℑ=(υℓς/Ξ♭,τℓς/ϖ♭,Υℓς/ϕ♭), an accuracy function is defined as
ℓ(ℑ)={(1Mℑ∑ξℷ∈υℓ♭,Ξℷ∈Ξℓ♭(ξℷ⋅Ξℷ))+(1Nℑ∑Λℷ∈τℓς,ϖℷ∈ϖℓ♭(Λℷ⋅ϖℷ))+(1Zℑ∑ϱℷ∈Υℓς,ϕℷ∈ϕℓ♭(ϱℷ⋅ϕℷ))} |
where Mℑ represents the number of elements in υℓς,Nℑ represents the number of elements in τℓς and Zℑ represents the number of elements in Υℓς.
Definition 11. Let ℑ1=(υℓ♭1/Ξ♭1,τℓ♭1/ϖ♭1,Υℓ♭1/ϕ♭1) and ℑ2=(υℓ♭2/Ξ♭2,τℓ♭2/ϖ♭2,Υℓ♭2/ϕ♭2)
be two SV-NPHFNs. Then, by using the above definition, comparison of SV-NPHFNs can be described as
(1) If p(ℑ1)>p(ℑ2), then ℑ1>ℑ2.
(2) If p(ℑ1)=p(ℑ2), and ℓ(ℑ1)>ℓ(ℑ2), then ℑ1>ℑ2.
Definition 12. Let ℑ⊤=(υℓ♭⊤/Ξ♭⊤,τℓ♭⊤/ϖ♭⊤,Υℓ♭⊤/ϕ♭⊤)(⊤=1,2,.....,p) be any group of
SV-NPHFNs, and Γ=(Γ1,Γ2,....,Γp)T are the weights of ℑ⊤∈[0,1] with ∑p⊤=1Γ⊤=1. Then, we have the following.
(1) The SV-neutrosophic probabilistic hesitant fuzzy weighted averaging (SV-NPHFWA) AO [33] can be described as SV-NPHFWA
(ℑ1,ℑ2,....,ℑp)=(⋃ξ⊤∈υℑ⊤Ξℑ⊤∈Ξℑ⊤1−Πp⊤=1(1−ξℑ⊤)Γ⊤/Πp⊤=1Ξℑ⊤,⋃Λℑ⊤∈τℑ⊤ϖℑ⊤∈ϖℑ⊤Πp⊤=1(Λℑ⊤)Γ⊤/Πp⊤=1ϖℑ⊤,⋃ϱℑ⊤∈Υℑ⊤ϕℑ⊤∈ϕℑ⊤Πp⊤=1(ϱℑ⊤)Γ⊤/Πp⊤=1ϕℑ⊤). | (2.2) |
(2) The SV-neutrosophic probabilistic hesitant fuzzy weighted geometric (SV-NPHFWG) AO [33] can be described as SV-NPHFWG
(ℑ1,ℑ2,....,ℑp)=(⋃ξ⊤∈υℑ⊤Ξℑ⊤∈Ξℑ⊤Πp⊤=1(ξℑ⊤)Γ⊤/Πp⊤=1Ξℑ⊤,⋃Λℑ⊤∈τℑ⊤ϖℑ⊤∈ϖℑ⊤1−Πp⊤=1(1−Λℑ⊤)Γ⊤/Πp⊤=1ϖℑ⊤,⋃ϱℑ⊤∈Υℑ⊤ϕℑ⊤∈ϕℑ⊤1−Πp⊤=1(1−ϱℑ⊤)Γ⊤/Πp⊤=1ϕℑ⊤). | (2.3) |
Definition 13. Let ℑ⊤=(υℓ♭⊤/Ξ♭⊤,τℓ♭⊤/ϖ♭⊤,Υℓ♭⊤/ϕ♭⊤)(⊤=1,2,.....,p) be any group of SV-NPHFNs, ℑΛ(⊤) be the jth largest in them and Γ=(Γ1,Γ2,....,Γp)T be the weights of ℑ⊤∈[0,1] with ∑p⊤=1Γ⊤=1. Then, the SV-neutrosophic probabilistic hesitant fuzzy ordered weighted averaging (SV-NPHFOWA) AO can be described as
SV−NPHFOWA(ℑ1,ℑ2,....,ℑp)=Γ1ℑΛ(1)⊕Γ2ℑΛ(2)⊕.....⊕ΓpℑΛ(p)=(⋃ξℑΛ(⊤)∈υℑΛ(⊤)ΞℑΛ(⊤)∈ΞℑΛ(⊤)1−Πp⊤=1(1−ξℑΛ(⊤))Γ⊤/Πp⊤=1ΞℑΛ(⊤),⋃ΛℑΛ(⊤)∈τℑΛ(⊤)ϖℑΛ(⊤)∈ϖℑΛ(⊤)Πp⊤=1(ΛℑΛ(⊤))Γ⊤/Πp⊤=1ϖℑΛ(⊤),⋃ΥℑΛ(⊤)∈ξℑΛ(⊤)ϕℑΛ(⊤)∈ϕℑΛ(⊤)Πp⊤=1(ΥℑΛ(⊤))Γ⊤/Πp⊤=1ϕℑΛ(⊤)). | (2.4) |
Definition 14. Let ℑ⊤=(υℓ♭⊤/Ξ♭⊤,τℓ♭⊤/ϖ♭⊤,Υℓ♭⊤/ϕ♭⊤)(⊤=1,2,.....,p)
be any group of SV-NHFNs, ℑΛ(⊤) is the jth largest of ℑΛ(⊤)=pΓ⊤ℑ⊤(⊤=1,2,.....,p). Then, the following aggregation operator with aggregation-associated vector Γ=(Γ1,Γ2,....,Γp)T where Γℷ∈[0,1], ∑p⊤=1Γ⊤=1, can be described:
SV-neutrosophic probabilistic hesitant fuzzy hybrid weighted averaging (SV-NPHFHWA) AO [33]
SV−NHFHWA(ℑ1,ℑ2,....,ℑp)=Γ1ℑΛ(1)⊕Γ2ℑΛ(2)⊕.....⊕ΓpℑΛ(p)=(⋃ξℑΛ(⊤)∈υℑΛ(⊤)ΞℑΛ(⊤)∈ΞℑΛ(⊤)1−Πp⊤=1(1−ξℑΛ(⊤))Γ⊤/Πp⊤=1ΞℑΛ(⊤),⋃ΛℑΛ(⊤)∈τℑΛ(⊤)ϖℑΛ(⊤)∈ϖℑΛ(⊤)Πp⊤=1(ΛℑΛ(⊤))Γ⊤/Πp⊤=1ϖℑΛ(⊤),⋃ϱℑΛ(⊤)∈ΥℑΛ(⊤)ϕℑΛ(⊤)∈ϕℑΛ(⊤)Πp⊤=1(ϱℑΛ(⊤))Γ⊤/Πp⊤=1ϕℑΛ(⊤)). | (2.5) |
The single valued neutrosophic probabilistic hesitant fuzzy rough set (SV-NPHFRS) is a hybrid structure of rough set that we present here. We also introduce the SV-NPHFRS's scoring and accuracy features, as well as its basic operational rules.
Definition 15. Assume universal set ¨U and let ℑ∈SV−NPHFRS(¨UרU) be a SV−NPHF relation. The pair (¨U,ℑ) represents a SV−NPHF approximation space. Assume ℓ be any subset of SV−NPHS(¨U) i.e., ℓ⊆SV−NPHS(¨U). Then, on the bases of SV−NPHF approximation space (¨U,ℑ), the lower and upper approximations of ℓ are represented as ¯ℑ(ℓ) and ℑ_(ℓ), given as the following:
¯ℑ(ℓ)={⟨σ,υ¯ℑ(ℓ)(σ)/Ξℓ(σ),Λ¯ℑ(ℓ)(σ)/ϖℓ(σ),Υ¯ℑ(ℓ)(σ)/ϕℓ(σ)⟩|σ∈¨U}, |
ℑ_(ℓ)={⟨σ,υℑ_(ℓ)(σ)/Ξℓ(σ),Λℑ_(ℓ)(σ)/ϖℓ(σ),Υℑ_(ℓ)(σ)/ϕℓ(σ)⟩|σ∈¨U}, |
where
υ¯ℑ(ℓ)(σ)/Ξℓ(σ)=∨t∈¨U[υℑ(σ,t)/Ξℓ(σ)∨υℑ(t)/Ξℓ(σ)],Λ¯ℑ(ℓ)(σ)/ϖℓ(σ)=∧t∈¨U[Λℑ(σ,t)/ϖℓ(σ)∧Λℑ(t)/ϖℓ(σ)],Υ¯ℑ(ℓ)(σ)/ϕℓ(σ)=∧t∈¨U[Υℑ(σ,t)/ϕℓ(σ)∧Υℑ(t)/ϕℓ(σ)],υℑ_(ℓ)(σ)/Ξℓ(σ)=∧t∈¨U[υℑ(σ,t)/Ξℓ(σ)∧υℑ(t)/Ξℓ(σ)],Λℑ_(ℓ)(σ)/ϖℓ(σ)=∧t∈¨U[Λℑ(σ,t)/ϖℓ(σ)∧Λℑ(t)/ϖℓ(σ)],Υℑ_(ℓ)(σ)/ϕℓ(σ)=∨t∈¨U[Υℑ(σ,t)/ϕℓ(σ)∨Υℑ(t)/ϕℓ(σ)], |
such that
0<υ¯ℑ(ℓ)(σ)/Ξℓ(σ)+Λ¯ℑ(ℓ)(σ)/ϖℓ(σ)+Υ¯ℑ(ℓ)(σ)/ϕℓ(σ)≤3, |
and
0<υℑ_(ℓ)(σ)/Ξℓ(σ)+Λℑ_(ℓ)(σ)/ϖℓ(σ)+Υℑ_(ℓ)(σ)/ϕℓ(σ)≤3. |
As ℑ_(ℓ) and ¯ℑ(ℓ) are SV−NFSs, so ¯ℑ(ℓ),ℑ_(ℓ):SV−NFS(¨U)⟶SV−NFS(¨U) are upper and lower approximation operators. So, the pair
ℑ(ℓ)=(ℑ_(ℓ),¯ℑ(ℓ))={{σ,⟨((υℑ_(ℓ)(σ)/Ξℓ(σ),Λℑ_(ℓ)(σ)/ϖℓ(σ),Υℑ_(ℓ)(σ)/ϕℓ(σ))),((υ¯ℑ(ℓ)(σ)/Ξℓ(σ),Λ¯ℑ(ℓ)(σ)/ϖℓ(σ),Υ¯ℑ(ℓ)(σ)/ϕℓ(σ)))}|σ∈¨U} |
is called a SV−NPHF rough set. For simplicity, it can be denoted as
ℑ(ℓ)=(g_(ℓ),¯ℑ(ℓ))={(Ψ_ℓ(σ)/Ξℓ(σ),Φ_ℓ(σ)/ϖℓ(σ),Ω_ℓ(σ)/ϕℓ(σ)),(¯υℓ(σ)/Ξℓ(σ),¯Λℓ(σ)/ϖℓ(σ),¯Υℓ(σ)/ϕℓ(σ))}. |
Definition 16. Assume ℜ1=(υℓℜ1/Ξℓ(σ1),Λℓℜ1/ϖℓ(σ1),Υℓℜ1/ϕℓ(σ1)) and ℜ2=(υℓℜ2/Ξℓ(σ2),Λℓℜ2/ϖℓ(σ2),Υℓℜ2/ϕℓ(σ2)) be two SV-NPHFNs. The following are the basic set theoretic operations:
(1) ℜ1∪ℜ2={⋃℧1∈υℓℜ1/Ξℓ(σ1)℧2∈υℓℜ2/Ξℓ(σ2)max(℧1,℧2),⋃ν1∈Λℓℜ1/ϖℓ(σ1)ν2∈Λℓℜ2/ϖℓ(σ2)min(ν1,ν2),⋃λ1∈Υℓℜ1/ϕℓ(σ1)λ2∈Υℓℜ2/ϕℓ(σ2)min(λ1,λ2)},
(2) ℜ1∩ℜ2={⋃℧1∈υℓℜ1/Ξℓ(σ1)℧2∈υℓℜ2/Ξℓ(σ2)min(℧1,℧2),⋃ν1∈Λℓℜ1/ϖℓ(σ1)ν2∈Λℓℜ2/ϖℓ(σ2)max(ν1,ν2),⋃λ1∈Υℓℜ1/ϕℓ(σ1)λ2∈Υℓℜ2/ϕℓ(σ2)max(λ1,λ2)},
(3) ℜˆC1={Υℓℜ1/ϕℓ(σ1),Λℓℜ1/ϖℓ(σ1),υℓℜ1/Ξℓ(σ1)}.
Definition 17. Assume ℜ is the universal set and ℏ⊆ℜ×ℜ is a (crisp) relation. Then, we have the following basic crisp sets properties.
(1) ℏ is reflexive if (Θ,Θ)∈ℏ, for each Θ∈ℜ;
(2) ℏ is symmetric if ∀Θ,a∈ℜ,(Θ,a)∈ℏ, then (a,Θ)∈ℏ;
(3) ℏ is transitive if ∀Θ,a,b∈ℜ,(Θ,a)∈ℜ and (a,b)∈ℏ⟶(Θ,b)∈ℏ.
Here, the reflexive, transitive and symmetric properties are same as the crisp sets.
Definition 18. Assume F is the universal set. Then, any subset ℏ∈SV−NPHFRS(F×F) is said to be an SV- neutrosophic probabilistic hesitant fuzzy relation. The pair (F,ℏ) is called a SV-NPHFRS approximation space. If for any Λ⊆SV−NPHFRS(F), then the upper and lower approximations of Λ\ with respect to SV-NPHFRS approximation space (F,ℏ) are two SV-NPHFRSs, which are denoted by ¯ℑ(Λ) and ℑ_(Λ) and defined as,
¯ℑ(Λ)={⟨Θ,υℓ¯ℑ(Λ)(Θ)/Ξℓ¯ℑ(Λ),Λℓ¯ℑ(Λ)(Θ)/ϖℓ¯ℑ(Λ),Υℓ¯ℑ(Λ)(Θ)/ϕℓ¯ℑ(Λ)⟩|Θ∈F},ℑ_(Λ)={⟨Θ,υℓℑ_(Λ)(Θ)/Ξℓℑ_(Λ),Λℓℑ_(Λ)(Θ)/ϖℓℑ_(Λ),Υℓℑ_(Λ)(Θ)/ϖℓℑ_(Λ)⟩|Θ∈F}, |
where
υℓ¯ℑ(Λ)(Θ)/ΞℓΘ=⋁χ∈F[υℓℏ(Θ,χ)⋁υℓΛ(χ)]/⋁χ∈F[Ξℓℏ(Θ,c)⋁ΞℓΛ(χ)],Λℓ¯ℑ(Λ)(Θ)/ϖℓΘ=⋀χ∈F[Λℓℏ(Θ,χ)⋀ΛℓΛ(χ)]/⋀χ∈F[ϖℓℏ(Θ,c)⋀ϖℓΛ(χ)],υℓℑ_(Λ)(Θ)/ΞℓΘ=⋀χ∈F[υℓℏ(Θ,χ)⋀υℓΛ(χ)]/⋀χ∈F[Ξℓℏ(Θ,χ)⋀ΞℓΛ(χ)],Λℓℑ_(Λ)(Θ)/ϖℓΘ=⋁χ∈F[Λℓℏ(Θ,χ)⋁ΛℓΛ(χ)]/⋁χ∈F[ϖℓℏ(Θ,c)⋁ϖℓΛ(χ)],Υℓ¯ℑ(Λ)(Θ)/ΞℓΘ=⋁χ∈F[Υℓℏ(Θ,χ)⋁ΥℓΛ(χ)]/⋁χ∈F[ϕℓℏ(Θ,c)⋁ϕℓΛ(χ)],Υℓℑ_(Λ)(Θ)/ΞℓΘ=⋀χ∈F[Υℓℏ(Θ,χ)⋀ΥℓΛ(χ)]/⋀χ∈F[ϕℓℏ(Θ,χ)⋀ϕℓΛ(χ)], |
such that
0<(max(υℓ¯ℑ(Λ)(Θ)))+(min(Λℓ¯ℑ(Λ)(Θ)))+(min(Υℓ¯ℑ(Λ)(Θ)))≤3, |
and
0<(min(υℓℑ_(Λ)(Θ))+(max(Λℓℑ_(Λ)(Θ)))+(max(Λℓℑ_(Λ)(Θ)))≤3. |
As (¯ℑ(Λ),ℑ_(Λ)) are SV−NPHFRS,¯ℑ(Λ),ℑ_(Λ):SV−NPHFRS(F)→SV−NPHFRS(F) are upper and lower approximation operators. The pair
ℏ(Λ)=(ℑ_(Λ),¯ℑ(Λ))={⟨Θ,(υℓℑ_(Λ)(Θ)/Ξℓℑ_(Λ),Λℓℑ_(Λ)(Θ)/ϖℓℑ_(Λ),Υℓℑ_(Λ)(Θ)/ϕℓℑ_(Λ)),Θ,(υℓ¯ℑ(Λ)(Θ)/Ξℓ¯ℑ(Λ),Λℓ¯ℑ(Λ)(Θ)/ϖℓℏ(Λ),Υℓ¯ℑ(Λ)(Θ)/ϕℓ¯ℑ(Λ))⟩|Θ∈Λ} |
will be called SV-neutrosophic hesitant fuzzy rough set. For simplicity,
ℏ(Λ)={⟨Θ,(υℓℑ_(Λ)(Θ)//Ξℓℑ_(Λ),Λℓℑ_(Λ)(Θ)/ϖℓℑ_(Λ),Υℓℑ_(Λ)(Θ)/ϕℓℑ_(Λ)),(υℓ¯ℑ(Λ)(Θ)//Ξℓ¯ℑ(Λ),Λℓ¯ℑ(Λ)(Θ)/ϖℓ¯ℑ(Λ),Υℓ¯ℑ(Λ)(Θ)/ϕℓ¯ℑ(Λ))⟩|Θ∈Λ} |
is represented as
ℏ(Λ)=((Ψ_/ð_,Φ_/∂_,Ω_/Ξ_),(¯υ/¯Ξ,¯Λ/¯ϖ,¯Υ/¯ϕ)) |
and is known as SV-NPHFRSs.
