Processing math: 51%
Research article Special Issues

An optimization strategy with SV-neutrosophic quaternion information and probabilistic hesitant fuzzy rough Einstein aggregation operator

  • The single valued neutrosophic probabilistic hesitant fuzzy rough Einstein aggregation operator (SV-NPHFRE-AO) is an extension of the neutrosophic probabilistic hesitant fuzzy rough set theory. It is a powerful decision-making tool that combines the concepts of neutrosophic logic, probability theory, hesitant fuzzy sets, rough sets, and Einstein aggregation operators. SV-NPHFRE-AO can be applied in many fields, including livestock decision making. Making judgments about a wide range of issues, including feed formulation, breeding program design, disease diagnostics, and market analysis, is part of the process of managing livestock. By combining data from many sources, SV-NPHFRE-AO can assist decision-makers in livestock management in integrating and evaluating diverse criteria, which can result in more informed choices. It also provides a more accurate and comprehensive representation of decision-making problems by considering the multiple criteria involved and the relationships between them. The single valued neutrosophic set (SV-NS) aggregation operators (AOs) based on Einstein properties using hesitant fuzzy sets (HFSs) and probabilistic hesitant fuzzy sets (PHFSs) with rough sets (RSs) are proposed in this study and can handle a large volume of data, making them suitable for complex and large-scale livestock decision-making problems. We first defined SV-neutrosophic probabilistic hesitant fuzzy rough weighted averaging (SV-NPHFRWA), SV-neutrosophic probabilistic hesitant fuzzy rough weighted geometric (SV-NPHFRWG), SV-neutrosophic probabilistic hesitant fuzzy rough ordered weighted averaging (SV-NPHFROWA) and SV-neutrosophic probabilistic hesitant fuzzy rough hybrid weighted averaging (SV-NPHFRHWA) AOs. Then, based on Einstein properties, we extended these operators and developed the single-valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging (SV-NPHFREWA) operator. Additionally, an illustrative scenario to show the applicability of the suggested decision-making approach is provided, along with a sensitivity analysis and comparison analysis, which demonstrate that its outcomes are realistic and reliable. We also provide another relation between criteria and alternatives of decision-making using neutrosophic information with quaternion context. By using such type of operators, livestock managers can make more informed decisions, leading to better animal health, higher productivity, and increased profitability.

    Citation: Jia-Bao Liu, Rashad Ismail, Muhammad Kamran, Esmail Hassan Abdullatif Al-Sabri, Shahzaib Ashraf, Ismail Naci Cangul. An optimization strategy with SV-neutrosophic quaternion information and probabilistic hesitant fuzzy rough Einstein aggregation operator[J]. AIMS Mathematics, 2023, 8(9): 20612-20653. doi: 10.3934/math.20231051

    Related Papers:

    [1] Muhammad Kamran, Shahzaib Ashraf, Nadeem Salamat, Muhammad Naeem, Thongchai Botmart . Cyber security control selection based decision support algorithm under single valued neutrosophic hesitant fuzzy Einstein aggregation information. AIMS Mathematics, 2023, 8(3): 5551-5573. doi: 10.3934/math.2023280
    [2] Muhammad Kamran, Rashad Ismail, Shahzaib Ashraf, Nadeem Salamat, Seyma Ozon Yildirim, Ismail Naci Cangul . Decision support algorithm under SV-neutrosophic hesitant fuzzy rough information with confidence level aggregation operators. AIMS Mathematics, 2023, 8(5): 11973-12008. doi: 10.3934/math.2023605
    [3] Misbah Rasheed, ElSayed Tag-Eldin, Nivin A. Ghamry, Muntazim Abbas Hashmi, Muhammad Kamran, Umber Rana . Decision-making algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set and Choquet integral. AIMS Mathematics, 2023, 8(5): 12422-12455. doi: 10.3934/math.2023624
    [4] Attaullah, Shahzaib Ashraf, Noor Rehman, Asghar Khan, Muhammad Naeem, Choonkil Park . Improved VIKOR methodology based on q-rung orthopair hesitant fuzzy rough aggregation information: application in multi expert decision making. AIMS Mathematics, 2022, 7(5): 9524-9548. doi: 10.3934/math.2022530
    [5] Shougi S. Abosuliman, Abbas Qadir, Saleem Abdullah . Multi criteria group decision (MCGDM) for selecting third-party logistics provider (3PL) under Pythagorean fuzzy rough Einstein aggregators and entropy measures. AIMS Mathematics, 2023, 8(8): 18040-18065. doi: 10.3934/math.2023917
    [6] Attaullah, Shahzaib Ashraf, Noor Rehman, Asghar Khan, Choonkil Park . A decision making algorithm for wind power plant based on q-rung orthopair hesitant fuzzy rough aggregation information and TOPSIS. AIMS Mathematics, 2022, 7(4): 5241-5274. doi: 10.3934/math.2022292
    [7] Attaullah, Asghar Khan, Noor Rehman, Fuad S. Al-Duais, Afrah Al-Bossly, Laila A. Al-Essa, Elsayed M Tag-eldin . A novel decision model with Einstein aggregation approach for garbage disposal plant site selection under q-rung orthopair hesitant fuzzy rough information. AIMS Mathematics, 2023, 8(10): 22830-22874. doi: 10.3934/math.20231163
    [8] D. Jeni Seles Martina, G. Deepa . Some algebraic properties on rough neutrosophic matrix and its application to multi-criteria decision-making. AIMS Mathematics, 2023, 8(10): 24132-24152. doi: 10.3934/math.20231230
    [9] Esmail Hassan Abdullatif Al-Sabri, Muhammad Rahim, Fazli Amin, Rashad Ismail, Salma Khan, Agaeb Mahal Alanzi, Hamiden Abd El-Wahed Khalifa . Multi-criteria decision-making based on Pythagorean cubic fuzzy Einstein aggregation operators for investment management. AIMS Mathematics, 2023, 8(7): 16961-16988. doi: 10.3934/math.2023866
    [10] Muhammad Naeem, Aziz Khan, Shahzaib Ashraf, Saleem Abdullah, Muhammad Ayaz, Nejib Ghanmi . A novel decision making technique based on spherical hesitant fuzzy Yager aggregation information: application to treat Parkinson's disease. AIMS Mathematics, 2022, 7(2): 1678-1706. doi: 10.3934/math.2022097
  • The single valued neutrosophic probabilistic hesitant fuzzy rough Einstein aggregation operator (SV-NPHFRE-AO) is an extension of the neutrosophic probabilistic hesitant fuzzy rough set theory. It is a powerful decision-making tool that combines the concepts of neutrosophic logic, probability theory, hesitant fuzzy sets, rough sets, and Einstein aggregation operators. SV-NPHFRE-AO can be applied in many fields, including livestock decision making. Making judgments about a wide range of issues, including feed formulation, breeding program design, disease diagnostics, and market analysis, is part of the process of managing livestock. By combining data from many sources, SV-NPHFRE-AO can assist decision-makers in livestock management in integrating and evaluating diverse criteria, which can result in more informed choices. It also provides a more accurate and comprehensive representation of decision-making problems by considering the multiple criteria involved and the relationships between them. The single valued neutrosophic set (SV-NS) aggregation operators (AOs) based on Einstein properties using hesitant fuzzy sets (HFSs) and probabilistic hesitant fuzzy sets (PHFSs) with rough sets (RSs) are proposed in this study and can handle a large volume of data, making them suitable for complex and large-scale livestock decision-making problems. We first defined SV-neutrosophic probabilistic hesitant fuzzy rough weighted averaging (SV-NPHFRWA), SV-neutrosophic probabilistic hesitant fuzzy rough weighted geometric (SV-NPHFRWG), SV-neutrosophic probabilistic hesitant fuzzy rough ordered weighted averaging (SV-NPHFROWA) and SV-neutrosophic probabilistic hesitant fuzzy rough hybrid weighted averaging (SV-NPHFRHWA) AOs. Then, based on Einstein properties, we extended these operators and developed the single-valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging (SV-NPHFREWA) operator. Additionally, an illustrative scenario to show the applicability of the suggested decision-making approach is provided, along with a sensitivity analysis and comparison analysis, which demonstrate that its outcomes are realistic and reliable. We also provide another relation between criteria and alternatives of decision-making using neutrosophic information with quaternion context. By using such type of operators, livestock managers can make more informed decisions, leading to better animal health, higher productivity, and increased profitability.