Definition 19. Here, we define the SV-neutrosophic probabilistic hesitant fuzzy rough weighted averaging (SV-NPHFRWA) AO by using Eq (2.2) as
{(¯ℑ1,¯ℑ2,....,¯ℑp)(ℑ_1,ℑ_2,....,ℑ_p)} | (3.1) |
=({(⋃ξ¯ℑ⊤∈υ¯ℑ⊤Ξ¯ℑ⊤∈Ξ¯ℑ⊤1−Πp⊤=1(1−ξ¯ℑ⊤)Γ⊤/Πp⊤=1Ξ¯ℑ⊤)(⋃α_⊤∈υℑ_⊤Ξℑ_⊤∈Ξℑ_⊤1−Πp⊤=1(1−ξℑ_⊤)Γ⊤/Πp⊤=1Ξℑ_⊤)},{(⋃Λ¯ℑ⊤∈τ¯ℑ⊤ϖ¯ℑ⊤∈ϖ¯ℑ⊤Πp⊤=1(Λ¯ℑ⊤)Γ⊤/Πp⊤=1ϖ¯ℑ⊤)(⋃Λℑ_⊤∈τℑ_⊤ϖℑ_⊤∈ϖℑ_⊤Πp⊤=1(Λℑ_⊤)Γ⊤/Πp⊤=1ϖℑ_⊤)},{(⋃ϱ¯ℑ⊤∈Υ¯ℑ⊤ϕ¯ℑ⊤∈ϕ¯ℑ⊤Πp⊤=1(ϱ¯ℑ⊤)Γ⊤/Πp⊤=1ϕ¯ℑ⊤)(⋃ϱℑ_⊤∈Υℑ_⊤ϕℑ_⊤∈ϕℑ_⊤Πp⊤=1(ϱℑ⊤)Γ⊤/Πp⊤=1ϕℑ_⊤)}). | (3.2) |
Definition 20. The SV-NPHFRWG operator using Eq (2.3) can be described as
{(¯ℑ1,¯ℑ2,....,¯ℑp)(ℑ_1,ℑ_2,....,ℑ_p)} | (3.3) |
=({(⋃ξ¯ℑ⊤∈υ¯ℑ⊤Ξ¯ℑ⊤∈Ξ¯ℑ⊤Πp⊤=1(ξ¯ℑ⊤)Γ⊤/Πp⊤=1Ξ¯ℑ⊤)(⋃ξℑ_⊤∈υℑ_⊤Ξℑ_⊤∈Ξℑ_⊤Πp⊤=1(ξℑ_⊤)Γ⊤/Πp⊤=1Ξℑ_⊤)},{(⋃Λ¯ℑ⊤∈τ¯ℑ⊤ϖ¯ℑ⊤∈ϖ¯ℑ⊤1−Πp⊤=1(1−Λ¯ℑ⊤)Γ⊤/Πp⊤=1ϖ¯ℑ⊤)(⋃Λℑ_⊤∈τℑ_⊤ϖℑ_⊤∈ϖℑ_⊤1−Πp⊤=1(1−Λℑ_⊤)Γ⊤/Πp⊤=1ϖℑ_⊤)},{(⋃ϱ¯ℑ⊤∈Υ¯ℑ⊤ϕ¯ℑ⊤∈ϕ¯ℑ⊤1−Πp⊤=1(1−ϱ¯ℑ⊤)Γ⊤/Πp⊤=1ϕ¯ℑ⊤)(⋃ϱℑ_⊤∈Υℑ_⊤ϕℑ_⊤∈ϕℑ_⊤1−Πp⊤=1(1−ϱℑ_⊤)Γ⊤/Πp⊤=1ϕℑ_⊤)}). | (3.4) |
Definition 21. The SV-NPHFROWA operator can be described as, using Eq (2.4),
{(¯ℑ1,¯ℑ2,....,¯ℑp)(ℑ_1,ℑ_2,....,ℑ_p)} | (3.5) |
={{{⋃ξ¯ℑΛ(⊤)∈υ¯ℑΛ(⊤)Ξ¯ℑΛ(⊤)∈Ξ¯ℑΛ(⊤)1−Πp⊤=1(1−ξ¯ℑΛ(⊤))Γ⊤/Πp⊤=1Ξ¯ℑΛ(⊤)}{⋃ξℑ_Λ(⊤)∈υℑ_Λ(⊤)Ξℑ_Λ(⊤)∈Ξℑ_Λ(⊤)1−Πp⊤=1(1−ξℑ_Λ(⊤))Γ⊤/Πp⊤=1Ξℑ_Λ(⊤)}},{{⋃Λ¯ℑΛ(⊤)∈τ¯ℑΛ(⊤)ϖ¯ℑΛ(⊤)∈ϖ¯ℑΛ(⊤)Πp⊤=1(Λ¯ℑΛ(⊤))Γ⊤/Πp⊤=1ϖ¯ℑΛ(⊤)}{⋃Λℑ_Λ(⊤)∈τℑ_Λ(⊤)ϖℑ_Λ(⊤)∈ϖℑ_Λ(⊤)Πp⊤=1(Λℑ_Λ(⊤))Γ⊤/Πp⊤=1ϖℑ_Λ(⊤)}},{{⋃Υ¯ℑΛ(⊤)∈ξ¯ℑΛ(⊤)ϕ¯ℑΛ(⊤)∈ϕ¯ℑΛ(⊤)Πp⊤=1(Υ¯ℑΛ(⊤))Γ⊤/Πp⊤=1ϕ¯ℑΛ(⊤)}{⋃Υℑ_Λ(⊤)∈ξℑ_Λ(⊤)ϕℑ_Λ(⊤)∈ϕℑ_Λ(⊤)Πp⊤=1(Υℑ_Λ(⊤))Γ⊤/Πp⊤=1ϕℑ_Λ(⊤)}}}. | (3.6) |
Definition 22. The SV−NPHFRHWA operator, using Eq (2.5) is as
{(¯ℑ1,¯ℑ2,....,¯ℑp)(ℑ_1,ℑ_2,....,ℑ_p)} | (3.7) |
={{{⋃ξ¯ℑΛ(⊤)∈υ¯ℑΛ(⊤)Ξ¯ℑΛ(⊤)∈Ξ¯ℑΛ(⊤)1−Πp⊤=1(1−ξ¯ℑΛ(⊤))Γ⊤/Πp⊤=1Ξ¯ℑΛ(⊤)}{⋃ξℑ_Λ(⊤)∈υℑ_Λ(⊤)Ξℑ_Λ(⊤)∈Ξℑ_Λ(⊤)1−Πp⊤=1(1−ξℑ_Λ(⊤))Γ⊤/Πp⊤=1Ξℑ_Λ(⊤)}},{{⋃Λ¯ℑΛ(⊤)∈τ¯ℑΛ(⊤)ϖ¯ℑΛ(⊤)∈ϖ¯ℑΛ(⊤)Πp⊤=1(Λ¯ℑΛ(⊤))Γ⊤/Πp⊤=1ϖ¯ℑΛ(⊤)}{⋃Λℑ_Λ(⊤)∈τℑ_Λ(⊤)ϖℑ_Λ(⊤)∈ϖℑ_Λ(⊤)Πp⊤=1(Λℑ_Λ(⊤))Γ⊤/Πp⊤=1ϖℑ_Λ(⊤)}},{{⋃ϱ¯ℑΛ(⊤)∈Υ¯ℑΛ(⊤)ϕ¯ℑΛ(⊤)∈ϕ¯ℑΛ(⊤)Πp⊤=1(ϱ¯ℑΛ(⊤))Γ⊤/Πp⊤=1ϕ¯ℑΛ(⊤)}{⋃ϱℑ_Λ(⊤)∈Υℑ_Λ(⊤)ϕℑ_Λ(⊤)∈ϕℑ_Λ(⊤)Πp⊤=1(ϱℑ_Λ(⊤))Γ⊤/Πp⊤=1ϕℑ_Λ(⊤)}}}. | (3.8) |
(3.9) |
Einstein operational laws based on SV-NPHFSs
The application of t-norms in FS theory at the intersection of two FSs is widely recognized. T-conorms are used to model disjunction or union. These are a straightforward explanation of the conjunction and disjunction in mathematical fuzzy logic syntax, and they are utilized in MCDM to combine criteria. The Einstein sum (⊕ϵ) and Einstein product (⊗ϵ) are case studies of t-conorms and t-norms, respectively, and are stated in the single valued neutrosophic probabilistic hesitant fuzzy (SV-NPHF) environment as follows.
˜N⊕ϵˇS=˜N+ˇS1+˜NˇS,˜N⊗ϵˇS=˜NˇS1+(1−˜N)(1−ˇS). |
Based on the above Einstein operations, we give the following new operations on SV-NPHF environment.
Definition 23. Let ℑ1=(υℓ♭1/Ξ♭1,τℓ♭1/ϖ♭1,Υℓ♭1/ϕ♭1) and ℑ2=(υℓ♭2/Ξ♭2,τℓ♭2/ϖ♭2,Υℓ♭2/ϕ♭2) be two SV-NPHFEs and η>0(∈R). Then,
(1) ℑ1⊕ℑ2={⋃ξ1∈υℓ♭1(l♭),ξ2∈υℓ♭2(l♭)Ξ1∈Ξ♭1,Ξ2∈Ξ♭2(ξ1+ξ21+ξ1ξ2/Ξ1Ξ2),⋃Λ1∈τℓ♭1(l♭),Λ2∈τℓ♭2(l♭)ϖ1∈ϖ♭1,ϖ2∈ϖ♭2(Λ1Λ21+(1−Λ1)(1−Λ2)/ϖ1ϖ2),⋃ϱ1∈Υℓ♭1(l♭),ϱ2∈Υℓ♭2(l♭)ϕ1∈ϕ♭1,ϕ2∈ϕ♭2(ϱ1ϱ21+(1−ϱ1)(1−ϱ2)/ϕ1ϕ2)}.
(2) ℑ1⊗ℑ2={⋃ξ1∈υℓ♭1(l♭),ξ2∈υℓ♭2(l♭)Ξ1∈Ξ♭1,Ξ2∈Ξ♭2(ξ1ξ21+(1−ξ1)(1−ξ2)/Ξ1Ξ2),⋃Λ1∈τℓ♭1(l♭),Λ2∈τℓ♭2(l♭)ϖ1∈ϖ♭1,ϖ2∈ϖ♭2(Λ1+Λ21+Λ1Λ2/ϖ1ϖ2),⋃Υ1∈ξℓ♭1(l♭),Υ2∈ξℓ♭2(l♭)ϕ1∈ϕ♭1,ϕ2∈ϕ♭2(Υ1+Υ21+Υ1Υ2/ϕ1ϕ2)}.
(3) ηℑ1={⋃ξ1∈υℓ♭1(l♭),Ξ1∈Ξ♭1((1+ξ1)η−(1−ξ1)η(1+ξ1)η+(1−ξ1)η/Ξ1),⋃Λ1∈τℓ♭1(l♭),ϖ1∈ϖ♭1(2Λη1(2−Λ1)η+(Λ1)η/ϖ1),⋃ϱ1∈Υℓ♭1(l♭),ϕ1∈ϕ♭1(2ϱη1(2−ϱ1)η+(ϱ1)η/ϕ1)}.
(4) ℑη1={⋃ξ1∈υℓ♭1(l♭),Ξ1∈Ξ♭1(2ξη1(2−ξ1)η+(ξ1)η/Ξ1),⋃Λ1∈τℓ♭1(l♭),ϖ1∈ϖ♭1((1+Λ1)η−(1−Λ1)η(1+Λ1)η+(1−Λ1)η−(1−Λ1)η/ϖ1),⋃ϱ1∈Υℓ♭1(l♭),ϕ1∈ϕ♭1((1+ϱ1)η−(1−ϱ1)η(1+ϱ1)η+(1−ϱ1)η−(1−ϱ1)η/ϕ1)}.
In this section, we develop several new Einstein operators for SV-NPHFRNs, namely the single valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging (SV-NPHFREWA) operator, the single valued neutrosophic probabilistic hesitant fuzzy rough Einstein ordered weighted averaging (SV-NPHFREOWA) operator.
Single-valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging operator
Definition 24. Let ℑ⊤={(υ¯♭⊤/Ξ¯♭⊤,τ¯♭⊤/ϖ¯♭⊤,Υ¯♭⊤/ϕ¯♭⊤)(υ♭_⊤/Ξ♭_⊤,τ♭_⊤/ϖ♭_⊤,Υ♭_⊤/ϕ♭_⊤)}(⊤=1,2,.....,p) be a collection of SV-NPHFRNs.
Γ=(Γ1,Γ2,....,Γp)T are the weights of ℑ⊤∈[0,1] with ∑p⊤=1Γ⊤=1. Then, SV-NPHFREWA: SV-NPHFRNp⟶SV-NPHFRN such that
SV−NPHFREWA{(¯ℑ1,¯ℑ2,....,¯ℑp)(ℑ_1,ℑ_2,....,ℑ_p)}={(Γ1.ε¯ℑ1)(Γ1.εℑ_1)⊕ε(Γ2.ε¯ℑ2)(Γ2.εℑ_2)⊕ε...⊕ε(Γp.ε¯ℑp)(Γp.εℑ_p)} |
is called the single valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging operator.
Theorem 1. Let ℑ⊤={(υ¯♭⊤/Ξ¯♭⊤,τ¯♭⊤/ϖ¯♭⊤,Υ¯♭⊤/ϕ¯♭⊤)(υ♭_⊤/Ξ♭_⊤,τ♭_⊤/ϖ♭_⊤,Υ♭_⊤/ϕ♭_⊤)}(⊤=1,2,.....,p) be a collection\ of SV-NPHFRNs.
Then, we can achieve the following:
SV−NPHFREWA{(¯ℑ1,¯ℑ2,....,¯ℑp)(ℑ_1,ℑ_2,....,ℑ_p)} | (4.1a) |
=({(⋃ξ¯ℑ⊤∈υ¯ℑ⊤Ξ¯ℑ⊤∈Ξ¯ℑ⊤Πp⊤=1(1+ξ¯ℑ⊤)Γ⊤−Πp⊤=1(1−ξ¯ℑ⊤)Γ⊤Πp⊤=1(1+ξ¯ℑ⊤)Γ⊤+Πp⊤=1(1−ξ¯ℑ⊤)Γ⊤/Πp⊤=1Ξ¯ℑ⊤)(⋃ξℑ_⊤∈υℑ_⊤Ξℑ_⊤∈Ξℑ_⊤Πp⊤=1(1+ξℑ_⊤)Γ⊤−Πp⊤=1(1−ξℑ_⊤)Γ⊤Πp⊤=1(1+ξℑ_⊤)Γ⊤+Πp⊤=1(1−ξℑ_⊤)Γ⊤/Πp⊤=1Ξℑ_⊤)},{(⋃Λ¯ℑ⊤∈τ¯ℑ⊤ϖ¯ℑ⊤∈ϖ¯ℑ⊤2Πp⊤=1(Λ¯ℑ⊤)Γ⊤Πp⊤=1(2−Λ¯ℑ⊤)Γ⊤+Πp⊤=1(Λ¯ℑ⊤)Γ⊤/Πp⊤=1ϖ¯ℑ⊤)⋃Λℑ_⊤∈τℑ_⊤ϖℑ_⊤∈ϖℑ_⊤2Πp⊤=1(Λℑ_⊤)Γ⊤Πp⊤=1(2−Λℑ_⊤)Γ⊤+Πp⊤=1(Λℑ_⊤)Γ⊤/Πp⊤=1ϖℑ_⊤},{(⋃Υ¯ℑ⊤∈ξ¯ℑ⊤ϕ¯ℑ⊤∈ϕ¯ℑ⊤2Πp⊤=1(Υ¯ℑ⊤)Γ⊤Πp⊤=1(2−Υ¯ℑ⊤)Γ⊤+Πp⊤=1(Υ¯ℑ⊤)Γ⊤/Πp⊤=1ϕ¯ℑ⊤)(⋃Υℑ_⊤∈ξℑ_⊤ϕℑ_⊤∈ϕℑ_⊤2Πp⊤=1(Υℑ_⊤)Γ⊤Πp⊤=1(2−Υℑ_⊤)Γ⊤+Πp⊤=1(Υℑ_⊤)Γ⊤/Πp⊤=1ϕℑ_⊤)}) | (4.1b) |
where Γ=(Γ1,Γ2,....,Γp)T are the weights of ℑ⊤ with Γ⊤∈[0,1] with ∑p⊤=1Γ⊤=1.
We will demonstrate the theorem by mathematical induction. For p=2.
Proof.
SV−NPHFREWA{(¯ℑ1,¯ℑ2)(ℑ_1,ℑ_2)}={(Γ1.ε¯ℑ1)(Γ1.εℑ_1)⊕ε(Γ2.ε¯ℑ2)(Γ2.εℑ_2)}. |
Since both (Γ1.ε¯ℑ1)(Γ1.εℑ_1) and (Γ2.ε¯ℑ2)(Γ2.εℑ_2) is also a SV-NPHFRN, {(Γ1.ε¯ℑ1)(Γ1.εℑ_1)⊕ε(Γ2.ε¯ℑ2)(Γ2.εℑ_2)} is a SV-NPHFRN.
(Γ1.ε¯ℑ1)(Γ1.εℑ_1)=({(⋃ξ¯ℑ1∈υ¯ℑ1Ξ¯ℑ1∈Ξ¯ℑ1(1+ξ¯ℑ1)Γ1−(1−ξ¯ℑ1)Γ1(1+ξ¯ℑ1)Γ1+(1−ξ¯ℑ1)Γ1/Ξ¯ℑ1)(⋃ξℑ_1∈υℑ_1Ξℑ_1∈Ξℑ_1(1+ξℑ_1)Γ1−(1−ξℑ_1)Γ1(1+ξℑ_1)Γ1+(1−ξℑ_1)Γ1/Ξℑ_1)},{(⋃Λ¯ℑ1∈τ¯ℑ1ϖ¯ℑ1∈ϖ¯ℑ12(Λ¯ℑ1)Γ1(2−Λ¯ℑ1)Γ1+(Λ¯ℑ1)Γ1/ϖ¯ℑ1)(⋃Λℑ_1∈τℑ_1ϖℑ_1∈ϖℑ_12(Λℑ_1)Γ1(2−Λℑ_1)Γ1+(Λℑ_1)Γ1/ϖℑ_1)},{(⋃Υ¯ℑ1∈ξ¯ℑ1ϕ¯ℑ1∈ϕ¯ℑ12(Υ¯ℑ1)Γ1(2−Υ¯ℑ1)Γ1+(Υ¯ℑ1)Γ1/ϕ¯ℑ1)(⋃Υℑ_1∈ξℑ_1ϕℑ_1∈ϕℑ_12(Υℑ_1)Γ1(2−Υℑ_1)Γ1+(Υℑ_1)Γ1/ϕℑ_1)}). |
(Γ2.ε¯ℑ2)(Γ2.εℑ_2)=({(⋃ξ2∈υ¯ℑ2Ξ¯ℑ2∈Ξ¯ℑ2(1+ξ¯ℑ2)Γ2−(1−ξ¯ℑ2)Γ2(1+ξ¯ℑ2)Γ2+(1−ξ¯ℑ2)Γ2/Ξ¯ℑ2)(⋃ξ2∈υℑ_2Ξℑ_2∈Ξℑ_2(1+ξℑ_2)Γ2−(1−ξℑ_2)Γ2(1+ξℑ_2)Γ2+(1−ξℑ_2)Γ2/Ξℑ_2)},{(⋃Λ¯ℑ2∈τ¯ℑ2ϖ¯ℑ2∈ϖ¯ℑ22(Λ¯ℑ2)Γ2(2−Λ¯ℑ2)Γ2+(Λ¯ℑ2)Γ2/ϖ¯ℑ2)(⋃Λℑ_2∈τℑ_2ϖℑ_2∈ϖℑ_22(Λℑ_2)Γ2(2−Λℑ_2)Γ2+(Λℑ_2)Γ2/ϖℑ_2)},{(⋃Υ¯ℑ2∈ξ¯ℑ2ϕ¯ℑ2∈ϕ¯ℑ22(Υ¯ℑ2)Γ2(2−Υ¯ℑ2)Γ2+(Υ¯ℑ2)Γ2/ϕ¯ℑ2)(⋃Υℑ_2∈ξℑ_2ϕℑ_2∈ϕℑ_22(Υℑ_2)Γ2(2−Υℑ_2)Γ2+(Υℑ_2)Γ2/ϕℑ_2)}). |
Then
SV−NPHFREWA{(¯ℑ1,¯ℑ2)(ℑ_1,ℑ_2)}={(Γ1.ε¯ℑ1)(Γ1.εℑ_1)⊕ε(Γ2.ε¯ℑ2)(Γ2.εℑ_2)}=({(⋃ξ1∈υ¯ℑ1Ξ¯ℑ1∈Ξ¯ℑ1(1+ξ¯ℑ1)Γ1−(1−ξ¯ℑ1)Γ1(1+ξ¯ℑ1)Γ1+(1−ξ¯ℑ1)Γ1/Ξ¯ℑ1)(⋃ξ1∈υℑ_1Ξℑ_1∈Ξℑ_1(1+ξℑ_1)Γ1−(1−ξℑ_1)Γ1(1+ξℑ1)Γ1+(1−ξℑ1)Γ1/Ξℑ_1)},{(⋃Λ¯ℑ1∈τ¯ℑ1ϖ¯ℑ1∈ϖ¯ℑ12(Λ¯ℑ1)Γ1(2−Λ¯ℑ1)Γ1+(Λ¯ℑ1)Γ1/ϖ¯ℑ1)(⋃Λℑ_1∈τℑ_1ϖℑ_1∈ϖℑ_12(Λℑ_1)Γ1(2−Λℑ_1)Γ1+(Λℑ_1)Γ1/ϖℑ_1)},{(⋃Υ¯ℑ1∈ξ¯ℑ1ϕ¯ℑ1∈ϕ¯ℑ12(Υ¯ℑ1)Γ1(2−Υ¯ℑ1)Γ1+(Υ¯ℑ1)Γ1/ϕ¯ℑ1)(⋃Υℑ_1∈ξℑ_1ϕℑ_1∈ϕℑ_12(Υℑ_1)Γ1(2−Υℑ_1)Γ1+(Υℑ_1)Γ1/ϕℑ_1)})⊕ε({(⋃ξ2∈υ¯ℑ2Ξ¯ℑ2∈Ξ¯ℑ2(1+ξ¯ℑ2)Γ2−(1−ξ¯ℑ2)Γ2(1+ξ¯ℑ2)Γ2+(1−ξ¯ℑ2)Γ2/Ξ¯ℑ2)(⋃ξ2∈υℑ_2Ξℑ_2∈Ξℑ_2(1+ξℑ_2)Γ2−(1−ξℑ_2)Γ2(1+ξℑ_2)Γ2+(1−ξℑ_2)Γ2/Ξℑ_2)},{(⋃Λ¯ℑ2∈τ¯ℑ2ϖ¯ℑ2∈ϖ¯ℑ22(Λℑ2)Γ2(2−Λℑ2)Γ2+(Λℑ2)Γ2/ϖℑ2)(⋃Λℑ_2∈τℑ_2ϖℑ_2∈ϖℑ_22(Λℑ_2)Γ2(2−Λℑ_2)Γ2+(Λℑ_2)Γ2/ϖℑ_2)},{(⋃Υ¯ℑ2∈ξ¯ℑ2ϕ¯ℑ2∈ϕ¯ℑ22(Υ¯ℑ2)Γ2(2−Υ¯ℑ2)Γ2+(Υ¯ℑ2)Γ2/ϕ¯ℑ2)(⋃Υℑ_2∈ξℑ_2ϕℑ_2∈ϕℑ_22(Υℑ_2)Γ2(2−Υℑ_2)Γ2+(Υℑ_2)Γ2/ϕℑ_2)}) |
![]() |
=({(⋃ξ1∈υ¯ℑ1,Ξ¯ℑ1∈Ξ¯ℑ1ξ2∈υ¯ℑ2,Ξ¯ℑ2∈Ξ¯ℑ2(1+ξ¯ℑ1)Γ1−.ε(1+ξ¯ℑ2)Γ2−(1−ξ¯ℑ1)Γ1.ε(1−ξ¯ℑ2)Γ2(1+ξ¯ℑ1)Γ1−.ε(1+ξ¯ℑ2)Γ2+(1−ξ¯ℑ1)Γ1.ε(1−ξ¯ℑ2)Γ2/Ξ¯ℑ1Ξ¯ℑ2)(⋃ξ1∈υℑ_1,Ξℑ_1∈Ξℑ_1ξ2∈υℑ_2,Ξℑ_2∈Ξℑ_2(1+ξℑ_1)Γ1−.ε(1+ξℑ_2)Γ2−(1−ξℑ_1)Γ1.ε(1−ξℑ_2)Γ2(1+ξℑ_1)Γ1−.ε(1+ξℑ_2)Γ2+(1−ξℑ_1)Γ1.ε(1−ξℑ_2)Γ2/Ξℑ_1Ξℑ_2)},{(⋃Λ¯ℑ1∈τ¯ℑ1,ϖ¯ℑ1∈ϖ¯ℑ1Λ¯ℑ2∈τ¯ℑ2,ϖ¯ℑ2∈ϖ¯ℑ22(Λ¯ℑ1)Γ1(Λ¯ℑ2)Γ2(2−Λ¯ℑ1)Γ1.ε(2−Λ¯ℑ2)Γ2+(Λ¯ℑ1)Γ1.ε(Λ¯ℑ2)Γ2/ϖ¯ℑ1ϖ¯ℑ2)(⋃Λℑ_1∈τℑ_1,ϖℑ_1∈ϖℑ_1Λℑ_2∈τℑ_2,ϖℑ_2∈ϖℑ_22(Λℑ_1)Γ1(Λℑ_2)Γ2(2−Λℑ_1)Γ1.ε(2−Λℑ_2)Γ2+(Λℑ_1)Γ1.ε(Λℑ_2)Γ2/ϖℑ_1ϖℑ_2)},{(⋃Υ¯ℑ1∈ξ¯ℑ1,ϕ¯ℑ1∈ϕ¯ℑ1Υ¯ℑ2∈ξ¯ℑ2,ϕ¯ℑ2∈ϕ¯ℑ22(Υ¯ℑ1)Γ1(Υ¯ℑ2)Γ2(2−Υ¯ℑ1)Γ1.ε(2−Υ¯ℑ2)Γ2+(Υ¯ℑ1)Γ1.ε(Υ¯ℑ2)Γ2/ϕ¯ℑ1ϕ¯ℑ2)(⋃Υℑ_1∈ξℑ_1,ϕℑ_1∈ϕℑ_1Υℑ_2∈ξℑ_2,ϕℑ_2∈ϕℑ_22(Υℑ_1)Γ1(Υℑ_2)Γ2(2−Υℑ_1)Γ1.ε(2−Υℑ_2)Γ2+(Υℑ_1)Γ1.ε(Υℑ_2)Γ2/ϕℑ_1ϕℑ_2)}). |
Thus, the result holds for p=2.
Assume that the results holds for p=χ
SV−NPHFREWA{(¯ℑ1,¯ℑ2,....,¯ℑχ)(ℑ_1,ℑ_2,....,ℑ_χ)}=({(⋃ξ⊤∈υ¯ℑ⊤Ξℑ⊤∈Ξℑ⊤Πχ⊤=1(1+ξ¯ℑ⊤)Γ⊤−Πχ⊤=1(1−ξ¯ℑ⊤)Γ⊤Πχ⊤=1(1+ξ¯ℑ⊤)Γ⊤+Πχ⊤=1(1−ξ¯ℑ⊤)Γ⊤/Πχ⊤=1Ξ¯ℑ⊤)(⋃ξ⊤∈υℑ_⊤Ξℑ_⊤∈Ξℑ_⊤Πχ⊤=1(1+ξℑ_⊤)Γ⊤−Πχ⊤=1(1−ξℑ_⊤)Γ⊤Πχ⊤=1(1+ξℑ⊤)Γ⊤+Πχ⊤=1(1−ξℑ⊤)Γ⊤/Πχ⊤=1Ξℑ_⊤)},{(⋃Λ¯ℑ⊤∈τ¯ℑ⊤ϖ¯ℑ⊤∈ϖ¯ℑ⊤2Πχ⊤=1(Λ¯ℑ⊤)Γ⊤Πχ⊤=1(2−Λ¯ℑ⊤)Γ⊤+Πχ⊤=1(Λ¯ℑ⊤)Γ⊤/Πχ⊤=1ϖ¯ℑ⊤)(⋃Λℑ_⊤∈τℑ_⊤ϖℑ_⊤∈ϖℑ_⊤2Πχ⊤=1(Λℑ_⊤)Γ⊤Πχ⊤=1(2−Λℑ_⊤)Γ⊤+Πχ⊤=1(Λℑ_⊤)Γ⊤/Πχ⊤=1ϖℑ_⊤)},{(⋃Υ¯ℑ⊤∈ξ¯ℑ⊤ϕ¯ℑ⊤∈ϕ¯ℑ⊤2Πχ⊤=1(Υ¯ℑ⊤)Γ⊤Πχ⊤=1(2−Υ¯ℑ⊤)Γ⊤+Πχ⊤=1(Υ¯ℑ⊤)Γ⊤/Πχ⊤=1ϕ¯ℑ⊤)(⋃Υℑ_⊤∈ξℑ_⊤ϕℑ_⊤∈ϕℑ_⊤2Πχ⊤=1(Υℑ_⊤)Γ⊤Πχ⊤=1(2−Υℑ_⊤)Γ⊤+Πχ⊤=1(Υℑ_⊤)Γ⊤/Πχ⊤=1ϕℑ_⊤)}). |
Now we will prove for p=χ+1
SV−NPHFREWA{(¯ℑ1,¯ℑ2,....,¯ℑχ+1)(ℑ_1,ℑ_2,....,ℑ_χ+1)}=SV−NPHFREWA{(¯ℑ1,¯ℑ2,....,¯ℑχ)(ℑ_1,ℑ_2,....,ℑ_χ)}⊕ε{(Γχ+1.ε¯ℑχ+1)(Γχ+1.εℑ_χ+1)}=({(⋃ξ⊤∈υ¯ℑ⊤Ξ¯ℑ⊤∈Ξ¯ℑ⊤Πχ⊤=1(1+ξ¯ℑ⊤)Γ⊤−Πχ⊤=1(1−ξ¯ℑ⊤)Γ⊤Πχ⊤=1(1+ξ¯ℑ⊤)Γ⊤+Πχ⊤=1(1−ξ¯ℑ⊤)Γ⊤/Πχ⊤=1Ξ¯ℑ⊤)(⋃ξ⊤∈υℑ_⊤Ξℑ_⊤∈Ξℑ_⊤Πχ⊤=1(1+ξℑ_⊤)Γ⊤−Πχ⊤=1(1−ξℑ_⊤)Γ⊤Πχ⊤=1(1+ξℑ_⊤)Γ⊤+Πχ⊤=1(1−ξℑ_⊤)Γ⊤/Πχ⊤=1Ξℑ_⊤)},{(⋃Λ¯ℑ⊤∈τ¯ℑ⊤ϖ¯ℑ⊤∈ϖ¯ℑ⊤2Πχ⊤=1(Λ¯ℑ⊤)Γ⊤Πχ⊤=1(2−Λ¯ℑ⊤)Γ⊤+Πχ⊤=1(Λ¯ℑ⊤)Γ⊤/Πχ⊤=1ϖ¯ℑ⊤)(⋃Λℑ_⊤∈τℑ_⊤ϖℑ_⊤∈ϖℑ_⊤2Πχ⊤=1(Λℑ_⊤)Γ⊤Πχ⊤=1(2−Λℑ_⊤)Γ⊤+Πχ⊤=1(Λℑ_⊤)Γ⊤/Πχ⊤=1ϖℑ_⊤)},{(⋃Υ¯ℑ⊤∈ξ¯ℑ⊤ϕ¯ℑ⊤∈ξ¯ℑ⊤2Πχ⊤=1(Υ¯ℑ⊤)Γ⊤Πχ⊤=1(2−Υ¯ℑ⊤)Γ⊤+Πχ⊤=1(Υ¯ℑ⊤)Γ⊤/Πχ⊤=1ϕ¯ℑ⊤)(⋃Υℑ_⊤∈ξℑ_⊤ϕℑ_⊤∈ξℑ_⊤2Πχ⊤=1(Υℑ_⊤)Γ⊤Πχ⊤=1(2−Υℑ_⊤)Γ⊤+Πχ⊤=1(Υℑ_⊤)Γ⊤/Πχ⊤=1ϕℑ_⊤)})⊕ |
ε({(⋃ξχ+1∈υℑχ+1Ξℑχ+1∈Ξℑχ+1(1+ξℑχ+1)Γχ+1−(1−ξℑχ+1)Γχ+1(1+ξℑχ+1)Γχ+1+(1−ξℑχ+1)Γχ+1/Ξℑχ+1)(⋃ξχ+1∈υℑ_χ+1Ξℑ_χ+1∈Ξℑ_χ+1(1+ξℑ_χ+1)Γχ+1−(1−ξℑ_χ+1)Γχ+1(1+ξℑχ+1)Γχ+1+(1−ξℑ_χ+1)Γχ+1/Ξℑ_χ+1)},{(⋃Λℑχ+1∈τℑχ+1ϖℑχ+1∈ϖℑχ+12(Λℑχ+1)Γχ+1(2−Λℑχ+1)Γχ+1+(Λℑχ+1)Γχ+1/ϖℑχ+1)(⋃Λℑ_χ+1∈τℑ_χ+1ϖℑ_χ+1∈ϖℑ_χ+12(Λℑχ+1)Γχ+1(2−Λℑ_χ+1)Γχ+1+(Λℑ_χ+1)Γχ+1/ϖℑ_χ+1)},{(⋃Υℑχ+1∈ξℑχ+1ϕℑχ+1∈ϕℑχ+12(Υℑχ+1)Γχ+1(2−Υℑχ+1)Γχ+1+(Υℑχ+1)Γχ+1/ϕℑχ+1)(⋃Υℑ_χ+1∈ξℑ_χ+1ϕℑ_χ+1∈ϕℑ_χ+12(Υℑ_χ+1)Γχ+1(2−Υℑ_χ+1)Γχ+1+(Υℑ_χ+1)Γχ+1/ϕℑ_χ+1)}) |
=({(⋃ξ⊤∈υ¯ℑ⊤Ξℑ⊤∈Ξℑ⊤Πχ+1⊤=1(1+ξ¯ℑ⊤)Γ⊤−Πχ+1⊤=1(1−ξ¯ℑ⊤)Γ⊤Πχ+1⊤=1(1+ξ¯ℑ⊤)Γ⊤+Πχ+1⊤=1(1−ξ¯ℑ⊤)Γ⊤/Πχ+1⊤=1Ξ¯ℑ⊤)(⋃ξ⊤∈υℑ_⊤Ξℑ_⊤∈Ξℑ_⊤Πχ+1⊤=1(1+ξℑ_⊤)Γ⊤−Πχ+1⊤=1(1−ξℑ_⊤)Γ⊤Πχ+1⊤=1(1+ξℑ_⊤)Γ⊤+Πχ+1⊤=1(1−ξℑ_⊤)Γ⊤/Πχ+1⊤=1Ξℑ_⊤)},{(⋃Λ¯ℑ⊤∈τ¯ℑ⊤ϖ¯ℑ⊤∈ϖ¯ℑ⊤2Πχ+1⊤=1(Λ¯ℑ⊤)Γ⊤Πχ+1⊤=1(2−Λ¯ℑ⊤)Γ⊤+Πχ+1⊤=1(Λ¯ℑ⊤)Γ⊤/Πχ+1⊤=1ϖ¯ℑ⊤)(⋃Λℑ_⊤∈τℑ_⊤ϖℑ_⊤∈ϖℑ_⊤2Πχ+1⊤=1(Λℑ_⊤)Γ⊤Πχ+1⊤=1(2−Λℑ_⊤)Γ⊤+Πχ+1⊤=1(Λℑ_⊤)Γ⊤/Πχ+1⊤=1ϖℑ_⊤)},{(⋃Υ¯ℑχ+1∈ξ¯ℑχ+1ϕ¯ℑχ+1∈ϕ¯ℑχ+12Πχ+1⊤=1(Υ¯ℑ⊤)Γ⊤Πχ+1⊤=1(2−Υ¯ℑ⊤)Γ⊤+Πχ+1⊤=1(Υ¯ℑ⊤)Γ⊤/Πχ+1⊤=1ϕ¯ℑ⊤)(⋃Υℑ_χ+1∈ξℑ_χ+1ϕℑ_χ+1∈ϕℑ_χ+12Πχ+1⊤=1(Υℑ_⊤)Γ⊤Πχ+1⊤=1(2−Υℑ_⊤)Γ⊤+Πχ+1⊤=1(Υℑ_⊤)Γ⊤/Πχ+1⊤=1ϕℑ_⊤)}). |
Thus
SV−NPHFREWA{(¯ℑ1,¯ℑ2,....,¯ℑp)(ℑ_1,ℑ_2,....,ℑ_p)}=({(⋃ξ⊤∈υ¯ℑ⊤Ξ¯ℑ⊤∈Ξ¯ℑ⊤Πp⊤=1(1+ξ¯ℑ⊤)Γ⊤−Πp⊤=1(1−ξ¯ℑ⊤)Γ⊤Πp⊤=1(1+ξ¯ℑ⊤)Γ⊤+Πp⊤=1(1−ξ¯ℑ⊤)Γ⊤/Πp⊤=1Ξ¯ℑ⊤)(⋃ξ⊤∈υℑ_⊤Ξℑ_⊤∈Ξℑ_⊤Πp⊤=1(1+ξℑ_⊤)Γ⊤−Πp⊤=1(1−ξℑ_⊤)Γ⊤Πp⊤=1(1+ξℑ_⊤)Γ⊤+Πp⊤=1(1−ξℑ_⊤)Γ⊤/Πp⊤=1Ξℑ_⊤)},{(⋃Λ¯ℑ⊤∈τ¯ℑ⊤ϖ¯ℑ⊤∈ϖ¯ℑ⊤2Πp⊤=1(Λ¯ℑ⊤)Γ⊤Πp⊤=1(2−Λ¯ℑ⊤)Γ⊤+Πp⊤=1(Λ¯ℑ⊤)Γ⊤/Πp⊤=1ϖ¯ℑ⊤)(⋃Λℑ_⊤∈τℑ_⊤ϖℑ_⊤∈ϖℑ_⊤2Πp⊤=1(Λℑ_⊤)Γ⊤Πp⊤=1(2−Λℑ_⊤)Γ⊤+Πp⊤=1(Λℑ_⊤)Γ⊤/Πp⊤=1ϖℑ_⊤)},{(⋃Υ¯ℑ⊤∈ξ¯ℑ⊤ϕ¯ℑ⊤∈ϕ¯ℑ⊤2Πp⊤=1(Υ¯ℑ⊤)Γ⊤Πp⊤=1(2−Υ¯ℑ⊤)Γ⊤+Πp⊤=1(Υ¯ℑ⊤)Γ⊤/Πp⊤=1ϕ¯ℑ⊤)(⋃Υℑ_⊤∈ξℑ_⊤ϕℑ_⊤∈ϕℑ_⊤2Πp⊤=1(Υℑ_⊤)Γ⊤Πp⊤=1(2−Υℑ_⊤)Γ⊤+Πp⊤=1(Υℑ_⊤)Γ⊤/Πp⊤=1ϕℑ_⊤)}). |
There are some properties which are fulfilled by the SV-NPHFREWA as follows:
Theorem 2. Let ℑ⊤={(υ¯♭⊤/Ξ¯♭⊤,τ¯♭⊤/ϖ¯♭⊤,Υ¯♭⊤/ϕ¯♭⊤)(υ♭_⊤/Ξ♭_⊤,τ♭_⊤/ϖ♭_⊤,Υ♭_⊤/ϕ♭_⊤)}(⊤=1,2,.....,p)
be a collection of SV-NPHFRNs, Γ=(Γ1,Γ2,....,Γp)T are the weights of ℑ⊤ with Γ⊤∈[0,1] with ∑p⊤=1Γ⊤=1; then we have the following:
(1) Boundary:
{(¯ℑ−)(ℑ_)}≤SV−NPHFREWA{(¯ℑ1,¯ℑ2,....,¯ℑp)(ℑ_1,ℑ_2,....,ℑ_p)}≤{(¯ℑ+)(ℑ_)} |
where
{(¯ℑ−)(ℑ_)}={({(min1≤⊤≤pmin¯ξℑ⊤∈¯υℓ♭⊤¯ξℑ⊤/¯Ξ♭1¯Ξ♭2.....¯Ξ♭p)(max1≤⊤≤pmaxα_ℑ⊤∈υ_ℓ♭⊤α_ℑ⊤/Ξ_♭1Ξ_♭2.....Ξ_♭p)},{(max1≤⊤≤pmax¯Λℑ⊤∈¯τℓ♭⊤¯Λℑ⊤/¯ϖ♭1¯ϖ♭2.....¯ϖ♭p)(min1≤⊤≤pminΛ_ℑ⊤∈τ_ℓ♭⊤Λ_ℑ⊤/ϖ_♭1ϖ_♭2.....ϖ_♭p)},{(max1≤⊤≤pmax¯Υℑ⊤∈¯ξℓ♭⊤¯Υℑ⊤/¯ϕ♭1¯ϕ♭2.....¯ϕ♭p)(min1≤⊤≤pminΥ_ℑ⊤∈α_ℓ♭⊤Υ_ℑ⊤/♭_♭1♭_♭2.....♭_♭p)})}{(¯ℑ+)(ℑ_)}={({(max1≤⊤≤pmax¯ξℑ⊤∈¯υℓ♭⊤¯ξℑ⊤/¯Ξ♭1¯Ξ♭2.....¯Ξ♭p)(min1≤⊤≤pminα_ℑ⊤∈υ_ℓ♭⊤α_ℑ⊤/Ξ_♭1Ξ_♭2.....Ξ_♭p)},{(min1≤⊤≤pmin¯Λℑ⊤∈¯τℓ♭⊤¯Λℑ⊤/¯ϖ♭1¯ϖ♭2.....¯ϖ♭p)(max1≤⊤≤pmaxΛ_ℑ⊤∈τ_ℓ♭⊤Λ_ℑ⊤/ϖ_♭1ϖ_♭2.....ϖ_♭p)},{(min1≤⊤≤pmin¯Υℑ⊤∈¯ξℓ♭⊤¯Υℑ⊤/¯ϕ♭1¯ϕ♭2.....¯ϕ♭p)(max1≤⊤≤pmaxΥ_ℑ⊤∈α_ℓ♭⊤Υ_ℑ⊤/♭_♭1♭_♭2.....♭_♭p)})} |
(2) Monotonicity: Let (¯ℑ∗⊤,ℑ_∗⊤)={(υ¯♭⊤/Ξ¯♭⊤,τ¯♭⊤/ϖ¯♭⊤,Υ¯♭⊤/ϕ¯♭⊤)(υ♭_⊤/Ξ♭_⊤,τ♭_⊤/ϖ♭_⊤,Υ♭_⊤/ϕ♭_⊤)}(⊤=1,2,.....,p)