    Fuzzy set theory (FST) is a potent tool that can be used to handle difficult decision-making problems involving numerous criteria [1]. This method is known as multi-criteria decision-making (MCDM). There are several situations in livestock management where MCDM with FST can be used. It can be used in feed formulation to choose the best mixture of feed ingredients that meets the nutritional needs of the animals while lowering the cost. The technique can be used to assess various feed formulations based on numerous factors such as nutritional value, digestibility, and cost. FST can also be utilized to reflect the uncertainty and ambiguity in the nutritional requirements of the animals. In breeding program design, it can also be used to select the best breeding strategy that maximizes the genetic potential of the animals while minimizing the risk of inbreeding. FST can be used to model the uncertainty and vagueness in the genetic parameters, and the MCDM strategy can be used to evaluate different breeding strategies based on multiple criteria such as genetic diversity, productivity, and genetic risk [2,3].

    In disease diagnosis, MCDM can be used to identify the best treatment strategy that maximizes the chances of recovery while minimizing the risk of side effects. This theory can be used to model the uncertainty and vagueness in the symptoms and diagnostic test results, and the MCDM method can be used to evaluate different treatment strategies based on multiple criteria such as effectiveness, safety, and cost. In market analysis, this type of methodology can be used to identify the best marketing strategy that maximizes the profitability of the livestock business while minimizing the risk of losses. Fuzzy set theory can be used to model the uncertainty and vagueness in the market conditions and customer preferences, and the MCDM technique can be used to evaluate different marketing strategies based on multiple criteria such as profitability, market share, and customer satisfaction. By incorporating the principles of fuzzy set theory and MCDM, livestock managers can make more informed decisions based on multiple criteria and handle the uncertainty and vagueness that are inherent in many livestock management problems [4,5].

    A group of elements (objects) having fuzzy boundaries is represented mathematically as a fuzzy set (FS), which allows for the possibility of a gradual change in an element's belongingness to a group, from fully belonging to not belonging. This concept is put forth in the fuzzy sets theory as a means of mathematically expressing fuzzy concepts that individuals use to explain, among other things, how they view real systems, their preferences, and goals [6,7]. One can select the most effective food loss and waste drivers to promote sustainability by applying fuzzy decision theory. Systems for reducing food loss and waste face numerous difficulties that make it difficult to select the appropriate course of action. When dealing with unstructured scenarios in decision-making situations, classic or crisp methods may not always be the most effective. In 1965, Zadeh [8] designed fuzzy sets (FS) as a method to deal with this contradiction. In FSs, Zadeh assigns membership grades in the range [0,1] to a set of components. Since many of the set theoretic components of crisp conditions were given for fuzzy sets, Zadeh's work on this area is noteworthy [9].

    An improved version of the fuzzy set (FS) that contains membership and non-membership degrees was the intuitionistic fuzzy set (IFS), which was the subject of Atanassov's [10] research. Over the past few decades, IFSs have been demonstrated to be helpful and frequently used by academics to assess uncertainty and instability in data. A single-valued neutrosophic set (SV-NS), which can deal with inaccurate, ambiguous, and incompatible data issues, was proposed by Wang et al. [11]. SV-NS has received a lot of attention from academics because it is a potent universal systematic approach. Ye discussed the correlation and information energy of SV-NSs in [12]. The use of SV-NSs as a decision-making tool was subsequently investigated by many researchers [13,14,15]. The idea of a neutrosophic rough set (RS) has been described [16], as a the generalization of fuzzy rough sets (FRSs).