be a collection\ of SV-NPHFRNs. If (¯ℑ⊤,ℑ_⊤)≤(¯ℑ∗⊤,ℑ_∗⊤), while the probabilities are same, then
SV−NPHFEWA(ℑ1,ℑ2,....,ℑp)≤SV−NPHFEWA(ℑ∗1,ℑ∗2,....,ℑ∗p). |
Proof. Let f(ς)=1−ς1+ς,ς∈[0,1]. Then, f′(ς)=−2(1+ς)<0, so f(ς) is a decreasing function.
Let {max(¯ξℑ⊤)max(α_ℑ⊤)}={(max1≤⊤≤pmax¯ξℑ⊤∈¯υℓ♭⊤(¯ξℑ⊤))(min1≤⊤≤pminα_ℑ⊤∈υ_ℓ♭⊤(α_ℑ⊤))} and
{min(¯ξℑ⊤)min(α_ℑ⊤)}={(min1≤⊤≤pmin¯ξℑ⊤∈¯υℓ♭⊤(¯ξℑ⊤))(max1≤⊤≤pmaxα_ℑ⊤∈υ_ℓ♭⊤(α_ℑ⊤))}
{(min(¯ξℑ⊤)≤(¯ξℑ⊤)≤max(¯ξℑ⊤) forall ⊤=1,2,.....,p)(max(α_ℑ⊤)≤(α_ℑ⊤)≤min(α_ℑ⊤) forall ⊤=1,2,.....,p)}{f(max(¯ξℑ⊤)≤(¯ξℑ⊤)≤f(min(¯ξℑ⊤))forall ⊤=1,2,.....,pf(min(α_ℑ⊤)≤(α_ℑ⊤)≤f(max(α_ℑ⊤))forall ⊤=1,2,.....,p}{(1−max(¯ξℑ⊤)1+max(¯ξℑ⊤)≤1−(¯ξℑ⊤)1+(¯ξℑ⊤)≤1−min(¯ξℑ⊤)1+min(¯ξℑ⊤))(1−min(α_ℑ⊤)1+min(α_ℑ⊤)≤1−(α_ℑ⊤)1+(α_ℑ⊤)≤1−max(α_ℑ⊤)1+max(α_ℑ⊤))}. |
Since Γ=(Γ1,Γ2,....,Γp)T are the weights of (¯ℑ⊤,ℑ_⊤) with Γ⊤∈[0,1] with ∑p⊤=1Γ⊤=1, we have
{{(1−max(¯ξℑ⊤)1+max(¯ξℑ⊤))Γ⊤≤(1−¯ξℑ⊤1+¯ξℑ⊤)Γ⊤≤(1−min(¯ξℑ⊤)1+min(¯ξℑ⊤))Γ⊤}(1−min(α_ℑ⊤)1+min(α_ℑ⊤))Γ⊤≤(1−α_ℑ⊤1+α_ℑ⊤)Γ⊤≤(1−max(α_ℑ⊤)1+max(α_ℑ⊤))Γ⊤},{{p∏⊤=1(1−max(¯ξℑ⊤)1+max(¯ξℑ⊤))Γ⊤≤p∏⊤=1(1−¯ξℑ⊤1+¯ξℑ⊤)Γ⊤≤p∏⊤=1(1−min(¯ξℑ⊤)1+min(¯ξℑ⊤))Γ⊤}{p∏⊤=1(1−min(α_ℑ⊤)1+min(α_ℑ⊤))Γ⊤≤p∏⊤=1(1−α_ℑ⊤1+α_ℑ⊤)Γ⊤≤p∏⊤=1(1−max(α_ℑ⊤)1+max(α_ℑ⊤))Γ⊤}},{{(1−max(¯ξℑ⊤)1+max(¯ξℑ⊤))∑p⊤=1Γ⊤≤p∏⊤=1(1−¯ξℑ⊤1+¯ξℑ⊤)Γ⊤≤(1−min(¯ξℑ⊤)1+min(¯ξℑ⊤))∑p⊤=1Γ⊤}{(1−min(α_ℑ⊤)1+min(α_ℑ⊤))∑p⊤=1Γ⊤≤p∏⊤=1(1−α_ℑ⊤1+α_ℑ⊤)Γ⊤≤(1−max(α_ℑ⊤)1+max(α_ℑ⊤))∑p⊤=1Γ⊤}} |
⟺{((1−max(¯ξℑ⊤)1+max(¯ξℑ⊤))≤p∏⊤=1(1−¯ξℑ⊤1+¯ξℑ⊤)Γ⊤≤(1−min(¯ξℑ⊤)1+min(¯ξℑ⊤)))((1−max(α_ℑ⊤)1+max(α_ℑ⊤))≤p∏⊤=1(1−α_ℑ⊤1+α_ℑ⊤)Γ⊤≤(1−max(α_ℑ⊤)1+max(α_ℑ⊤)))} |
⟺{((21+min(¯ξℑ⊤))≤1+p∏⊤=1(1−¯ξℑ⊤1+¯ξℑ⊤)Γ⊤≤(21+min(¯ξℑ⊤)))((21+min(α_ℑ⊤))≤1+p∏⊤=1(1−α_ℑ⊤1+α_ℑ⊤)Γ⊤≤(21+min(α_ℑ⊤)))} |
⟺{((1+min(¯ξℑ⊤)2)≤11+p∏⊤=1(1−¯ξℑ⊤1+¯ξℑ⊤)Γ⊤≤(1+max(¯ξℑ⊤)2))((1+max(α_ℑ⊤)2)≤11+p∏⊤=1(1−α_ℑ⊤1+α_ℑ⊤)Γ⊤≤(1+min(α_ℑ⊤)2))} |
⟺{((1+min(¯ξℑ⊤))≤21+p∏⊤=1(1−¯ξℑ⊤1+¯ξℑ⊤)Γ⊤≤(1+max(¯ξℑ⊤)))((1+max(α_ℑ⊤))≤21+p∏⊤=1(1−α_ℑ⊤1+α_ℑ⊤)Γ⊤≤(1+min(α_ℑ⊤)))} |
⟺{(min(¯ξℑ⊤)≤21+p∏⊤=1(1−¯ξℑ⊤1+¯ξℑ⊤)Γ⊤−1≤max(¯ξℑ⊤))(max(α_ℑ⊤)≤21+p∏⊤=1(1−α_ℑ⊤1+α_ℑ⊤)Γ⊤−1≤min(α_ℑ⊤))} |
⟺{(min(¯ξℑ⊤)≤p∏⊤=1(1+¯ξℑ⊤)Γ⊤−p∏⊤=1(1−¯ξℑ⊤)Γ⊤p∏⊤=1(1+¯ξℑ⊤)Γ⊤+p∏⊤=1(1−¯ξℑ⊤)Γ⊤≤max(¯ξℑ⊤))(max(α_ℑ⊤)≤p∏⊤=1(1+α_ℑ⊤)Γ⊤−p∏⊤=1(1−α_ℑ⊤)Γ⊤p∏⊤=1(1+α_ℑ⊤)Γ⊤+p∏⊤=1(1−α_ℑ⊤)Γ⊤≤min(α_ℑ⊤))}. |
Thus,
{(minℑ⊤¯ξ≤p∏⊤=1(1+¯ξℑ⊤)Γ⊤−p∏⊤=1(1−¯ξℑ⊤)Γ⊤p∏⊤=1(1+¯ξℑ⊤)Γ⊤+p∏⊤=1(1−¯ξℑ⊤)Γ⊤≤max¯ξℑ⊤)(maxα_ℑ⊤≤p∏⊤=1(1+α_ℑ⊤)Γ⊤−p∏⊤=1(1−α_ℑ⊤)Γ⊤p∏⊤=1(1+α_ℑ⊤)Γ⊤+p∏⊤=1(1−α_ℑ⊤)Γ⊤≤minα_ℑ⊤)}. |
Consider g(y)=2−yy,y∈(0,1]. Then, g′(y)=−2y,i.e.,g(y) is a decreasing function on (0,1]. Let
max(¯Λℑ⊤,Λ_ℑ⊤)={(max1≤⊤≤pmax¯Λℑ⊤∈τℓ♭⊤¯Λℑ⊤)(min1≤⊤≤pminΛ_ℑ⊤∈τℓ♭⊤Λ_ℑ⊤)},min(¯Λℑ⊤,Λ_ℑ⊤)={(min1≤⊤≤pmin¯Λℑ⊤∈τℓ♭⊤¯Λℑ⊤)(max1≤⊤≤pmaxΛ_ℑ⊤∈τℓ♭⊤Λ_ℑ⊤)}, |
{(min(¯Λℑ⊤)≤(¯Λℑ⊤)≤max(¯Λℑ⊤) for all ⊤=1,2,.....,p)(max(Λ_ℑ⊤)≤(Λ_ℑ⊤)≤min(Λ_ℑ⊤) for all ⊤=1,2,.....,p)} |
{(g(max(¯Λℑ⊤))≤g(¯Λℑ⊤)≤g(min(¯Λℑ⊤)) for all ⊤=1,2,.....,p)(g(min(Λ_ℑ⊤))≤g(Λ_ℑ⊤)≤g(max(Λ_ℑ⊤)) for all ⊤=1,2,.....,p)} |
{(2−max(¯Λℑ⊤)max(¯Λℑ⊤)≤2−(¯Λℑ⊤)(¯Λℑ⊤)≤2−min(¯Λℑ⊤)min(¯Λℑ⊤))(2−min(Λ_ℑ⊤)min(Λ_ℑ⊤)≤2−(Λ_ℑ⊤)(Λ_ℑ⊤)≤2−max(Λ_ℑ⊤)max(Λ_ℑ⊤))} |
{((2−max(¯Λℑ⊤)max(¯Λℑ⊤))Γ⊤≤(2−¯Λℑ⊤¯Λℑ⊤)Γ⊤≤(2−min(¯Λℑ⊤)min(¯Λℑ⊤))Γ⊤)((2−min(Λ_ℑ⊤)min(Λ_ℑ⊤))Γ⊤≤(2−Λ_ℑ⊤Λ_ℑ⊤)Γ⊤≤(2−max(Λ_ℑ⊤)max(Λ_ℑ⊤))Γ⊤)} |
{(p∏⊤=1(2−max(¯Λℑ⊤)max(¯Λℑ⊤))Γ⊤≤p∏⊤=1(2−¯Λℑ⊤¯Λℑ⊤)Γ⊤≤p∏⊤=1(2−min(¯Λℑ⊤)min(¯Λℑ⊤))Γ⊤)(p∏⊤=1(2−min(Λ_ℑ⊤)min(Λ_ℑ⊤))Γ⊤≤p∏⊤=1(2−Λ_ℑ⊤Λ_ℑ⊤)Γ⊤≤p∏⊤=1(2−max(Λ_ℑ⊤)max(Λ_ℑ⊤))Γ⊤)} |
{((2−max(¯Λℑ⊤)max(¯Λℑ⊤))∑p⊤=1Γ⊤≤p∏⊤=1(2−¯Λℑ⊤¯Λℑ⊤)Γ⊤≤(2−min(¯Λℑ⊤)min(¯Λℑ⊤))∑p⊤=1Γ⊤)((2−min(Λ_ℑ⊤)min(Λ_ℑ⊤))∑p⊤=1Γ⊤≤p∏⊤=1(2−Λ_ℑ⊤Λ_ℑ⊤)Γ⊤≤(2−max(Λ_ℑ⊤)max(Λ_ℑ⊤))∑p⊤=1Γ⊤)} |
{((2−max(¯Λℑ⊤)max(¯Λℑ⊤))≤p∏⊤=1(2−¯Λℑ⊤¯Λℑ⊤)Γ⊤≤(2−min(¯Λℑ⊤)min(¯Λℑ⊤)))((2−min(Λ_ℑ⊤)min(Λ_ℑ⊤))≤p∏⊤=1(2−Λ_ℑ⊤Λ_ℑ⊤)Γ⊤≤(2−max(Λ_ℑ⊤)max(Λ_ℑ⊤)))} |
{(2max(¯Λℑ⊤)≤1+p∏⊤=1(2−¯Λℑ⊤¯Λℑ⊤)Γ⊤≤2min(¯Λℑ⊤))(2min(Λ_ℑ⊤)≤1+p∏⊤=1(2−Λ_ℑ⊤Λ_ℑ⊤)Γ⊤≤2max(Λ_ℑ⊤))} |
{(max(¯Λℑ⊤)2≤11+p∏⊤=1(2−¯Λℑ⊤¯Λℑ⊤)Γ⊤≤min(¯Λℑ⊤)2)(min(Λ_ℑ⊤)2≤11+p∏⊤=1(2−Λ_ℑ⊤Λ_ℑ⊤)Γ⊤≤max(Λ_ℑ⊤)2)} |
\begin{equation*} \left\{ \begin{array}{c} \left( \max \left( \overline{\Lambda }_{\Im _{\top }}\right) \leq \frac{2}{ 1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\left( \overline{\Lambda }_{\Im _{\top }}\right) }{\left( \overline{\Lambda }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}}\leq \min \left( \overline{\Lambda }_{\Im _{\top }}\right) \right) \\ \left( \min \left( \underline{\Lambda }_{\Im _{\top }}\right) \leq \frac{2}{ 1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{\Lambda }_{\Im _{\top }}}{\underline{\Lambda }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}}\leq \max \left( \underline{\Lambda }_{\Im _{\top }}\right) \right) \end{array} \right\} \end{equation*} |
\begin{equation*} \left\{ \begin{array}{c} \left( \max \left( \overline{\Lambda }_{\Im _{\top }}\right) \leq \frac{ 2\prod\limits_{\top = 1}^{p}\left( \left( \overline{\Lambda }_{\Im _{\top }}\right) \right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2- \overline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \overline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}\leq \min \left( \overline{\Lambda }_{\Im _{\top }}\right) \right) \\ \left( \min \left( \underline{\Lambda }_{\Im _{\top }}\right) \leq \frac{ 2\prod\limits_{\top = 1}^{p}\left( \left( \underline{\Lambda }_{\Im _{\top }}\right) \right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2- \underline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \underline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}\leq \max \left( \underline{\Lambda }_{\Im _{\top }}\right) \right) \end{array} \right\} \end{equation*} |
\begin{equation*} \left\{ \begin{array}{c} \left( \max_{\Im _{\top }}\overline{\Lambda }\leq \frac{2\prod\limits_{\top = 1}^{p}\left( \overline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}{ \prod\limits_{\top = 1}^{p}\left( 2-\overline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \overline{ \Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}\leq \min \overline{ \Lambda }_{\Im _{\top }}\right) \\ \left( \min \underline{\Lambda }_{\Im _{\top }}\leq \frac{ 2\prod\limits_{\top = 1}^{p}\left( \underline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2-\underline{ \Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \underline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}} \leq \max \underline{\Lambda }_{\Im _{\top }}\right) \end{array} \right\}. \end{equation*} |
Consider g(y) = \frac{2-y}{y}, y\in (0, 1]. Then, g^{\prime }(y) = -\frac{2}{y}, i.e., g(y) is a decreasing function on (0, 1].
Let max \Upsilon _{\Im _{\top }} = \max_{1\leq \top \leq p}\max_{\Upsilon _{\Im _{\top }}\in \xi _{\ell _{\flat _{\top }}}}\Upsilon _{\Im _{\top }} and min \Upsilon _{\Im _{\top }} = min _{1\leq \top \leq p} min _{\Upsilon _{\Im _{\top }}\in \xi _{\ell _{\flat _{\top }}}}.
\begin{eqnarray*} \max (\overline{\Upsilon }_{\Im _{\top }},\underline{\Upsilon }_{\Im _{\top }}) & = &\left\{ \begin{array}{c} \left( \max_{1\leq \top \leq p}\max_{\overline{\Upsilon }_{\Im _{\top }}\in \xi _{\ell _{\flat _{\top }}}}\overline{\Upsilon }_{\Im _{\top }}\right) \\ \left( \min_{1\leq \top \leq p}\min_{\underline{\Upsilon }_{\Im _{\top }}\in \xi _{\ell _{\flat _{\top }}}}\underline{\Upsilon }_{\Im _{\top }}\right) \end{array} \right\} , \\ \min \left( \overline{\Upsilon }_{\Im _{\top }},\underline{\Upsilon }_{\Im _{\top }}\right) & = &\left\{ \begin{array}{c} \left( \min_{1\leq \top \leq p}\min_{\overline{\Upsilon }_{\Im _{\top }}\in \xi _{\ell _{\flat _{\top }}}}\overline{\Upsilon }_{\Im _{\top }}\right) \\ \left( \max_{1\leq \top \leq p}\max_{\underline{\Upsilon }_{\Im _{\top }}\in \xi _{\ell _{\flat _{\top }}}}\underline{\Upsilon }_{\Im _{\top }}\right) \end{array} \right\} , \end{eqnarray*} |
\begin{equation*} \left\{ \begin{array}{c} \left( \min \left( \overline{\Upsilon }_{\Im _{\top }}\right) \leq \left( \overline{\Upsilon }_{\Im _{\top }}\right) \leq \max \left( \overline{ \Upsilon }_{\Im _{\top }}\right) \text{ for all }\top = 1,2,.....,p\right) \\ \left( \max \left( \underline{\Upsilon }_{\Im _{\top }}\right) \leq \left( \underline{\Upsilon }_{\Im _{\top }}\right) \leq \min \left( \underline{ \Upsilon }_{\Im _{\top }}\right) \text{ for all }\top = 1,2,.....,p\right) \end{array} \right\} \end{equation*} |
\begin{equation*} \left\{ \begin{array}{c} \left( g\left( \max \left( \overline{\Upsilon }_{\Im _{\top }}\right) \right) \leq g\left( \overline{\Upsilon }_{\Im _{\top }}\right) \leq g\left( \min \left( \overline{\Upsilon }_{\Im _{\top }}\right) \right) \text{ for all }\top = 1,2,.....,p\right) \\ \left( g\left( \min \left( \underline{\Upsilon }_{\Im _{\top }}\right) \right) \leq g\left( \underline{\Upsilon }_{\Im _{\top }}\right) \leq g\left( \max \left( \underline{\Upsilon }_{\Im _{\top }}\right) \right) \text{ for all }\top = 1,2,.....,p\right) \end{array} \right\} \end{equation*} |
\begin{equation*} \left\{ \begin{array}{c} \left( \frac{2-\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\leq \frac{2-\left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\left( \overline{\Upsilon } _{\Im _{\top }}\right) }\leq \frac{2-\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) } \right) \\ \left( \frac{2-\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{ \min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\leq \frac{2-\left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\left( \underline{\Upsilon } _{\Im _{\top }}\right) }\leq \frac{2-\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) } \right) \end{array} \right\} \end{equation*} |
\begin{equation*} \left\{ \begin{array}{c} \left( \left( \frac{2-\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\overline{\Upsilon }_{\Im _{\top }}}{\overline{ \Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \overline{ \Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\right) \\ \left( \left( \frac{2-\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\underline{\Upsilon }_{\Im _{\top }}}{ \underline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\right) \end{array} \right\} \end{equation*} |
\begin{equation*} \left\{ \begin{array}{c} \left( \prod\limits_{\top = 1}^{p}\left( \frac{2-\max \left( \overline{ \Upsilon }_{\Im _{\top }}\right) }{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\overline{\Upsilon }_{\Im _{\top }}}{\overline{ \Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\right) \\ \left( \prod\limits_{\top = 1}^{p}\left( \frac{2-\min \left( \underline{ \Upsilon }_{\Im _{\top }}\right) }{\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{\Upsilon }_{\Im _{\top }}}{\underline{ \Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\right) \end{array} \right\} \end{equation*} |
\begin{equation*} \left\{ \begin{array}{c} \left( \left( \frac{2-\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\sum_{\top = 1}^{p}\Gamma _{\top }}\leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\overline{\Upsilon }_{\Im _{\top }}}{\overline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \overline{\Upsilon } _{\Im _{\top }}\right) }\right) ^{\sum_{\top = 1}^{p}\Gamma _{\top }}\right) \\ \left( \left( \frac{2-\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\sum_{\top = 1}^{p}\Gamma _{\top }}\leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{\Upsilon }_{\Im _{\top }}}{\underline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \underline{ \Upsilon }_{\Im _{\top }}\right) }\right) ^{\sum_{\top = 1}^{p}\Gamma _{\top }}\right) \end{array} \right\} \end{equation*} |
\begin{equation*} \left\{ \begin{array}{c} \left( \left( \frac{2-\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) \leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\overline{\Upsilon }_{\Im _{\top }} }{\overline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) \right) \\ \left( \left( \frac{2-\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) \leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{\Upsilon }_{\Im _{\top }}}{\underline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) \right) \end{array} \right\} \end{equation*} |
\begin{equation*} \left\{ \begin{array}{c} \left( \frac{2}{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\leq 1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\overline{\Upsilon }_{\Im _{\top }}}{\overline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \frac{ 2}{\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) \\ \left( \frac{2}{\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) } \leq 1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{\Upsilon }_{\Im _{\top }}}{\underline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \frac{2}{\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) } \right) \end{array} \right\} \end{equation*} |
\begin{equation*} \left\{ \begin{array}{c} \left( \frac{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{2}\leq \frac{1}{1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\overline{\Upsilon } _{\Im _{\top }}}{\overline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}}\leq \frac{\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{2} \right) \\ \left( \frac{\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{2} \leq \frac{1}{1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{ \Upsilon }_{\Im _{\top }}}{\underline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}}\leq \frac{\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{2}\right) \end{array} \right\} \end{equation*} |
\begin{equation*} \left\{ \begin{array}{c} \left( \max \left( \overline{\Upsilon }_{\Im _{\top }}\right) \leq \frac{2}{ 1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\left( \overline{\Upsilon }_{\Im _{\top }}\right) } \right) ^{\Gamma _{\top }}}\leq \min \left( \overline{\Upsilon }_{\Im _{\top }}\right) \right) \\ \left( \min \left( \underline{\Upsilon }_{\Im _{\top }}\right) \leq \frac{2}{ 1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{\Upsilon }_{\Im _{\top }}}{\underline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}} \leq \max \left( \underline{\Upsilon }_{\Im _{\top }}\right) \right) \end{array} \right\} \end{equation*} |
\begin{equation*} \left\{ \begin{array}{c} \left( \max \left( \overline{\Upsilon }_{\Im _{\top }}\right) \leq \frac{ 2\prod\limits_{\top = 1}^{p}\left( \left( \overline{\Upsilon }_{\Im _{\top }}\right) \right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2- \overline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \overline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}\leq \min \left( \overline{\Upsilon }_{\Im _{\top }}\right) \right) \\ \left( \min \left( \underline{\Upsilon }_{\Im _{\top }}\right) \leq \frac{ 2\prod\limits_{\top = 1}^{p}\left( \left( \underline{\Upsilon }_{\Im _{\top }}\right) \right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2- \underline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \underline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}\leq \max \left( \underline{\Upsilon }_{\Im _{\top }}\right) \right) \end{array} \right\} \end{equation*} |
\begin{equation*} \left\{ \begin{array}{c} \left( \max_{\Im _{\top }}\overline{\Upsilon }\leq \frac{2\prod\limits_{ \top = 1}^{p}\left( \overline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2-\overline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \overline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}\leq \min \overline{\Upsilon }_{\Im _{\top }}\right) \\ \left( \min \underline{\Upsilon }_{\Im _{\top }}\leq \frac{ 2\prod\limits_{\top = 1}^{p}\left( \underline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2-\underline{ \Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \underline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}} \leq \max \underline{\Upsilon }_{\Im _{\top }}\right) \end{array} \right\} . \end{equation*} |
We present an approach for dealing with unpredictability in multi-attribute group decision-making (MAGDM) with single valued neutrosophic probabilistic hesitant fuzzy rough (SV-NPHFR) information. Consider a decision-making (DM) issue with a collection of variables \left\{ \Theta _{1}, \Theta _{2}, ......, \Theta _{n}\right\} of n substitutes and a set of n attributes \left\{ \hat{C}_{1}, \hat{C}_{2}, ...., \hat{C}_{n}\right\} with (w_{1}, w_{2}, ....., w_{n})^{T} the weights, that is, w_{\gimel }\in \lbrack 0, 1] , \oplus _{\gimel = 1}^{n}w_{\gimel } = 1. Also, consider a probabilistic terms \Xi _{\ell _{\gimel }} , \varpi _{\ell _{\gimel }} and \phi _{\ell _{\gimel }} such that \oplus _{\gimel = 1}^{n}\Xi _{\ell _{\gimel }} = 1, \oplus _{\gimel = 1}^{n}\varpi _{\ell _{\gimel }} = 1 and \oplus _{\gimel = 1}^{n}\phi _{\ell _{\gimel }} = 1 with the property that 0\leq \; \Xi _{\ell _{\gimel }}, \phi _{\ell _{\gimel }}, \; \varpi _{\ell _{\gimel }}\leq 1. To test the validity of k ^{\text{th}} substitute \Theta _{\gimel } under the the attribute \hat{C}_{\gimel }, let \left\{ \text{D }_{1}, \text{D }_{2}, ...., \text{D }_{\top }\right\} be a set of decision makers (DMs), and (\sigma _{1}, \sigma _{2}, ...., \sigma _{n})^{T} be DMs weights such that \sigma _{\gimel }\in \lbrack 0, 1] , \oplus _{\gimel = 1}^{n}\sigma _{\gimel } = 1 . The decision professional information of a certain decision support problem is given as follows:
\begin{eqnarray*} M & = &\left[ \overline{\Im }(\Lambda _{\gimel j}^{\top })\right] _{m\times n} \\ & = &\left[ \begin{array}{l} \left( \overline{\Im }(\Lambda _{11}),\underline{\Im }(\Lambda _{11})\right) & \left( \overline{\Im }(\Lambda _{12}),\underline{\Im } (\Lambda _{12})\right) & \cdots & \left( \overline{\Im }(\Lambda _{1j}),\underline{\Im }(\Lambda _{1j})\right) \\ \left( \overline{\Im }(\Lambda _{21}),\underline{\Im }(\Lambda _{21})\right) & \left( \overline{\Im }(\Lambda _{22}),\underline{\Im } (\Lambda _{22})\right) & \cdots & \left( \overline{\Im }(\Lambda _{2j}),\underline{\Im }(\Lambda _{2j})\right) \\ \left( \overline{\Im }(\Lambda _{31}),\underline{\Im }(\Lambda _{31})\right) & \left( \overline{\Im }(\Lambda _{32}),\underline{\Im } (\Lambda _{32})\right) & \cdots & \left( \overline{\Im }(\Lambda _{3j}),\underline{\Im }(\Lambda _{3j})\right) \\ \vdots & \vdots & \ddots & \vdots \\ \left( \overline{\Im }(\Lambda _{\gimel 1}),\underline{\Im }(\Lambda _{\gimel 1})\right) & \left( \overline{\Im }(\Lambda _{\gimel 2}), \underline{\Im }(\Lambda _{\gimel 2})\right) & \cdots & \left( \overline{\Im }(\Lambda _{\gimel j}),\underline{\Im }(\Lambda _{\gimel j})\right) \end{array} \right] , \end{eqnarray*} |
where
\begin{equation*} \overline{\Im }(\Lambda _{\gimel j}) = \left\{ \langle \Theta ,\upsilon _{\ell _{\overline{\Im }(\Lambda )}}(\Theta )/\Xi _{\ell _{\overline{\Im } (\Lambda )}},\Lambda _{\ell _{\overline{\Im }(\Lambda )}}(\Theta )/\varpi _{\ell _{\overline{\Im }(\Lambda )}},\Upsilon _{\ell _{\overline{\Im } (\Lambda )}}(\Theta )/\Xi _{\ell _{\overline{\Im }(\Lambda )}}\rangle |\Theta \in \mathbb{Q} \right\} \end{equation*} |
and
\begin{equation*} \underline{\delta }(\Lambda _{\gimel j}) = \left\{ \langle \Theta ,\upsilon _{\ell _{\underline{\delta }(\Lambda )}}(\Theta )/\Xi _{\ell _{ \underline{\delta }(\Lambda )}},\Lambda _{\ell _{\underline{\delta }(\Lambda )}}(\Theta )/\varpi _{\ell _{\underline{\delta }(\Lambda )}},\Upsilon _{\ell _{\underline{\delta }(\Lambda )}}(\Theta )/\Xi _{\ell _{\underline{\delta } (\Lambda )}}\rangle |\Theta \in \mathbb{Q} \right\} \end{equation*} |
such that 0 < \left(\max (\upsilon _{\ell _{\overline{\Im }(\Lambda)}}(\Theta))\right) +\left(\min (\Lambda _{\ell _{\overline{\Im }(\Lambda)}}(\Theta))\right) +\left(\min (\Upsilon _{\ell _{\overline{\Im }(\Lambda)}}(\Theta))\right) \leq 3 and 0 < \left(\min (\upsilon _{\ell _{ \underline{\delta }(\Lambda)}}(\Theta)\right) +\left(\max (\Lambda _{\ell _{\underline{\delta }(\Lambda)}}(\Theta))\right) +\left(\max (\Upsilon _{\ell _{\underline{\delta }(\Lambda)}}(\Theta))\right) \leq 3 are the SV-NPHF rough values. The algorithm steps are described as follows for decision making:
Step-1. Construct the assessment matrices for the experts as follows:
\begin{equation*} \left( E\right) ^{_{\top }} = \left[ \begin{array}{l} \left( \overline{\Im }(\Lambda _{11}^{_{\top }}),\underline{\delta } (\Lambda _{11}^{_{\top }})\right) & \left( \overline{\Im }(\Lambda _{12}^{_{\top }}),\underline{\delta }(\Lambda _{12}^{_{\top }})\right) & \cdots & \left( \overline{\Im }(\Lambda _{1j}^{_{\top }}),\underline{ \delta }(\Lambda _{1j}^{_{\top }})\right) \\ \left( \overline{\Im }(\Lambda _{21}^{_{\top }}),\underline{\delta } (\Lambda _{21}^{_{\top }})\right) & \left( \overline{\Im }(\Lambda _{22}^{_{\top }}),\underline{\delta }(\Lambda _{22}^{_{\top }})\right) & \cdots & \left( \overline{\Im }(\Lambda _{2j}^{_{\top }}),\underline{ \delta }(\Lambda _{2j}^{_{\top }})\right) \\ \left( \overline{\Im }(\Lambda _{31}^{_{\top }}),\underline{\delta } (\Lambda _{31}^{_{\top }})\right) & \left( \overline{\Im }(\Lambda _{32}^{_{\top }}),\underline{\delta }(\Lambda _{32}^{_{\top }})\right) & \cdots & \left( \overline{\Im }(\Lambda _{3j}^{_{\top }}),\underline{ \delta }(\Lambda _{3j}^{_{\top }})\right) \\ \vdots & \vdots & \ddots & \vdots \\ \left( \overline{\Im }(\Lambda _{\gimel 1}^{_{\top }}),\underline{\delta } (\Lambda _{\gimel 1}^{_{\top }})\right) & \left( \overline{\Im }(\Lambda _{\gimel 2}^{_{\top }}),\underline{\delta }(\Lambda _{\gimel 2}^{_{\top }})\right) & \cdots & \left( \overline{\Im }(\Lambda _{\gimel j}^{_{\top }}),\underline{\delta }(\Lambda _{\gimel j}^{_{\top }})\right) \end{array} \right] \end{equation*} |
where \top shows the expert numbers.
Step-2. Conduct an analysis on the normalized version of the experts' matrices \left(\mathbb{N} \right) ^{\top }, as follows:
\begin{equation*} \left( \mathbb{N} \right) ^{\top } = \left\{ \begin{array}{ccc} \Im (\Lambda _{\gimel j}) = \left( \underline{\delta }\left( \Lambda _{\gimel j}\right) ,\overline{\Im }\left( \Lambda _{\gimel j}\right) \right) & \text{ if} & \text{For benefit} \\ \left( \Im (\Lambda _{\gimel j})\right) ^{c} = \left( \left( \underline{\delta }\left( \Lambda _{\gimel j}\right) \right) ^{c},\left( \overline{\Im }\left( \Lambda _{\gimel j}\right) \right) ^{c}\right) & \text{if} & \text{For cost } \end{array} \right. \end{equation*} |
Step-3. Use novel list of algebraic AOs to determined the collected decision making expert information.