    Despite the fact that these methods effectively capture uncertainty, they are unable to simulate circumstances where an expert's refusal to make a conclusion plays a significant role. Consider a scenario where a panel of six experts is asked to choose the best applicant throughout the hiring process, but two of them decline to make a choice. The number of decision makers is regarded to be 4 as opposed to 6, i.e., the refusal-providing professionals are completely disregarded, and the decision is established using the responses given by the 4 determination-providing experts only, when analyzing the informative data using the existing methodologies [17]. This leads to a huge loss of knowledge and might produce subpar outcomes. Zhu and Xu [18] developed probabilistic hesitant fuzzy sets (PHFSs) to handle such refusal-oriented instances. The review makes it obvious that (i) the HFS is a dynamic support structure with a capacity to reduce subjective randomness, (ii) it also makes it easier for experts to gain insight into preferences, and (iii) it ignores the likelihood that each element will occur. Zhou and Xu [19] proposed a generalized structure known as probabilistic hesitant fuzzy information (PHFI) that assigns an occurrence probability to each element in response to the claims stated in the systematic review. By doing this, it is possible to determine the confidence of each element, which serves as potential data for MCDM [20].

    When making decisions, especially in MCDM, where several criteria or considerations must be taken into account, aggregation operators (AOs) are essential. The knowledge or preferences of decision-makers or stake holders are combined using aggregate operators to get an overall score or ranking for each alternative under consideration. The ordered weighted averaging (OWA), weighted product, weighted average, and Choquet integral are some common AOs used in MCDM [21,22,23]. Depending on the preferences of the decision maker and the characteristics of the choice problem, these operators have various qualities and are useful for various decision-making scenarios.

    The Einstein aggregation operator (EAO) is a powerful and flexible aggregation operator used in MCDM. It was introduced by C. Carlsson and R. Fuller [24] in 2001 as an extension of the well-known weighted average operator. One of the unique features of the EAO is that it allows the decision maker to specify a set of "aggregation weights" for each criterion, which represent the relative importance of that criterion compared to the others. These weights can be different for each alternative being considered, and can even vary across different levels or dimensions of the criteria. In order to more accurately represent complex and uncertain decision-making problems, neutrosophic information with quaternion context and a hybrid model that combines various uncertainty measures and builds a relationship between alternatives and criteria are also presented. The literature still lacks research on the new operators for decision-making used in this study. The creation of novel AOs is specifically required in order to manage the complexity and inherent uncertainty of decision-making situations employing SV-NPHFRS in a more effective and efficient manner. There is a need for their application to larger and more sophisticated decision-making situations, as the previous literature has mostly concentrated on using these AOs to solve small-scale decision-making challenges. The potential of these AOs in domains other than decision-making, such as forecasting and pattern recognition, also needs to be investigated. The development of new operators for SV-NPHFRS that can better capture the complexity and uncertainty of decision-making problems, as well as assessing their efficacy on larger and more complicated decision-making problems, could thus be the main areas of future research. To fully explore their potential and limitations, research on the use of these operators in contexts other than decision-making is also necessary. Based on SV-neutrosophic rough sets (SV-NRSs), in this article, we propose some new AOs because of the following reasons:

    (1) Decision-makers have more discretion as a result of SV-NPHFRE-AO's integration of neutrosophic logic, probability theory, hesitant fuzzy sets, rough sets, and Einstein aggregation operator.

    (2) SV-NPHFRE-AO can handle different types of information, such as qualitative and quantitative data, linguistic terms, and probabilistic information, which gives more flexibility in decision-making.

    (3) SV-NPHFRE-AO can integrate multiple criteria in decision making, allowing decision-makers to consider multiple factors that are relevant to the decision problem. This is important because many real-world decisions involve multiple factors that must be considered, and SV-NPHFRE-AO can help decision-makers to prioritize and weigh these factors appropriately.

    (4) For first evaluation, SV-neutrosophic weighted averaging (SV-NWA) and SV-neutrosophic weighted geometric (SV-NWG) AOs are unable to take into account the familiarity of experts with the investigated items, while SV-NPHFREWA and SV-NPHFREOWA AOs may.

    (5) This article sought to address more complicated and advanced data due to the clarity of the SV-NPHFREWA and SV-NPHFREOWA AOs and the fact that they cover the decision-making technique.

    (6) We also use the neutrosophic data in quaternion context to find the relationship between the decision making objectives.

    (7) Two types of information are typically needed from evaluation specialists in real-world decision-making challenges (called Positive and Negative): Performance of the assessment objects and expertise in the evaluation sectors. All currently used methods only consider positive data and lack negative information in the experts' assessments. The proposed work covers the limitation of all existing drawbacks.

    Consequently, the following are the research's results:

    ● To begin, we recognize from the scientific literature the theory of SV-neutrosophic probabilistic hesitant fuzzy rough sets.

    ● We undertake the development of new AOs like SV-NPHFREWA and SV-NPHFREOWA AOs.

    ● An illustrative scenario to show the applicability of the suggested decision-making approach is provided, along with a sensitivity analysis and comparison analysis, that demonstrate that its outcomes are realistic and reliable.

    Let us through the basics of fuzzy sets, including intuitionistic fuzzy sets, neutrosophic sets, single-valued neutrosophic sets, and probabilistic fuzzy sets, in this part. Once they have been vetted, these ideas will be applied here.

    Definition 1. For a fixed set β, a FS [8] in β is denoted as

    ={ξ,υ(ξ)|ξβ},

    where each ξβ, the membership grade υ:βΔ specifies the degree to which the element ξ, where Δ=[0,1] is the interval.

    Definition 2. For a fixed set β, an IFS [10] in β is mathematically described as

    ={ξ,υ(ξ),τ(ξ)|ξβ}.

    For each ξβ, the membership grade υ:βΔ and the non-membership grade τ:βΔ specify the membership and non-membership of ξ to the intuitionistic fuzzy set , respectively, where Δ=[0,1] is the unit interval. Moreover, it is required that 0υ(ξ)+τ(ξ)1, for each ξβ.

    Definition 3. Let N be a fixed set, and ξN. A neutrosophic set [11] ς in N is denoted as belongingness function υ(ξ), an indeterminacy function τ(ξ) and a non-belongingness function Υ(ξ). υ(ξ),τ(ξ) and Υ(ξ) are real subsets of  ]0,1+[ and

    υ(ξ),τ(ξ),Υ(ξ):N]0,1+[

    The representation of neutrosophic set (NS) ς is mathematically defined as:

    ς={ξ,υ(ξ),τ(ξ),Υ(ξ))|ξN},

    where

    0<ξ,υ(ξ)+τ(ξ)+Υ(ξ)3+.