Step-4. For each option under consideration, compute the aggregated SV-NPHFRNs by evaluating them to the given set of criteria and characteristics.
Step-5. Calculate the relative importances of various options using a scoring formula.
Step-6. In decreasing order, place all of the alternate ratings. When it comes to alternatives, a bigger value indicates superiority.
The algorithm steps for multi-attribute decision making are given in Figure 1:
Sensor and data technologies: The social, economic, and political spheres are becoming rapidly digitalized. Agriculture, particularly livestock production, is one of the sectors of development that calls for the use of emerging technologies as the world enters various streams of technological progress. However, knowledge and skills are generally lacking, especially in underdeveloped nations. Therefore, it is essential to close this knowledge gap by gathering data and disseminating it to a broad audience in order to spur additional research in the area. It is vital to think about the potential use of these technologies in the period following the introduction of sensors for broader applications, such as the assessment of rangeland condition and animal production. The application of precision agricultural procedures for livestock, including individual animal behavior, grazing conditions, health conditions, and feed intakes, benefits more from technological advancements. It is crucial to evaluate the state of both rangeland resource conditions and livestock grazing behavior for grazing cattle. All around the world, rangeland resources are crucial to the production of cattle. Due to changes in the environment and management practices, forages and pastures are dynamic in terms of quantity, species composition, and chemical composition. For improved management and exploitation, the rangeland resources need to be evaluated and tracked. Traditional evaluations that involve mechanical or manual counting, identification, and chemical composition are time-consuming and labor-intensive. Under field conditions, sensors can be used to monitor the quality of grazing grounds, but they can also be used to better manage grazing stock by gaining an understanding of how animals graze. It is essential to comprehend current technology, such as sensors or bio sensors, in order to supplement or replace old procedures. The goal of this research article is to raise awareness of the technologies that are currently available and their applicability to rangeland resources, particularly in tropical rangelands. In most situations, GPS devices are used in the tropics to evaluate solely the status of the rangeland without taking the grazing cattle into account. The assessment further clarifies the significance of sensor technology for quickly and easily detecting changes in cattle health and movement at the field level. Sensors (bio sensors), like any other technology, have limitations, such as measurement accuracy and repetitive data complaints. However, the assessment clarifies the usage of sensor technology, which saves time and energy in animal production that would otherwise require a lot of it.
Numerical example
The applications of the suggested methodologies in this research are illustrated and their viability and efficacy are shown using an example concerning investment possibilities for a MADM problem that has been adapted from experts. In Figure 2, some views of cattle farms are shown.
Assume that a standard MADM problem Cattle farm evaluation of developing technology commercialization—needs to be resolved. \Theta _{1} , \Theta _{2} , \Theta _{3} and \Theta _{4} on a panel represent four potential developing technology such as, Sensor and data technologies, robots, temperature and moisture sensors, aerial images, and GPS technology respectively. Four factors must be taken into account while making a decision: ( \hat{C}_{1} ) Technological development; ( \hat{C}_{2} ) Risk premium and prospective markets; ( \hat{C}_{3} ) Environment for production, human resources and financial circumstances; and ( \hat{C}_{4} ) Opportunities for employment.
Step-1. The information of professionals are given in Table 1(a)–(d) in the form of SV-NPHFRS.
\begin{equation*} \begin{array}{c} \hline & \hat{C}_{1} & \hat{C}_{2} \\ \hline \Theta _{1} & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.5/0.5, 0.2/0.5\right), \\ \left(0.6/0.6, 0.3/0.4\right), \\ \left(0.3/1.0\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.6/0.8, 0.5/0.2\right) \\ \left(0.2/0.3, 0.5/0.7\right) \end{array} \right) \end{array} \right) & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.3/1.0\right), \\ \left(0.9/1.0\right), \\ \left(0.1/0.3, 0.7/0.7\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.4/1.0\right), \\ \left(0.2/1\right), \\ \left(0.7/1.0\right) \end{array} \right) \end{array} \right) \\ \Theta _{2} & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.4/0.1, 0.6/0.9\right), \\ \left(0.7/1.0\right), \\ \left(0.8/0.4, 0.9/0.6\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.3/0.2, 0.5/0.8\right), \\ \left(0.1/0.5, 0.6/0.5\right) \\ \left(0.8/1.0\right) \end{array} \right) \end{array} \right) & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.8/1.0\right), \\ \left(0.2/0.5, 0.5/0.5\right), \\ \left(0.9/1.0\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.6/0.3, 0.7/0.7\right), \\ \left(0.2/1.0\right), \\ \left(0.5/1.0\right) \end{array} \right) \end{array} \right) \\ \hline \end{array} \end{equation*} |
\begin{equation*} \begin{array}{c} \hline & \hat{C}_{3} & \hat{C}_{4} \\ \hline \Theta _{1} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.4/0.8, 0.5/0.2\right), \\ \left(0.6/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.6/1.0\right), \\ \left(0.1/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.3/1.0\right), \\ \left(0.2/0.4, 0.3/0.6\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.6/0.4, 0.3/0.6\right), \\ \left(0.3/1.0\right) \end{array} \right) \right) \end{array} \right) \\ \Theta _{2} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.6/0.7, 0.3/0.3\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.8/1.0\right), \\ \left(0.2/0.2, 0.5/0.8\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.4/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.3/0.6, 0.4/0.4\right), \\ \left(0.4/1.0\right) \end{array} \right) \right) \end{array} \right) \\ \hline \end{array} \end{equation*} |
\begin{equation*} \begin{array}{c} \hline & \hat{C}_{1} & \hat{C}_{2} \\ \hline \Theta _{3} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.6/0.6, 0.3/0.4\right), \\ (0.3/0.7, 0.4/0.3 \end{array} \right) \right) \bf{, } \\ \left(\left(\begin{array}{c} \left(0.5/0.5, 0.2/0.5\right), \\ \left(0.3/1.0\right), \\ \left(0.8/0.2, 0.9/0.8\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.5/0.7, 0.2/0.2, 0.9/0.1\right), \\ \left(0.3/1.0\right), \\ \left(0.3/0.2, 0.4/0.8\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.7/0.3, 0.3/0.7\right), \\ \left(0.3/1.0\right), \\ \left(0.3/0.6, 0.4/0.4\right) \end{array} \right) \right) \end{array} \right) \\ \Theta _{4} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.8/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.2/0.4, 0.5/0.6\right), \\ \left(0.3/0.6, 0.3/0.4\right), \\ \left(0.1/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.6/0.4, 0.4/0.4, 0.3/0.2\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.3/1.0\right), \\ \left(0.7/0.2, 0.1/0.8\right) \end{array} \right) \right) \end{array} \right) \\ \hline \end{array} \end{equation*} |
\begin{equation*} \begin{array}{c} \hline & \hat{C}_{3} & \hat{C}_{4} \\ \hline \Theta _{3} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.4/1.0\right), \\ \left(0.1/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.9/0.7, 0.3/0.3\right), \\ \left(0.3/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.3/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.2/0.6, 0.4/0.4\right), \\ \left(0.4/1.0\right) \end{array} \right) \right) \end{array} \right) \\ \Theta _{4} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.1/1.0\right), \\ \left(0.5/0.3, 0.3/0.2, 0.4/0.5\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.8/1.0\right), \\ \left(0.7/0.6, 0.4/0.4\right), \\ \left(0.4/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/0.8, 0.5/0.1, 0.2/0.1\right), \\ \left(0.6/1.0\right), \\ \left(0.1/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.5/0.6, 0.2/0.4\right), \\ \left(0.6/1.0\right), \\ \left(0.3/0.2, 0.4/0.8\right) \end{array} \right) \right) \end{array} \right) \\ \hline \end{array} \end{equation*} |
Step-2. Expert opinion is of the beneficiary type. As a result, we don't need to normalize the SV-NPHFRNs in this context.
Step-3. In this problem, just one professional is evaluated for the collection of questionable data. As a result, we are not obligated to detect the information gained.
Step-4. The SV-NPHFRWA operator is used to evaluate the alternatives' aggregation details under the given list of attributes:
\Gamma = (0.34, 0.55, 0.11) ^{T}, we obtain the overall preference values \Theta _{\chi } of the alternative L_{\chi }(\chi = 1, 2, 3, 4) by utilizing the suggested SV-NPHFRWA operator.
For illustration,
\begin{eqnarray*} &&SV-NPHFREWA\left\{ \begin{array}{c} (\overline{\Im }_{1},\overline{\Im }_{2},....,\overline{\Im }_{p}) \\ (\underline{\delta }_{1},\underline{\delta }_{2},....,\underline{\delta } _{p}) \end{array} \right\} \\ & = &\left( \begin{array}{c} \left\{ \begin{array}{c} \left( \begin{array}{c} \bigcup\limits_{\substack{ \xi _{\overline{\Im }_{\top }}\in \upsilon _{ \overline{\Im }_{\top }} \\ \Xi _{\overline{\Im }_{\top }}\in \Xi _{ \overline{\Im }_{\top }}}} \\ \frac{\Pi _{\top = 1}^{p}\left( 1+\xi _{\overline{\Im }_{\top }}\right) ^{\Gamma _{\top }}-\Pi _{\top = 1}^{p}\left( 1-\xi _{\overline{\Im }_{\top }}\right) ^{\Gamma _{\top }}}{\Pi _{\top = 1}^{p}\left( 1+\xi _{\overline{\Im }_{\top }}\right) ^{\Gamma _{\top }}+\Pi _{\top = 1}^{p}\left( 1-\xi _{ \overline{\Im }_{\top }}\right) ^{\Gamma _{\top }}}/\Pi _{\top = 1}^{p}\Xi _{ \overline{\Im }_{\top }} \end{array} \right) \\ \left( \begin{array}{c} \bigcup\limits_{\substack{ \xi _{\underline{\delta }_{\top }}\in \upsilon _{ \underline{\delta }_{\top }} \\ \Xi _{\underline{\delta }_{\top }}\in \Xi _{ \underline{\delta }_{\top }}}} \\ \frac{\Pi _{\top = 1}^{p}\left( 1+\xi _{\underline{\delta }_{\top }}\right) ^{\Gamma _{\top }}-\Pi _{\top = 1}^{p}\left( 1-\xi _{\underline{\delta } _{\top }}\right) ^{\Gamma _{\top }}}{\Pi _{\top = 1}^{p}\left( 1+\xi _{ \underline{\delta }_{\top }}\right) ^{\Gamma _{\top }}+\Pi _{\top = 1}^{p}\left( 1-\xi _{\underline{\delta }_{\top }}\right) ^{\Gamma _{\top }}} /\Pi _{\top = 1}^{p}\Xi _{\underline{\delta }_{\top }} \end{array} \right) \end{array} \right\} , \\ \left\{ \begin{array}{c} \left( \begin{array}{c} \bigcup\limits_{\substack{ \Lambda _{\overline{\Im }_{\top }}\in \tau _{ \overline{\Im }_{\top }} \\ \varpi _{\overline{\Im }_{\top }}\in \varpi _{ \overline{\Im }_{\top }}}} \\ \frac{2\Pi _{\top = 1}^{p}\left( \Lambda _{\overline{\Im }_{\top }}\right) ^{\Gamma _{\top }}}{\Pi _{\top = 1}^{p}\left( 2-\Lambda _{\overline{\Im } _{\top }}\right) ^{\Gamma _{\top }}+\Pi _{\top = 1}^{p}\left( \Lambda _{ \overline{\Im }_{\top }}\right) ^{^{\Gamma _{\top }}}}/\Pi _{\top = 1}^{p}\varpi _{\overline{\Im }_{\top }} \end{array} \right) \\ \left( \begin{array}{c} \bigcup\limits_{\substack{ \Lambda _{\underline{\delta }_{\top }}\in \tau _{ \underline{\delta }_{\top }} \\ \varpi _{\underline{\delta }_{\top }}\in \varpi _{\underline{\delta }_{\top }}}} \\ \frac{2\Pi _{\top = 1}^{p}\left( \Lambda _{\underline{\delta }_{\top }}\right) ^{\Gamma _{\top }}}{\Pi _{\top = 1}^{p}\left( 2-\Lambda _{ \underline{\delta }_{\top }}\right) ^{\Gamma _{\top }}+\Pi _{\top = 1}^{p}\left( \Lambda _{\underline{\delta }_{\top }}\right) ^{^{\Gamma _{\top }}}}/\Pi _{\top = 1}^{p}\varpi _{\underline{\delta }_{\top }} \end{array} \right) \end{array} \right\} , \\ \left\{ \begin{array}{c} \left( \begin{array}{c} \bigcup\limits_{\substack{ \Upsilon _{\overline{\Im }_{\top }}\in \xi _{ \overline{\Im }_{\top }} \\ \phi _{\overline{\Im }_{\top }}\in \phi _{ \overline{\Im }_{\top }}}} \\ \frac{2\Pi _{\top = 1}^{p}\left( \Upsilon _{\overline{\Im }_{\top }}\right) ^{\Gamma _{\top }}}{\Pi _{\top = 1}^{p}\left( 2-\Upsilon _{\overline{\Im } _{\top }}\right) ^{\Gamma _{\top }}+\Pi _{\top = 1}^{p}\left( \Upsilon _{ \overline{\Im }_{\top }}\right) ^{^{\Gamma _{\top }}}}/\Pi _{\top = 1}^{p}\phi _{\overline{\Im }_{\top }} \end{array} \right) \\ \left( \begin{array}{c} \bigcup\limits_{\substack{ \Upsilon _{\underline{\delta }_{\top }}\in \xi _{ \underline{\delta }_{\top }} \\ \phi _{\underline{\delta }_{\top }}\in \phi _{\underline{\delta }_{\top }}}} \\ \frac{2\Pi _{\top = 1}^{p}\left( \Upsilon _{\underline{\delta }_{\top }}\right) ^{\Gamma _{\top }}}{\Pi _{\top = 1}^{p}\left( 2-\Upsilon _{\Im _{\top }}\right) ^{\Gamma _{\top }}+\Pi _{\top = 1}^{p}\left( \Upsilon _{ \underline{\delta }_{\top }}\right) ^{^{\Gamma _{\top }}}}/\Pi _{\top = 1}^{p}\phi _{\underline{\delta }_{\top }} \end{array} \right) \end{array} \right\} \end{array} \right). \end{eqnarray*} |
After obtain the overall preference values \Theta _{\chi } of the alternative L_{\chi }(\chi = 1, 2, 3, 4)
\begin{equation*} s(\Theta _{\chi }) = \frac{1}{2}\left\{ \begin{array}{c} \left( \begin{array}{c} \left( \frac{1}{M_{\Theta }}\sum\nolimits_{\hslash _{\gimel }\in \tau _{\ell _{\dot{g}},\tilde{p}_{\gimel }\in \tilde{p}_{\ell _{\dot{g}}}}}(\hslash _{\gimel }\cdot \tilde{p}_{\gimel })\right) + \\ \left( \frac{1}{M_{\Theta }}\sum\nolimits_{\hslash _{\gimel }\in \tau _{\ell _{\dot{g}},\tilde{p}_{\gimel }\in \tilde{p}_{\ell _{\dot{g}}}}}(\hslash _{\gimel }\cdot \tilde{p}_{\gimel })\right) \end{array} \right) - \\ \left( \begin{array}{c} \left( \frac{1}{N_{\Theta }}\sum\nolimits_{\varrho _{\gimel }\in \Xi _{\ell _{\varsigma }},\varpi _{\gimel }\in \varpi _{\ell _{\dot{g}}}}(\varrho _{\gimel }\cdot \varpi _{\gimel })\right) + \\ \left( \frac{1}{N_{\Theta }}\sum\nolimits_{\varrho _{\gimel }\in \Xi _{\ell _{\varsigma }},\varpi _{\gimel }\in \varpi _{\ell _{\dot{g}}}}(\varrho _{\gimel }\cdot \varpi _{\gimel })\right) \end{array} \right) - \\ \left( \begin{array}{c} \left( \frac{1}{Z_{\Theta }}\sum\nolimits_{\Re _{\gimel }\in \Xi _{\ell _{\varsigma }},\phi _{\gimel }\in \phi _{\ell _{\dot{g}}}}(\varrho _{\gimel }\cdot \phi _{\gimel })\right) + \\ \left( \frac{1}{Z_{\Theta }}\sum\nolimits_{\Re _{\gimel }\in \Xi _{\ell _{\varsigma }},\phi _{\gimel }\in \phi _{\ell _{\dot{g}}}}(\varrho _{\gimel }\cdot \phi _{\gimel })\right) \end{array} \right) \end{array} \right\}. \end{equation*} |
Step-5. Score values of all alternatives under developed aggregation operator are presented using Table 1. The Score values are presented in Table 2.
Operator | s(\Theta _{1}) | s(\Theta _{2}) | s(\Theta _{3}) | s(\Theta _{4}) |
SV-NPHFREWA | 0.1517 | 0.1248 | 0.1402 | 0.1419 |
Step-6. Categorize the alternatives. \Theta _{\chi }(\chi = 1, 2, ...., 4) are listed in Table 3.
Operator | Score | Most Effective Alternative |
SV-NPHFREWA | s(\Theta _{1}) > s(\Theta _{4}) > s(\Theta _{3}) > s(\Theta _{2}) | \Theta _{1} |
We determined from the preceding mathematical formulation that choice \Theta _{1} is the best option among the rest, and it is therefore strongly recommended.
The viability of the proposed process, the adaptability of its aggregation to handle certain inputs and outputs, the influence of score functions, sensitivity analysis, superiority, and, finally, the comparison of the proposed methodology with existing methodologies are all covered in this part. Also present the relationship strategy between alternatives and crossposting criteria using quaternion relationship function are presented. The suggested approach was exact and appropriate for all types of input data. The framework that was developed worked well for handling uncertainties. Using Einstein AOs, it contained the PHFS, RS, and NS spaces. We may effectively employ our model in a number of scenarios by extending the gap between the pleasure and displeasure classes by altering the practical significance of particular parameters. We faced a variety of elements and input parameters under the appropriate conditions in various MCDM problems. The suggested approaches are straightforward, easy to comprehend, and easily adaptable to a wide range of options and attributes. It should be highlighted that none of these theories provide a comprehensive explanation of how to handle a scenario in which the attributes are intertwined. The effectiveness of the aforementioned MADM tactics was further confirmed through this comparative analysis and relationship function with other approaches.
Example: We take into account four records of the cattle-forums that are cited in Table 4 data.
S | \Theta _{1} | \Theta _{2} | \Theta _{3} | \Theta _{4} |
Forum-1 | (0.8, 0.3, 0.6) | (0.4, 0.6, 0.9) | (0.9, 0.8, 0.6) | (0.5, 0.5, 0.8) |
Forum-2 | (0.3, 0.4, 0.8) | (0.5, 0.3, 0.6) | (0.7, 0.9, 0.9) | (0.8, 0.9, 0.3) |
Forum-3 | (0.3, 0.2, 0.2) | (0.1, 0.6, 0.8) | (0.9, 0.3, 0.4) | (0.3, 0.6, 0.9) |
Forum-4 | (0.6, 0.4, 0.8) | (0.3, 0.4, 0.1) | (0.2, 0.6, 0.1) | (0.8, 0.3, 0.9) |
We take into account four entries that are cited in Table 5 data.
T | \hat{C}_{1} | \hat{C}_{2} | \hat{C}_{3} | \hat{C}_{4} |
\Theta _{1} | (0.3, 0.5, 0.9) | (0.7, 0.8, 0.9) | (0.6, 0.7, 0.8) | (0.9, 0.3, 0.5) |
\Theta _{2} | (0.6, 0.7, 0.7) | (0.8, 0.3, 0.4) | (0.7, 0.3, 0.4) | (0.5, 0.6, 0.7) |
\Theta _{3} | (0.9, 0.6, 0.3) | (0.7, 0.8, 0.3) | (0.0.8, 0.3, 0.1) | (0.8, 0.6, 0.2) |
\Theta _{4} | (0.8, 0.3, 0.7) | (0.9, 0.3, 0.4) | (0.7, 0.3, 0.2) | (0.6, 0.4, 0.5) |
The Table 6 shows the relationship between Table 4 and Table 5.
R | \hat{C}_{1} | \hat{C}_{2} | \hat{C}_{3} | \hat{C}_{4} |
Forum-1 | (0.9, 0.5, 0.6) | (0.7, 0.5, 0.6) | (0.8, 0.4, 0.6) | (0.8, 0.3, 0.6) |
Forum-2 | (0.8, 0.5, 0.5) | (0.7, 0.3, 0.4) | (0.7, 0.3, 0.5) | (0.7, 0.4, 0.5) |
Forum-3 | (0.9, 0.5, 0.4) | (0.7, 0.6, 0.4) | (0.8, 0.3, 0.4) | (0.8, 0.3, 0.3) |
Forum-4 | (0.8, 0.6, 0.3) | (0.8, 0.6, 0.3) | (0.7, 0.3, 0.3) | (0.6, 0.3, 0.4) |
In the Table 7, We find the results of relationship function. The results are found using the following formulas on quaternion neutrosophic numbers:
\hat{C}_{1} | \hat{C}_{2} | \hat{C}_{3} | \hat{C}_{4} | |
Forum-1 | 0.6 | 0.4 | 0.56 | 0.62 |
Forum-2 | 0.55 | 0.58 | 0.55 | 0.5 |
Forum-3 | 0.7 | 0.46 | 0.68 | 0.71 |
Forum-4 | 0.58 | 0.62 | 0.61 | 0.48 |
\xi_T(P_i,F_k) = \bigvee\limits_{s\in S}[\xi_T(P_i,T)\bigwedge \xi_R(T,F_k)] |
\tau_T(P_i,F_k) = \bigwedge\limits_{s\in S}[\tau_T(P_i,T)\bigvee \tau_R(T,F_k)] |
\Upsilon_T(P_i,F_k) = \bigwedge\limits_{s\in S}[\Upsilon_T(P_i,T)\bigvee \Upsilon_R(T,F_k)]. |
After getting the information relationship of (cattle-farm \rightarrow Criteria), we apply the following formula on the neutrosophic quaternion numbers to obtained the Table 7. S_R = \xi_R-\Im_R.\Theta_R by following the rule of the quaternion numbers, ij = k, jk = i, ki = j .
In this Table 7 we can find that, form cattle-farm-2 and cattle-farm-4, the best criteria is \hat{C}_{2} . For cattle-farm-1, \hat{C}_{4} is best, and for cattle-farm-3 the best option is \hat{C}_{4} .
In particular, the comparison study was based on the same example situation, where the weight of the traits was the same as above. Table 8 below shows the results utilizing multiple approaches and complete weight data. We apply the single-valued neutrosophic probabilistic hesitant fuzzy Dombi weighted averaging and geometric (SV-NPHFDWA and SV-NPHFDWG) AOs [34], single-valued neutrosophic probabilistic hesitant fuzzy weighted averaging and geometric (SV-NPHFWA and SV-NPHFWG) AOs [35], and single-valued neutrosophic probabilistic hesitant fuzzy rough weighted averaging and geometric (SV-NPHFRWA and SV-NPHFRWG) AOs [36].
\text{Operators} | \text{Score} | \text{Most Effective Alternative} |
\text{SV-NPHFDWA} | Undefined | No Outcome |
\text{SV-NPHFDWG} | Undefined | No Outcome |
\text{SV-NPHFWA} | Undefined | No Outcome |
\text{SV-NPHFWG} | Undefined | No Outcome |
\text{SV-NHFROWA} (Defined) | Undefined | No Outcome |
\text{SV-NHFRHWA} (Defined) | Undefined | No Outcome |
\text{SV-NHFRHWG} (Defined) | Undefined | No Outcome |
\text{SV-NPHFRWA} | s(\Theta _{1}) > s(\Theta _{3}) > s(\Theta_{2}) > s(\Theta _{4}) | s(\Theta _{1}) |
\text{SV-NPHFRWG} | s(\Theta _{4}) > s(\Theta _{1}) > s(\Theta_{3}) > s(\Theta _{2}) | s(\Theta _{4}) |
\text{SV-NPHFREWA} (Proposed) | s(\Theta _{1}) > s(\Theta _{4}) > s(\Theta_{3}) > s(\Theta _{2}) | s(\Theta _{1}) |
\text{SV-NPHFRWG} (Defined) | s(\Theta _{1}) > s(\Theta_{3}) > s(\Theta _{4}) > s(\Theta _{2}) | s(\Theta _{1}) |
The desirable alternative is therefore s(\Theta _{1}) when the SV-NPHFREWA operator is employed. If another types of procedures is used, the best option is s(\Theta _{1}) . For all of the compared methods, the worst alternative is always s(\Theta _{2}) . The other operators failed to give output because our information had rough data that cannot be handled by other operators. The results show the effectiveness and viability of the SV-NPHFREWA and SV-NPHFREWG operators utilizing the compared methods and the suggested method in this paper for the identical single-valued neutrosophic hesitant fuzzy rough information.
The SV-NPHFRE-AO) has a number of benefits for decision-making, but there are also certain drawbacks and concerns to take into account:
● SV-NPHFRE-AO is a complex method that requires a deep understanding of the underlying concepts and mathematical operations. This can make it challenging to apply in practice, particularly for decision-makers who are not familiar with advanced mathematical methods.
● SV-NPHFRE-AO requires a significant amount of data to be effective. This can be a limitation in decision-making situations where data is scarce or difficult to obtain.
● There is currently no standard approach to using SV-NPHFRE-AO in decision making, which can make it difficult to compare results across different studies or applications.
● SV-NPHFRE-AO is a subjective method that relies on human judgment to some extent. This can introduce bias and inconsistencies into the decision-making process, particularly if there are differences in opinion among decision-makers.
● SV-NPHFRE-AO can be difficult to interpret, particularly for non-experts. This can make it challenging to communicate the results of the decision-making process to stakeholders or other decision-makers.
● SV-NPHFRE-AO may not be scalable to large decision-making problems due to the complexity of the method and the amount of data required.
The limitations and issues of SV-NPHFREA in decision making should be carefully considered before applying the method. Decision-makers should ensure that they have the necessary expertise and data to use SV-NPHFREA effectively, and that they are aware of the limitations and potential biases inherent in the method.
We deal with significant and technical data every day. To work more efficiently and compute full information, we developed methodologies and tools for this type of data. Aggregation entails inherent costs to reduce the volume of data to a single value. For situations where each item has a range of probable values specified by MD, indeterminacy, and non-MD, the SV-NPHFRE-AO was created as a potent fusion of an SV-N, PHFS, and RS. More information about these techniques' advantages is provided below.
(1) First, we've established some SV-NPHFRS operational standards based on Einstein operations.
(2) Due to the significance of operating procedures, the weighted averaging and geometric Einstein aggregation operators have also been designed to deal with SV-NHFR data, including SV-NHFRA and SV-NHFRG aggregation data in decision-making issues.
(3) Then, we designed the the weighted averaging Einstein aggregation operators to deal with SV-NPHFR data, including sv-neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging (SV-NPHFREWA) aggregation operator.
(4) A number of helpful characteristics have been demonstrated for them.
(5) The MCDM techniques proposed in this paper are also capable of recognizing more correlation between attributes and alternatives, demonstrating that they have a higher accuracy and a larger setpoint than the existing methodologies, which are unable to take into account the inter-relationships of attributes in practical uses. This shows that by using the MCDM methodologies outlined in this paper, even additional links between features may be discovered.
(6) Proposed AOs could be used in studies of two-sided matching decisions with multi-granular and incomplete criterion weight information, as well as studies of consensus reaching with non-cooperative behavior management. This analysis of the constraints imposed by proposed AOs does not take into account the degrees of participation, abstention, or non-membership. Over here, the intended AOs are being implemented with a novel hybrid structure of prioritized, interactive AOs.
(7) Future work will use state-of-the-art decision-making methods like TOPSIS, VIKOR, TODAM, GRA, and EDAS to examine the theoretical basis of SV-NPHFSs for Einstein operations. We will also talk about the ways in which these techniques are used in other areas, including soft computing, robotics, horticulture, intelligent systems, the social sciences, economics, and human resource management.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Contributions from each author are distributed equally.
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups Project under grant number (R.G.P.1/109/44).
There are no conflicting interests declared by the authors.
[1] |
A. Mardani, R. E. Hooker, S. Ozkul, S. Yifan, M. Nilashi, H. Z. Sabzi, et al., Application of decision making and fuzzy sets theory to evaluate the healthcare and medical problems: A review of three decades of research with recent developments, Expert Syst. Appl., 137 (2019), 202–231. https://doi.org/10.1016/j.eswa.2019.07.002 doi: 10.1016/j.eswa.2019.07.002
![]() |
[2] |
Z. Bashir, A. Wahab, T. Rashid, Three-way decision with conflict analysis approach in the framework of fuzzy set theory, Soft Comput., 26 (2022), 309–326. https://doi.org/10.1007/s00500-021-06509-3 doi: 10.1007/s00500-021-06509-3
![]() |
[3] |
X. Gou, Z. Xu, H. Liao, Hesitant fuzzy linguistic entropy and cross-entropy measures and alternative queuing method for multiple criteria decision making, Inform. Sci., 388 (2017), 225–246. https://doi.org/10.1016/j.ins.2017.01.033 doi: 10.1016/j.ins.2017.01.033
![]() |
[4] |
X. Fu, Y. Zhang, Y. G. Zhang, Y. L. Yin, S. C. Yan, Y. Z. Zhao, et al., Research and application of a new multilevel fuzzy comprehensive evaluation method for cold stress in dairy cows, J. Dairy Sci., 105 (2022), 9137–9161. https://doi.org/10.3168/jds.2022-21828 doi: 10.3168/jds.2022-21828
![]() |
[5] |
L. P. Maziero, M. G. M. Chacur, C. P. Cremasco, F. F. Putti, L. R. A. G. Filho, Fuzzy system for assessing bovine fertility according to semen characteristics, Livest. Sci., 256 (2022), 104821. https://doi.org/10.1016/j.livsci.2022.104821 doi: 10.1016/j.livsci.2022.104821
![]() |
[6] |
R. Zhang, Z. Xu, X. Gou, ELECTRE II method based on the cosine similarity to evaluate the performance of financial logistics enterprises under double hierarchy hesitant fuzzy linguistic environment, Fuzzy Optim. Decis. Ma., 22 (2023), 23–49. https://doi.org/10.1007/s10700-022-09382-3 doi: 10.1007/s10700-022-09382-3
![]() |
[7] |
R. Bosma, U. Kaymak, J. V. Berg, H. Udo, J. Verreth, Using fuzzy logic modelling to simulate farmers' decision-making on diversification and integration in the Mekong Delta, Vietnam, Soft Comput., 15 (2011), 295–310. https://doi.org/10.1007/s00500-010-0618-7 doi: 10.1007/s00500-010-0618-7
![]() |
[8] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[9] | D. J. Dubois, Fuzzy sets and systems: Theory and applications, Academic press, 144 (1980). |
[10] | K. T. Atanassov, Intuitionistic fuzzy sets, in Intuitionistic fuzzy sets, Physica, Heidelberg, 1999, 1–137. https://doi.org/10.1007/978-3-7908-1870-3_1 |
[11] | H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single valued neutrosophic sets, Infin. Study, 2010. |
[12] |
J. Ye, Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment, Int. J. Gen. Syst., 42 (2013), 386–394. https://doi.org/10.1080/03081079.2012.761609 doi: 10.1080/03081079.2012.761609
![]() |
[13] | R. Şahin, Multi-criteria neutrosophic decision making method based on score and accuracy functions under neutrosophic, Comput. Sci., 2014. https://doi.org/10.5281/zenodo.22994 |
[14] | Y. Jin, M. Kamran, N. Salamat, S. Zeng, R. H. Khan, Novel distance measures for single-valued neutrosophic fuzzy sets and their applications to multicriteria group decision-making problem, J. Func. Space., 2022. |
[15] |
M. Riaz, M. R. Hashmi, D. Pamucar, Y. M. Chu, Spherical linear Diophantine fuzzy sets with modeling uncertainties in MCDM, Comput. Model. Eng. Sci., 126 (2021), 1125–1164. https://doi.org/10.32604/cmes.2021.013699 doi: 10.32604/cmes.2021.013699
![]() |
[16] | S. Broumi, F. Smarandache, M. Dhar, Rough neutrosophic sets, Infin. Study, 2014. https://doi.org/10.5281/zenodo.30310 |
[17] | R. Krishankumaar, A. R. Mishra, X. Gou, K. S. Ravichandran, New ranking model with evidence theory under probabilistic hesitant fuzzy context and unknown weights, Neural Comput. Appl., 2022, 1–15. https://doi.org/10.1007/s00521-021-06653-9 |
[18] |
Z. Hao, Z. Xu, H. Zhao, Z. Su, Probabilistic dual hesitant fuzzy set and its application in risk evaluation, Knowl.-Based Syst., 127 (2017), 16–28. https://doi.org/10.1016/j.knosys.2017.02.033 doi: 10.1016/j.knosys.2017.02.033
![]() |
[19] |
W. Zhou, Z. Xu, Group consistency and group decision making under uncertain probabilistic hesitant fuzzy preference environment, Inform. Sci., 414 (2017), 276–288. https://doi.org/10.1016/j.ins.2017.06.004 doi: 10.1016/j.ins.2017.06.004
![]() |
[20] |
X. Gou, Z. Xu, H. Liao, F. Herrera, Probabilistic double hierarchy linguistic term set and its use in designing an improved VIKOR method: The application in smart healthcare, J. Oper. Res. Soc., 72 (2021), 2611–2630. https://doi.org/10.1080/01605682.2020.1806741 doi: 10.1080/01605682.2020.1806741
![]() |
[21] |
M. Rasheed, E. Tag-Eldin, N. A. Ghamry, M. A. Hashmi, M. Kamran, U. Rana, Decision-making algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set and Choquet integral, AIMS Math., 8 (2023), 12422–12455. https://doi.org/10.3934/math.2023624 doi: 10.3934/math.2023624
![]() |
[22] |
H. Garg, A novel trigonometric operation-based q-rung orthopair fuzzy aggregation operator and its fundamental properties, Neural Comput. Appl., 32 (2020), 15077–15099. https://doi.org/10.1007/s00521-020-04859-x doi: 10.1007/s00521-020-04859-x
![]() |
[23] |
K. Ullah, T. Mahmood, H. Garg, Evaluation of the performance of search and rescue robots using T-spherical fuzzy Hamacher aggregation operators, Int. J. Fuzzy Syst., 22 (2020), 570–582. https://doi.org/10.1007/s40815-020-00803-2 doi: 10.1007/s40815-020-00803-2
![]() |
[24] | C. Carlsson, R. Fullér, Fuzzy reasoning in decision making and optimization, Springer Science & Business Media, 82 (2001). |
[25] |
N. Gonul Bilgin, D. Pamučar, M. Riaz, Fermatean neutrosophic topological spaces and an spplication of neutrosophic Kano method, Symmetry, 14 (2022), 2442. https://doi.org/10.3390/sym14112442 doi: 10.3390/sym14112442
![]() |
[26] |
Z. Xu, W. Zhou, Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment, Fuzzy Optim. Deci. Ma., 16 (2017), 481–503. https://doi.org/10.1007/s10700-016-9257-5 doi: 10.1007/s10700-016-9257-5
![]() |
[27] |
S. Shao, X. Zhang, Y. Li, C. Bo, Probabilistic single-valued (interval) neutrosophic hesitant fuzzy set and its application in multi-attribute decision making, Symmetry, 10 (2018), 419. https://doi.org/10.3390/sym10090419 doi: 10.3390/sym10090419
![]() |
[28] | R. M. Zulqarnain, A. Iampan, I. Siddique, H. Abd, E. W. Khalifa, Some fundamental operations for multi-polar interval-valued neutrosophic soft set and a decision-making approach to solve MCDM problem, Neutrosophic Sets Sy., 51 (2022), 205–220. |
[29] |
R. M. Zulqarnain, X. L. Xin, M. Saqlain, M. Saeed, F. Smarandache, M. I. Ahamad, Some fundamental operations on interval valued neutrosophic hypersoft set with their properties, Neutrosophic Sets Sy., 40 (2021), 134–148. https://doi.org/10.5281/zenodo.4549352 doi: 10.5281/zenodo.4549352
![]() |
[30] | M. Kamran, S. Ashraf, M. Naeem, A promising approach for decision modeling with single-valued neutrosophic probabilistic hesitant fuzzy Dombi operators, Yugoslav J. Oper. Res., 2023. http://dx.doi.org/10.2298/YJOR230115007S |