    Definition 4. [11,25] Let N be a fixed set and ξN. A single-valued neutrosophic set (SV-NS) B in N is defined as truth membership grade υ(ξ), an indeterminacy membership grade τ(ξ) and a falsity membership grade Υ(ξ). υ(ξ),τ(ξ) and Υ(ξ) are real subsets of [0,1], and

    υ(ξ),τ(ξ),Υ(ξ):N[0,1].

    The representation of single valued neutrosophic set (SV-NS) B is mathematically defined as:

    B={ξ,υ(ξ),τ(ξ),Υ(ξ))|ξN},

    where

    0<υ(ξ)+τ(ξ)+Υ(ξ)3.

    Definition 5. For a fixed set β, a probabilistic fuzzy set (PFS) [26,27] in β is presented as

    ={ξ,(ξ)/Ξ|ξβ},

    where (ξ) a subset of  [0,1], and (ξ)/Ξ represents the membership degree of ξβ in . And Ξ represent the possibilities of  (ξ), with constraint that Ξ=1.

    Definition 6. A quaternion neutrosophic set (QNS) is given by ˊNQ:N[0,1] such that

    ˊNQ(ξi+τj+Υk)=min{¯X(ξ),¯Y(τ),¯Z(Υ)}

    for some (ξ,τ,Υ)NQ and ¯X,¯Y,¯ZNQ, where NQ is a quaternion neutrosophic set. For better understanding ¯X, is called the membership function, ¯Y is called the indeterminacy function, and ¯Z is called the non membership function. Here the function satisfied the following condition for a quaternion neutrosophic set (QNS) as

    0ξ+τ+Υ3

    and

    (ξ,τ,Υ)[0,1].

    Definition 7. Let 1=(υ1/Ξ1,τ1/ϖ1,Υ1/ϕ1) and 2=(υ2/Ξ2,τ2/ϖ2,Υ2/ϕ2) be two SV-NPFNs. The basic operational laws [28,29] are defined as

    (1) 12={ξ1υ1,Ξ1Ξ1ξ2υ2,Ξ2Ξ2(max(ξ1/Ξ1,ξ2/Ξ2)),Λ1τ1,ϖ1ϖ1Λ2τ2,ϖ2ϖ2(min(Λ1/ϖ1,Λ2/ϖ2)),ϱ1Υ1,ϕ1ϕ1ϱ2Υ2,ϕ2ϕ2(min(ϱ1/ϕ1,ϱ2/ϕ2))},

    (2) 12={ξ1υ1,Ξ1Ξ1ξ2υ2,Ξ2Ξ2(min(ξ1/Ξ1,ξ2/Ξ2)),Λ1τ1,ϖ1ϖ1Λ2τ2,ϖ2ϖ2(max(Λ1/ϖ1,Λ2/ϖ2)),ϱ1Υ1,ϕ1ϕ1ϱ2Υ2,ϕ2ϕ2(max(ϱ1/ϕ1,ϱ2/ϕ2))},

    (3) c1={Υς/ϕ,τς/ϖ,υς/Ξ}.

    Definition 8. Let 1=(υ1/Ξ1,τ1/ϖ1,Υ1/ϕ1) and 2=(υ2/Ξ2,τ2/ϖ2,Υ2/ϕ2)

    be two SV-neutrosophic probabilistic hesitant fuzzy numbers (SV-NPHFNs) and η>0(R). Then, their operations [30] are presented as:

    (1) 12={ξ1υ1,ξ2υ2Ξ1Ξ1,Ξ2Ξ2(ξ1+ξ2ξ1ξ2/Ξ1Ξ2),Λ1τ1,Λ2τ2ϖ1ϖ1,ϖ2ϖ2(Λ1Λ2/ϖ1ϖ2),ϱ1Υ1,ϱ2Υ2ϕ1ϕ1,ϕ2ϕ2(ϱ1ϱ2/ϕ1ϕ2)},

    (2) 12={ξ1υ1,ξ2υ2Ξ1Ξ1,Ξ2Ξ2(ξ1ξ2/Ξ1Ξ2),Λ1τ1,Λ2τ2ϖ1ϖ1,ϖ2ϖ2(Λ1+Λ2Λ1Λ2/ϖ1ϖ2)ϱ1Υ1,ϱ2Υ2ϕ1ϕ1,ϕ2ϕ2(ϱ1+ϱ2ϱ1ϱ2/ϕ1ϕ2)},

    (3) η1={ξ1υ1,Ξ1Ξ1(1(1ξ1)η/Ξ1),Λ1τ, ϖ1ϖ1(Λη1/ϖ1),ϱ1Υ1,ϕ1ϕ1(ϱη1/ϕ1)},

    (4) η1={ξ1υ1,Ξ1Ξ1(ξη1/Ξ1),Λ1τ1,ϖ1ϖ1(Λη1/ϖ1),ϱ1Υ,ϕ1ϕ1(1(1ϱ1)η/ϕ1)}.

    Definition 9. [31,32] For any SV-NPHFN =(υς/Ξ,τς/ϖ,Υς/ϕ), a score function can defined as

    {p()=(1Mξυ,ΞΞ(ξΞ))(1NΛτς,ϖϖ(Λϖ))(1ZϱΥς,ϕϕ(ϱϕ))} (2.1)

    where M represents the number of elements in υς,N represents the number of elements in τς, and Z represents the number of elements in Υς.

    Definition 10. [31] For any SV-NPHFN =(υς/Ξ,τς/ϖ,Υς/ϕ), an accuracy function is defined as

    ()={(1Mξυ,ΞΞ(ξΞ))+(1NΛτς,ϖϖ(Λϖ))+(1ZϱΥς,ϕϕ(ϱϕ))}

    where M represents the number of elements in υς,N represents the number of elements in τς and Z represents the number of elements in Υς.