[31] |
R. Sahin, F. Altun, Decision making with MABAC method under probabilistic single-valued neutrosophic hesitant fuzzy environment, J. Amb. Intel. Hum. Comp., 11 (2020), 4195–4212. https://doi.org/10.1007/s12652-020-01699-4 doi: 10.1007/s12652-020-01699-4
![]() |
[32] |
M. Riaz, Y. Almalki, S. Batool, S. Tanveer, Topological structure of single-valued neutrosophic hesitant fuzzy sets and data analysis for uncertain supply chains, Symmetry, 14 (2022), 1382. https://doi.org/10.3390/sym14071382 doi: 10.3390/sym14071382
![]() |
[33] |
C. F. Liu, Y. S. Luo, New aggregation operators of single-valued neutrosophic hesitant fuzzy set and their application in multi-attribute decision making, Pattern Anal. Appl., 22 (2019), 417–427. https://doi.org/10.1007/s10044-017-0635-6 doi: 10.1007/s10044-017-0635-6
![]() |
[34] | M. Kamran, S. Ashraf, M. Naeem, A promising approach for decision modeling with single-valued neutrosophic probabilistic hesitant fuzzy Dombi operators, Jugoslav J. Oper. Res., 2023. |
[35] | G. Kaur, H. Garg, A novel algorithm for autonomous parking vehicles using adjustable probabilistic neutrosophic hesitant fuzzy set features, Expert Syst. Appl., 2023, 120101. https://doi.org/10.1016/j.eswa.2023.120101 |
[36] |
M. Kamran, R. Ismail, E. H. A. Al-Sabri, N. Salamat, M. Farman, S. Ashraf, An optimization strategy for MADM framework with confidence level aggregation operators under probabilistic neutrosophic hesitant fuzzy rough environment, Symmetry, 15 (2023), 578. https://doi.org/10.3390/sym15030578 doi: 10.3390/sym15030578
![]() |
\begin{equation*} \begin{array}{c} \hline & \hat{C}_{1} & \hat{C}_{2} \\ \hline \Theta _{1} & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.5/0.5, 0.2/0.5\right), \\ \left(0.6/0.6, 0.3/0.4\right), \\ \left(0.3/1.0\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.6/0.8, 0.5/0.2\right) \\ \left(0.2/0.3, 0.5/0.7\right) \end{array} \right) \end{array} \right) & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.3/1.0\right), \\ \left(0.9/1.0\right), \\ \left(0.1/0.3, 0.7/0.7\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.4/1.0\right), \\ \left(0.2/1\right), \\ \left(0.7/1.0\right) \end{array} \right) \end{array} \right) \\ \Theta _{2} & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.4/0.1, 0.6/0.9\right), \\ \left(0.7/1.0\right), \\ \left(0.8/0.4, 0.9/0.6\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.3/0.2, 0.5/0.8\right), \\ \left(0.1/0.5, 0.6/0.5\right) \\ \left(0.8/1.0\right) \end{array} \right) \end{array} \right) & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.8/1.0\right), \\ \left(0.2/0.5, 0.5/0.5\right), \\ \left(0.9/1.0\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.6/0.3, 0.7/0.7\right), \\ \left(0.2/1.0\right), \\ \left(0.5/1.0\right) \end{array} \right) \end{array} \right) \\ \hline \end{array} \end{equation*} |
\begin{equation*} \begin{array}{c} \hline & \hat{C}_{3} & \hat{C}_{4} \\ \hline \Theta _{1} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.4/0.8, 0.5/0.2\right), \\ \left(0.6/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.6/1.0\right), \\ \left(0.1/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.3/1.0\right), \\ \left(0.2/0.4, 0.3/0.6\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.6/0.4, 0.3/0.6\right), \\ \left(0.3/1.0\right) \end{array} \right) \right) \end{array} \right) \\ \Theta _{2} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.6/0.7, 0.3/0.3\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.8/1.0\right), \\ \left(0.2/0.2, 0.5/0.8\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.4/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.3/0.6, 0.4/0.4\right), \\ \left(0.4/1.0\right) \end{array} \right) \right) \end{array} \right) \\ \hline \end{array} \end{equation*} |
\begin{equation*} \begin{array}{c} \hline & \hat{C}_{1} & \hat{C}_{2} \\ \hline \Theta _{3} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.6/0.6, 0.3/0.4\right), \\ (0.3/0.7, 0.4/0.3 \end{array} \right) \right) \bf{, } \\ \left(\left(\begin{array}{c} \left(0.5/0.5, 0.2/0.5\right), \\ \left(0.3/1.0\right), \\ \left(0.8/0.2, 0.9/0.8\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.5/0.7, 0.2/0.2, 0.9/0.1\right), \\ \left(0.3/1.0\right), \\ \left(0.3/0.2, 0.4/0.8\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.7/0.3, 0.3/0.7\right), \\ \left(0.3/1.0\right), \\ \left(0.3/0.6, 0.4/0.4\right) \end{array} \right) \right) \end{array} \right) \\ \Theta _{4} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.8/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.2/0.4, 0.5/0.6\right), \\ \left(0.3/0.6, 0.3/0.4\right), \\ \left(0.1/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.6/0.4, 0.4/0.4, 0.3/0.2\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.3/1.0\right), \\ \left(0.7/0.2, 0.1/0.8\right) \end{array} \right) \right) \end{array} \right) \\ \hline \end{array} \end{equation*} |
\begin{equation*} \begin{array}{c} \hline & \hat{C}_{3} & \hat{C}_{4} \\ \hline \Theta _{3} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.4/1.0\right), \\ \left(0.1/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.9/0.7, 0.3/0.3\right), \\ \left(0.3/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.3/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.2/0.6, 0.4/0.4\right), \\ \left(0.4/1.0\right) \end{array} \right) \right) \end{array} \right) \\ \Theta _{4} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.1/1.0\right), \\ \left(0.5/0.3, 0.3/0.2, 0.4/0.5\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.8/1.0\right), \\ \left(0.7/0.6, 0.4/0.4\right), \\ \left(0.4/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/0.8, 0.5/0.1, 0.2/0.1\right), \\ \left(0.6/1.0\right), \\ \left(0.1/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.5/0.6, 0.2/0.4\right), \\ \left(0.6/1.0\right), \\ \left(0.3/0.2, 0.4/0.8\right) \end{array} \right) \right) \end{array} \right) \\ \hline \end{array} \end{equation*} |
Operator | s(\Theta _{1}) | s(\Theta _{2}) | s(\Theta _{3}) | s(\Theta _{4}) |
SV-NPHFREWA | 0.1517 | 0.1248 | 0.1402 | 0.1419 |
Operator | Score | Most Effective Alternative |
SV-NPHFREWA | s(\Theta _{1}) > s(\Theta _{4}) > s(\Theta _{3}) > s(\Theta _{2}) | \Theta _{1} |
S | \Theta _{1} | \Theta _{2} | \Theta _{3} | \Theta _{4} |
Forum-1 | (0.8, 0.3, 0.6) | (0.4, 0.6, 0.9) | (0.9, 0.8, 0.6) | (0.5, 0.5, 0.8) |
Forum-2 | (0.3, 0.4, 0.8) | (0.5, 0.3, 0.6) | (0.7, 0.9, 0.9) | (0.8, 0.9, 0.3) |
Forum-3 | (0.3, 0.2, 0.2) | (0.1, 0.6, 0.8) | (0.9, 0.3, 0.4) | (0.3, 0.6, 0.9) |
Forum-4 | (0.6, 0.4, 0.8) | (0.3, 0.4, 0.1) | (0.2, 0.6, 0.1) | (0.8, 0.3, 0.9) |
T | \hat{C}_{1} | \hat{C}_{2} | \hat{C}_{3} | \hat{C}_{4} |
\Theta _{1} | (0.3, 0.5, 0.9) | (0.7, 0.8, 0.9) | (0.6, 0.7, 0.8) | (0.9, 0.3, 0.5) |
\Theta _{2} | (0.6, 0.7, 0.7) | (0.8, 0.3, 0.4) | (0.7, 0.3, 0.4) | (0.5, 0.6, 0.7) |
\Theta _{3} | (0.9, 0.6, 0.3) | (0.7, 0.8, 0.3) | (0.0.8, 0.3, 0.1) | (0.8, 0.6, 0.2) |
\Theta _{4} | (0.8, 0.3, 0.7) | (0.9, 0.3, 0.4) | (0.7, 0.3, 0.2) | (0.6, 0.4, 0.5) |
R | \hat{C}_{1} | \hat{C}_{2} | \hat{C}_{3} | \hat{C}_{4} |
Forum-1 | (0.9, 0.5, 0.6) | (0.7, 0.5, 0.6) | (0.8, 0.4, 0.6) | (0.8, 0.3, 0.6) |
Forum-2 | (0.8, 0.5, 0.5) | (0.7, 0.3, 0.4) | (0.7, 0.3, 0.5) | (0.7, 0.4, 0.5) |
Forum-3 | (0.9, 0.5, 0.4) | (0.7, 0.6, 0.4) | (0.8, 0.3, 0.4) | (0.8, 0.3, 0.3) |
Forum-4 | (0.8, 0.6, 0.3) | (0.8, 0.6, 0.3) | (0.7, 0.3, 0.3) | (0.6, 0.3, 0.4) |
\hat{C}_{1} | \hat{C}_{2} | \hat{C}_{3} | \hat{C}_{4} | |
Forum-1 | 0.6 | 0.4 | 0.56 | 0.62 |
Forum-2 | 0.55 | 0.58 | 0.55 | 0.5 |
Forum-3 | 0.7 | 0.46 | 0.68 | 0.71 |
Forum-4 | 0.58 | 0.62 | 0.61 | 0.48 |
\text{Operators} | \text{Score} | \text{Most Effective Alternative} |
\text{SV-NPHFDWA} | Undefined | No Outcome |
\text{SV-NPHFDWG} | Undefined | No Outcome |
\text{SV-NPHFWA} | Undefined | No Outcome |
\text{SV-NPHFWG} | Undefined | No Outcome |
\text{SV-NHFROWA} (Defined) | Undefined | No Outcome |
\text{SV-NHFRHWA} (Defined) | Undefined | No Outcome |
\text{SV-NHFRHWG} (Defined) | Undefined | No Outcome |
\text{SV-NPHFRWA} | s(\Theta _{1}) > s(\Theta _{3}) > s(\Theta_{2}) > s(\Theta _{4}) | s(\Theta _{1}) |
\text{SV-NPHFRWG} | s(\Theta _{4}) > s(\Theta _{1}) > s(\Theta_{3}) > s(\Theta _{2}) | s(\Theta _{4}) |
\text{SV-NPHFREWA} (Proposed) | s(\Theta _{1}) > s(\Theta _{4}) > s(\Theta_{3}) > s(\Theta _{2}) | s(\Theta _{1}) |
\text{SV-NPHFRWG} (Defined) | s(\Theta _{1}) > s(\Theta_{3}) > s(\Theta _{4}) > s(\Theta _{2}) | s(\Theta _{1}) |
\begin{equation*} \begin{array}{c} \hline & \hat{C}_{1} & \hat{C}_{2} \\ \hline \Theta _{1} & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.5/0.5, 0.2/0.5\right), \\ \left(0.6/0.6, 0.3/0.4\right), \\ \left(0.3/1.0\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.6/0.8, 0.5/0.2\right) \\ \left(0.2/0.3, 0.5/0.7\right) \end{array} \right) \end{array} \right) & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.3/1.0\right), \\ \left(0.9/1.0\right), \\ \left(0.1/0.3, 0.7/0.7\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.4/1.0\right), \\ \left(0.2/1\right), \\ \left(0.7/1.0\right) \end{array} \right) \end{array} \right) \\ \Theta _{2} & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.4/0.1, 0.6/0.9\right), \\ \left(0.7/1.0\right), \\ \left(0.8/0.4, 0.9/0.6\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.3/0.2, 0.5/0.8\right), \\ \left(0.1/0.5, 0.6/0.5\right) \\ \left(0.8/1.0\right) \end{array} \right) \end{array} \right) & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.8/1.0\right), \\ \left(0.2/0.5, 0.5/0.5\right), \\ \left(0.9/1.0\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.6/0.3, 0.7/0.7\right), \\ \left(0.2/1.0\right), \\ \left(0.5/1.0\right) \end{array} \right) \end{array} \right) \\ \hline \end{array} \end{equation*} |
\begin{equation*} \begin{array}{c} \hline & \hat{C}_{3} & \hat{C}_{4} \\ \hline \Theta _{1} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.4/0.8, 0.5/0.2\right), \\ \left(0.6/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.6/1.0\right), \\ \left(0.1/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.3/1.0\right), \\ \left(0.2/0.4, 0.3/0.6\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.6/0.4, 0.3/0.6\right), \\ \left(0.3/1.0\right) \end{array} \right) \right) \end{array} \right) \\ \Theta _{2} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.6/0.7, 0.3/0.3\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.8/1.0\right), \\ \left(0.2/0.2, 0.5/0.8\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.4/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.3/0.6, 0.4/0.4\right), \\ \left(0.4/1.0\right) \end{array} \right) \right) \end{array} \right) \\ \hline \end{array} \end{equation*} |
\begin{equation*} \begin{array}{c} \hline & \hat{C}_{1} & \hat{C}_{2} \\ \hline \Theta _{3} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.6/0.6, 0.3/0.4\right), \\ (0.3/0.7, 0.4/0.3 \end{array} \right) \right) \bf{, } \\ \left(\left(\begin{array}{c} \left(0.5/0.5, 0.2/0.5\right), \\ \left(0.3/1.0\right), \\ \left(0.8/0.2, 0.9/0.8\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.5/0.7, 0.2/0.2, 0.9/0.1\right), \\ \left(0.3/1.0\right), \\ \left(0.3/0.2, 0.4/0.8\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.7/0.3, 0.3/0.7\right), \\ \left(0.3/1.0\right), \\ \left(0.3/0.6, 0.4/0.4\right) \end{array} \right) \right) \end{array} \right) \\ \Theta _{4} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.8/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.2/0.4, 0.5/0.6\right), \\ \left(0.3/0.6, 0.3/0.4\right), \\ \left(0.1/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.6/0.4, 0.4/0.4, 0.3/0.2\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.3/1.0\right), \\ \left(0.7/0.2, 0.1/0.8\right) \end{array} \right) \right) \end{array} \right) \\ \hline \end{array} \end{equation*} |
\begin{equation*} \begin{array}{c} \hline & \hat{C}_{3} & \hat{C}_{4} \\ \hline \Theta _{3} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.4/1.0\right), \\ \left(0.1/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.9/0.7, 0.3/0.3\right), \\ \left(0.3/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.3/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.2/0.6, 0.4/0.4\right), \\ \left(0.4/1.0\right) \end{array} \right) \right) \end{array} \right) \\ \Theta _{4} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.1/1.0\right), \\ \left(0.5/0.3, 0.3/0.2, 0.4/0.5\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.8/1.0\right), \\ \left(0.7/0.6, 0.4/0.4\right), \\ \left(0.4/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/0.8, 0.5/0.1, 0.2/0.1\right), \\ \left(0.6/1.0\right), \\ \left(0.1/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.5/0.6, 0.2/0.4\right), \\ \left(0.6/1.0\right), \\ \left(0.3/0.2, 0.4/0.8\right) \end{array} \right) \right) \end{array} \right) \\ \hline \end{array} \end{equation*} |
Operator | s(\Theta _{1}) | s(\Theta _{2}) | s(\Theta _{3}) | s(\Theta _{4}) |
SV-NPHFREWA | 0.1517 | 0.1248 | 0.1402 | 0.1419 |
Operator | Score | Most Effective Alternative |
SV-NPHFREWA | s(\Theta _{1}) > s(\Theta _{4}) > s(\Theta _{3}) > s(\Theta _{2}) | \Theta _{1} |
S | \Theta _{1} | \Theta _{2} | \Theta _{3} | \Theta _{4} |
Forum-1 | (0.8, 0.3, 0.6) | (0.4, 0.6, 0.9) | (0.9, 0.8, 0.6) | (0.5, 0.5, 0.8) |
Forum-2 | (0.3, 0.4, 0.8) | (0.5, 0.3, 0.6) | (0.7, 0.9, 0.9) | (0.8, 0.9, 0.3) |
Forum-3 | (0.3, 0.2, 0.2) | (0.1, 0.6, 0.8) | (0.9, 0.3, 0.4) | (0.3, 0.6, 0.9) |
Forum-4 | (0.6, 0.4, 0.8) | (0.3, 0.4, 0.1) | (0.2, 0.6, 0.1) | (0.8, 0.3, 0.9) |
T | \hat{C}_{1} | \hat{C}_{2} | \hat{C}_{3} | \hat{C}_{4} |
\Theta _{1} | (0.3, 0.5, 0.9) | (0.7, 0.8, 0.9) | (0.6, 0.7, 0.8) | (0.9, 0.3, 0.5) |
\Theta _{2} | (0.6, 0.7, 0.7) | (0.8, 0.3, 0.4) | (0.7, 0.3, 0.4) | (0.5, 0.6, 0.7) |
\Theta _{3} | (0.9, 0.6, 0.3) | (0.7, 0.8, 0.3) | (0.0.8, 0.3, 0.1) | (0.8, 0.6, 0.2) |
\Theta _{4} | (0.8, 0.3, 0.7) | (0.9, 0.3, 0.4) | (0.7, 0.3, 0.2) | (0.6, 0.4, 0.5) |
R | \hat{C}_{1} | \hat{C}_{2} | \hat{C}_{3} | \hat{C}_{4} |
Forum-1 | (0.9, 0.5, 0.6) | (0.7, 0.5, 0.6) | (0.8, 0.4, 0.6) | (0.8, 0.3, 0.6) |
Forum-2 | (0.8, 0.5, 0.5) | (0.7, 0.3, 0.4) | (0.7, 0.3, 0.5) | (0.7, 0.4, 0.5) |
Forum-3 | (0.9, 0.5, 0.4) | (0.7, 0.6, 0.4) | (0.8, 0.3, 0.4) | (0.8, 0.3, 0.3) |
Forum-4 | (0.8, 0.6, 0.3) | (0.8, 0.6, 0.3) | (0.7, 0.3, 0.3) | (0.6, 0.3, 0.4) |
\hat{C}_{1} | \hat{C}_{2} | \hat{C}_{3} | \hat{C}_{4} | |
Forum-1 | 0.6 | 0.4 | 0.56 | 0.62 |
Forum-2 | 0.55 | 0.58 | 0.55 | 0.5 |
Forum-3 | 0.7 | 0.46 | 0.68 | 0.71 |
Forum-4 | 0.58 | 0.62 | 0.61 | 0.48 |
\text{Operators} | \text{Score} | \text{Most Effective Alternative} |
\text{SV-NPHFDWA} | Undefined | No Outcome |
\text{SV-NPHFDWG} | Undefined | No Outcome |
\text{SV-NPHFWA} | Undefined | No Outcome |
\text{SV-NPHFWG} | Undefined | No Outcome |
\text{SV-NHFROWA} (Defined) | Undefined | No Outcome |
\text{SV-NHFRHWA} (Defined) | Undefined | No Outcome |
\text{SV-NHFRHWG} (Defined) | Undefined | No Outcome |
\text{SV-NPHFRWA} | s(\Theta _{1}) > s(\Theta _{3}) > s(\Theta_{2}) > s(\Theta _{4}) | s(\Theta _{1}) |
\text{SV-NPHFRWG} | s(\Theta _{4}) > s(\Theta _{1}) > s(\Theta_{3}) > s(\Theta _{2}) | s(\Theta _{4}) |
\text{SV-NPHFREWA} (Proposed) | s(\Theta _{1}) > s(\Theta _{4}) > s(\Theta_{3}) > s(\Theta _{2}) | s(\Theta _{1}) |
\text{SV-NPHFRWG} (Defined) | s(\Theta _{1}) > s(\Theta_{3}) > s(\Theta _{4}) > s(\Theta _{2}) | s(\Theta _{1}) |