    Definition 11. Let 1=(υ1/Ξ1,τ1/ϖ1,Υ1/ϕ1) and 2=(υ2/Ξ2,τ2/ϖ2,Υ2/ϕ2)

    be two SV-NPHFNs. Then, by using the above definition, comparison of SV-NPHFNs can be described as

    (1) If p(1)>p(2), then 1>2.

    (2) If p(1)=p(2), and (1)>(2), then 1>2.

    Definition 12. Let =(υ/Ξ,τ/ϖ,Υ/ϕ)(=1,2,.....,p) be any group of

    SV-NPHFNs, and Γ=(Γ1,Γ2,....,Γp)T are the weights of [0,1] with p=1Γ=1. Then, we have the following.

    (1) The SV-neutrosophic probabilistic hesitant fuzzy weighted averaging (SV-NPHFWA) AO [33] can be described as SV-NPHFWA

    (1,2,....,p)=(ξυΞΞ1Πp=1(1ξ)Γ/Πp=1Ξ,ΛτϖϖΠp=1(Λ)Γ/Πp=1ϖ,ϱΥϕϕΠp=1(ϱ)Γ/Πp=1ϕ). (2.2)

    (2) The SV-neutrosophic probabilistic hesitant fuzzy weighted geometric (SV-NPHFWG) AO [33] can be described as SV-NPHFWG

    (1,2,....,p)=(ξυΞΞΠp=1(ξ)Γ/Πp=1Ξ,Λτϖϖ1Πp=1(1Λ)Γ/Πp=1ϖ,ϱΥϕϕ1Πp=1(1ϱ)Γ/Πp=1ϕ). (2.3)

    Definition 13. Let =(υ/Ξ,τ/ϖ,Υ/ϕ)(=1,2,.....,p) be any group of SV-NPHFNs, Λ() be the jth largest in them and Γ=(Γ1,Γ2,....,Γp)T be the weights of [0,1] with p=1Γ=1. Then, the SV-neutrosophic probabilistic hesitant fuzzy ordered weighted averaging (SV-NPHFOWA) AO can be described as

    SVNPHFOWA(1,2,....,p)=Γ1Λ(1)Γ2Λ(2).....ΓpΛ(p)=(ξΛ()υΛ()ΞΛ()ΞΛ()1Πp=1(1ξΛ())Γ/Πp=1ΞΛ(),ΛΛ()τΛ()ϖΛ()ϖΛ()Πp=1(ΛΛ())Γ/Πp=1ϖΛ(),ΥΛ()ξΛ()ϕΛ()ϕΛ()Πp=1(ΥΛ())Γ/Πp=1ϕΛ()). (2.4)

    Definition 14. Let =(υ/Ξ,τ/ϖ,Υ/ϕ)(=1,2,.....,p)

    be any group of SV-NHFNs, Λ() is the jth largest of Λ()=pΓ(=1,2,.....,p). Then, the following aggregation operator with aggregation-associated vector Γ=(Γ1,Γ2,....,Γp)T where Γ[0,1], p=1Γ=1, can be described:

    SV-neutrosophic probabilistic hesitant fuzzy hybrid weighted averaging (SV-NPHFHWA) AO [33]

    SVNHFHWA(1,2,....,p)=Γ1Λ(1)Γ2Λ(2).....ΓpΛ(p)=(ξΛ()υΛ()ΞΛ()ΞΛ()1Πp=1(1ξΛ())Γ/Πp=1ΞΛ(),ΛΛ()τΛ()ϖΛ()ϖΛ()Πp=1(ΛΛ())Γ/Πp=1ϖΛ(),ϱΛ()ΥΛ()ϕΛ()ϕΛ()Πp=1(ϱΛ())Γ/Πp=1ϕΛ()). (2.5)

    The single valued neutrosophic probabilistic hesitant fuzzy rough set (SV-NPHFRS) is a hybrid structure of rough set that we present here. We also introduce the SV-NPHFRS's scoring and accuracy features, as well as its basic operational rules.

    Definition 15. Assume universal set ¨U and let SVNPHFRS(¨UרU) be a SVNPHF relation. The pair (¨U,) represents a SVNPHF approximation space. Assume be any subset of SVNPHS(¨U) i.e., SVNPHS(¨U). Then, on the bases of SVNPHF approximation space (¨U,), the lower and upper approximations of are represented as ¯() and _(), given as the following:

    ¯()={σ,υ¯()(σ)/Ξ(σ),Λ¯()(σ)/ϖ(σ),Υ¯()(σ)/ϕ(σ)|σ¨U},
    _()={σ,υ_()(σ)/Ξ(σ),Λ_()(σ)/ϖ(σ),Υ_()(σ)/ϕ(σ)|σ¨U},

    where

    υ¯()(σ)/Ξ(σ)=t¨U[υ(σ,t)/Ξ(σ)υ(t)/Ξ(σ)],Λ¯()(σ)/ϖ(σ)=t¨U[Λ(σ,t)/ϖ(σ)Λ(t)/ϖ(σ)],Υ¯()(σ)/ϕ(σ)=t¨U[Υ(σ,t)/ϕ(σ)Υ(t)/ϕ(σ)],υ_()(σ)/Ξ(σ)=t¨U[υ(σ,t)/Ξ(σ)υ(t)/Ξ(σ)],Λ_()(σ)/ϖ(σ)=t¨U[Λ(σ,t)/ϖ(σ)Λ(t)/ϖ(σ)],Υ_()(σ)/ϕ(σ)=t¨U[Υ(σ,t)/ϕ(σ)Υ(t)/ϕ(σ)],

    such that

    0<υ¯()(σ)/Ξ(σ)+Λ¯()(σ)/ϖ(σ)+Υ¯()(σ)/ϕ(σ)3,

    and

    0<υ_()(σ)/Ξ(σ)+Λ_()(σ)/ϖ(σ)+Υ_()(σ)/ϕ(σ)3.

    As _() and ¯() are SVNFSs, so ¯(),_():SVNFS(¨U)SVNFS(¨U) are upper and lower approximation operators. So, the pair

    ()=(_(),¯())={{σ,((υ_()(σ)/Ξ(σ),Λ_()(σ)/ϖ(σ),Υ_()(σ)/ϕ(σ))),((υ¯()(σ)/Ξ(σ),Λ¯()(σ)/ϖ(σ),Υ¯()(σ)/ϕ(σ)))}|σ¨U}

    is called a SVNPHF rough set. For simplicity, it can be denoted as

    ()=(g_(),¯())={(Ψ_(σ)/Ξ(σ),Φ_(σ)/ϖ(σ),Ω_(σ)/ϕ(σ)),(¯υ(σ)/Ξ(σ),¯Λ(σ)/ϖ(σ),¯Υ(σ)/ϕ(σ))}.

    Definition 16. Assume 1=(υ1/Ξ(σ1),Λ1/ϖ(σ1),Υ1/ϕ(σ1)) and 2=(υ2/Ξ(σ2),Λ2/ϖ(σ2),Υ2/ϕ(σ2)) be two SV-NPHFNs. The following are the basic set theoretic operations:

    (1) 12={1υ1/Ξ(σ1)2υ2/Ξ(σ2)max(1,2),ν1Λ1/ϖ(σ1)ν2Λ2/ϖ(σ2)min(ν1,ν2),λ1Υ1/ϕ(σ1)λ2Υ2/ϕ(σ2)min(λ1,λ2)},

    (2) 12={1υ1/Ξ(σ1)2υ2/Ξ(σ2)min(1,2),ν1Λ1/ϖ(σ1)ν2Λ2/ϖ(σ2)max(ν1,ν2),λ1Υ1/ϕ(σ1)λ2Υ2/ϕ(σ2)max(λ1,λ2)},

    (3) ˆC1={Υ1/ϕ(σ1),Λ1/ϖ(σ1),υ1/Ξ(σ1)}.

    Definition 17. Assume is the universal set and × is a (crisp) relation. Then, we have the following basic crisp sets properties.

    (1) is reflexive if (Θ,Θ), for each Θ;

    (2) is symmetric if  Θ,a,(Θ,a), then (a,Θ);

    (3) is transitive if  Θ,a,b,(Θ,a) and (a,b)(Θ,b).

    Here, the reflexive, transitive and symmetric properties are same as the crisp sets.

    Definition 18. Assume F is the universal set. Then, any subset SVNPHFRS(F×F) is said to be an SV- neutrosophic probabilistic hesitant fuzzy relation. The pair (F,) is called a SV-NPHFRS approximation space. If for any ΛSVNPHFRS(F), then the upper and lower approximations of Λ\ with respect to SV-NPHFRS approximation space (F,) are two SV-NPHFRSs, which are denoted by ¯(Λ) and _(Λ) and defined as,

    ¯(Λ)={Θ,υ¯(Λ)(Θ)/Ξ¯(Λ),Λ¯(Λ)(Θ)/ϖ¯(Λ),Υ¯(Λ)(Θ)/ϕ¯(Λ)|ΘF},_(Λ)={Θ,υ_(Λ)(Θ)/Ξ_(Λ),Λ_(Λ)(Θ)/ϖ_(Λ),Υ_(Λ)(Θ)/ϖ_(Λ)|ΘF},

    where

    υ¯(Λ)(Θ)/ΞΘ=χF[υ(Θ,χ)υΛ(χ)]/χF[Ξ(Θ,c)ΞΛ(χ)],Λ¯(Λ)(Θ)/ϖΘ=χF[Λ(Θ,χ)ΛΛ(χ)]/χF[ϖ(Θ,c)ϖΛ(χ)],υ_(Λ)(Θ)/ΞΘ=χF[υ(Θ,χ)υΛ(χ)]/χF[Ξ(Θ,χ)ΞΛ(χ)],Λ_(Λ)(Θ)/ϖΘ=χF[Λ(Θ,χ)ΛΛ(χ)]/χF[ϖ(Θ,c)ϖΛ(χ)],Υ¯(Λ)(Θ)/ΞΘ=χF[Υ(Θ,χ)ΥΛ(χ)]/χF[ϕ(Θ,c)ϕΛ(χ)],Υ_(Λ)(Θ)/ΞΘ=χF[Υ(Θ,χ)ΥΛ(χ)]/χF[ϕ(Θ,χ)ϕΛ(χ)],

    such that

    0<(max(υ¯(Λ)(Θ)))+(min(Λ¯(Λ)(Θ)))+(min(Υ¯(Λ)(Θ)))3,

    and

    0<(min(υ_(Λ)(Θ))+(max(Λ_(Λ)(Θ)))+(max(Λ_(Λ)(Θ)))3.

    As (¯(Λ),_(Λ)) are SVNPHFRS,¯(Λ),_(Λ):SVNPHFRS(F)SVNPHFRS(F) are upper and lower approximation operators. The pair

    (Λ)=(_(Λ),¯(Λ))={Θ,(υ_(Λ)(Θ)/Ξ_(Λ),Λ_(Λ)(Θ)/ϖ_(Λ),Υ_(Λ)(Θ)/ϕ_(Λ)),Θ,(υ¯(Λ)(Θ)/Ξ¯(Λ),Λ¯(Λ)(Θ)/ϖ(Λ),Υ¯(Λ)(Θ)/ϕ¯(Λ))|ΘΛ}

    will be called SV-neutrosophic hesitant fuzzy rough set. For simplicity,

    (Λ)={Θ,(υ_(Λ)(Θ)//Ξ_(Λ),Λ_(Λ)(Θ)/ϖ_(Λ),Υ_(Λ)(Θ)/ϕ_(Λ)),(υ¯(Λ)(Θ)//Ξ¯(Λ),Λ¯(Λ)(Θ)/ϖ¯(Λ),Υ¯(Λ)(Θ)/ϕ¯(Λ))|ΘΛ}

    is represented as

    (Λ)=((Ψ_/ð_,Φ_/_,Ω_/Ξ_),(¯υ/¯Ξ,¯Λ/¯ϖ,¯Υ/¯ϕ))

    and is known as SV-NPHFRSs.

    Definition 19. Here, we define the SV-neutrosophic probabilistic hesitant fuzzy rough weighted averaging (SV-NPHFRWA) AO by using Eq (2.2) as

    {(¯1,¯2,....,¯p)(_1,_2,....,_p)} (3.1)
    =({(ξ¯υ¯Ξ¯Ξ¯1Πp=1(1ξ¯)Γ/Πp=1Ξ¯)(α_υ_Ξ_Ξ_1Πp=1(1ξ_)Γ/Πp=1Ξ_)},{(Λ¯τ¯ϖ¯ϖ¯Πp=1(Λ¯)Γ/Πp=1ϖ¯)(Λ_τ_ϖ_ϖ_Πp=1(Λ_)Γ/Πp=1ϖ_)},{(ϱ¯Υ¯ϕ¯ϕ¯Πp=1(ϱ¯)Γ/Πp=1ϕ¯)(ϱ_Υ_ϕ_ϕ_Πp=1(ϱ)Γ/Πp=1ϕ_)}). (3.2)

    Definition 20. The SV-NPHFRWG operator using Eq (2.3) can be described as

    {(¯1,¯2,....,¯p)(_1,_2,....,_p)} (3.3)
    =({(ξ¯υ¯Ξ¯Ξ¯Πp=1(ξ¯)Γ/Πp=1Ξ¯)(ξ_υ_Ξ_Ξ_Πp=1(ξ_)Γ/Πp=1Ξ_)},{(Λ¯τ¯ϖ¯ϖ¯1Πp=1(1Λ¯)Γ/Πp=1ϖ¯)(Λ_τ_ϖ_ϖ_1Πp=1(1Λ_)Γ/Πp=1ϖ_)},{(ϱ¯Υ¯ϕ¯ϕ¯1Πp=1(1ϱ¯)Γ/Πp=1ϕ¯)(ϱ_Υ_ϕ_ϕ_1Πp=1(1ϱ_)Γ/Πp=1ϕ_)}). (3.4)

    Definition 21. The SV-NPHFROWA operator can be described as, using Eq (2.4),

    {(¯1,¯2,....,¯p)(_1,_2,....,_p)} (3.5)
    ={{{ξ¯Λ()υ¯Λ()Ξ¯Λ()Ξ¯Λ()1Πp=1(1ξ¯Λ())Γ/Πp=1Ξ¯Λ()}{ξ_Λ()υ_Λ()Ξ_Λ()Ξ_Λ()1Πp=1(1ξ_Λ())Γ/Πp=1Ξ_Λ()}},{{Λ¯Λ()τ¯Λ()ϖ¯Λ()ϖ¯Λ()Πp=1(Λ¯Λ())Γ/Πp=1ϖ¯Λ()}{Λ_Λ()τ_Λ()ϖ_Λ()ϖ_Λ()Πp=1(Λ_Λ())Γ/Πp=1ϖ_Λ()}},{{Υ¯Λ()ξ¯Λ()ϕ¯Λ()ϕ¯Λ()Πp=1(Υ¯Λ())Γ/Πp=1ϕ¯Λ()}{Υ_Λ()ξ_Λ()ϕ_Λ()ϕ_Λ()Πp=1(Υ_Λ())Γ/Πp=1ϕ_Λ()}}}. (3.6)

    Definition 22. The SVNPHFRHWA operator, using Eq (2.5) is as

    {(¯1,¯2,....,¯p)(_1,_2,....,_p)} (3.7)
    ={{{ξ¯Λ()υ¯Λ()Ξ¯Λ()Ξ¯Λ()1Πp=1(1ξ¯Λ())Γ/Πp=1Ξ¯Λ()}{ξ_Λ()υ_Λ()Ξ_Λ()Ξ_Λ()1Πp=1(1ξ_Λ())Γ/Πp=1Ξ_Λ()}},{{Λ¯Λ()τ¯Λ()ϖ¯Λ()ϖ¯Λ()Πp=1(Λ¯Λ())Γ/Πp=1ϖ¯Λ()}{Λ_Λ()τ_Λ()ϖ_Λ()ϖ_Λ()Πp=1(Λ_Λ())Γ/Πp=1ϖ_Λ()}},{{ϱ¯Λ()Υ¯Λ()ϕ¯Λ()ϕ¯Λ()Πp=1(ϱ¯Λ())Γ/Πp=1ϕ¯Λ()}{ϱ_Λ()Υ_Λ()ϕ_Λ()ϕ_Λ()Πp=1(ϱ_Λ())Γ/Πp=1ϕ_Λ()}}}. (3.8)
    (3.9)

    Einstein operational laws based on SV-NPHFSs

    The application of t-norms in FS theory at the intersection of two FSs is widely recognized. T-conorms are used to model disjunction or union. These are a straightforward explanation of the conjunction and disjunction in mathematical fuzzy logic syntax, and they are utilized in MCDM to combine criteria. The Einstein sum (ϵ) and Einstein product (ϵ) are case studies of t-conorms and t-norms, respectively, and are stated in the single valued neutrosophic probabilistic hesitant fuzzy (SV-NPHF) environment as follows.

    ˜NϵˇS=˜N+ˇS1+˜NˇS,˜NϵˇS=˜NˇS1+(1˜N)(1ˇS).

    Based on the above Einstein operations, we give the following new operations on SV-NPHF environment.

    Definition 23. Let 1=(υ1/Ξ1,τ1/ϖ1,Υ1/ϕ1) and 2=(υ2/Ξ2,τ2/ϖ2,Υ2/ϕ2) be two SV-NPHFEs and η>0(R). Then,

    (1) 12={ξ1υ1(l),ξ2υ2(l)Ξ1Ξ1,Ξ2Ξ2(ξ1+ξ21+ξ1ξ2/Ξ1Ξ2),Λ1τ1(l),Λ2τ2(l)ϖ1ϖ1,ϖ2ϖ2(Λ1Λ21+(1Λ1)(1Λ2)/ϖ1ϖ2),ϱ1Υ1(l),ϱ2Υ2(l)ϕ1ϕ1,ϕ2ϕ2(ϱ1ϱ21+(1ϱ1)(1ϱ2)/ϕ1ϕ2)}.

    (2) 12={ξ1υ1(l),ξ2υ2(l)Ξ1Ξ1,Ξ2Ξ2(ξ1ξ21+(1ξ1)(1ξ2)/Ξ1Ξ2),Λ1τ1(l),Λ2τ2(l)ϖ1ϖ1,ϖ2ϖ2(Λ1+Λ21+Λ1Λ2/ϖ1ϖ2),Υ1ξ1(l),Υ2ξ2(l)ϕ1ϕ1,ϕ2ϕ2(Υ1+Υ21+Υ1Υ2/ϕ1ϕ2)}.

    (3) η1={ξ1υ1(l),Ξ1Ξ1((1+ξ1)η(1ξ1)η(1+ξ1)η+(1ξ1)η/Ξ1),Λ1τ1(l),ϖ1ϖ1(2Λη1(2Λ1)η+(Λ1)η/ϖ1),ϱ1Υ1(l),ϕ1ϕ1(2ϱη1(2ϱ1)η+(ϱ1)η/ϕ1)}.

    (4) η1={ξ1υ1(l),Ξ1Ξ1(2ξη1(2ξ1)η+(ξ1)η/Ξ1),Λ1τ1(l),ϖ1ϖ1((1+Λ1)η(1Λ1)η(1+Λ1)η+(1Λ1)η(1Λ1)η/ϖ1),ϱ1Υ1(l),ϕ1ϕ1((1+ϱ1)η(1ϱ1)η(1+ϱ1)η+(1ϱ1)η(1ϱ1)η/ϕ1)}.

    In this section, we develop several new Einstein operators for SV-NPHFRNs, namely the single valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging (SV-NPHFREWA) operator, the single valued neutrosophic probabilistic hesitant fuzzy rough Einstein ordered weighted averaging (SV-NPHFREOWA) operator.

    Single-valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging operator

    Definition 24. Let ={(υ¯/Ξ¯,τ¯/ϖ¯,Υ¯/ϕ¯)(υ_/Ξ_,τ_/ϖ_,Υ_/ϕ_)}(=1,2,.....,p) be a collection of SV-NPHFRNs.

    Γ=(Γ1,Γ2,....,Γp)T are the weights of [0,1] with p=1Γ=1. Then, SV-NPHFREWA: SV-NPHFRNpSV-NPHFRN such that

    SVNPHFREWA{(¯1,¯2,....,¯p)(_1,_2,....,_p)}={(Γ1.ε¯1)(Γ1.ε_1)ε(Γ2.ε¯2)(Γ2.ε_2)ε...ε(Γp.ε¯p)(Γp.ε_p)}

    is called the single valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging operator.

    Theorem 1. Let ={(υ¯/Ξ¯,τ¯/ϖ¯,Υ¯/ϕ¯)(υ_/Ξ_,τ_/ϖ_,Υ_/ϕ_)}(=1,2,.....,p) be a collection\ of SV-NPHFRNs.

    Then, we can achieve the following:

    SVNPHFREWA{(¯1,¯2,....,¯p)(_1,_2,....,_p)} (4.1a)
    =({(ξ¯υ¯Ξ¯Ξ¯Πp=1(1+ξ¯)ΓΠp=1(1ξ¯)ΓΠp=1(1+ξ¯)Γ+Πp=1(1ξ¯)Γ/Πp=1Ξ¯)(ξ_υ_Ξ_Ξ_Πp=1(1+ξ_)ΓΠp=1(1ξ_)ΓΠp=1(1+ξ_)Γ+Πp=1(1ξ_)Γ/Πp=1Ξ_)},{(Λ¯τ¯ϖ¯ϖ¯2Πp=1(Λ¯)ΓΠp=1(2Λ¯)Γ+Πp=1(Λ¯)Γ/Πp=1ϖ¯)Λ_τ_ϖ_ϖ_2Πp=1(Λ_)ΓΠp=1(2Λ_)Γ+Πp=1(Λ_)Γ/Πp=1ϖ_},{(Υ¯ξ¯ϕ¯ϕ¯2Πp=1(Υ¯)ΓΠp=1(2Υ¯)Γ+Πp=1(Υ¯)Γ/Πp=1ϕ¯)(Υ_ξ_ϕ_ϕ_2Πp=1(Υ_)ΓΠp=1(2Υ_)Γ+Πp=1(Υ_)Γ/Πp=1ϕ_)}) (4.1b)

    where Γ=(Γ1,Γ2,....,Γp)T are the weights of with Γ[0,1] with p=1Γ=1.

    We will demonstrate the theorem by mathematical induction. For p=2.

    Proof.

    SVNPHFREWA{(¯1,¯2)(_1,_2)}={(Γ1.ε¯1)(Γ1.ε_1)ε(Γ2.ε¯2)(Γ2.ε_2)}.

    Since both (Γ1.ε¯1)(Γ1.ε_1) and (Γ2.ε¯2)(Γ2.ε_2) is also a SV-NPHFRN, {(Γ1.ε¯1)(Γ1.ε_1)ε(Γ2.ε¯2)(Γ2.ε_2)} is a SV-NPHFRN.

    (Γ1.ε¯1)(Γ1.ε_1)=({(ξ¯1υ¯1Ξ¯1Ξ¯1(1+ξ¯1)Γ1(1ξ¯1)Γ1(1+ξ¯1)Γ1+(1ξ¯1)Γ1/Ξ¯1)(ξ_1υ_1Ξ_1Ξ_1(1+ξ_1)Γ1(1ξ_1)Γ1(1+ξ_1)Γ1+(1ξ_1)Γ1/Ξ_1)},{(Λ¯1τ¯1ϖ¯1ϖ¯12(Λ¯1)Γ1(2Λ¯1)Γ1+(Λ¯1)Γ1/ϖ¯1)(Λ_1τ_1ϖ_1ϖ_12(Λ_1)Γ1(2Λ_1)Γ1+(Λ_1)Γ1/ϖ_1)},{(Υ¯1ξ¯1ϕ¯1ϕ¯12(Υ¯1)Γ1(2Υ¯1)Γ1+(Υ¯1)Γ1/ϕ¯1)(Υ_1ξ_1ϕ_1ϕ_12(Υ_1)Γ1(2Υ_1)Γ1+(Υ_1)Γ1/ϕ_1)}).
    (Γ2.ε¯2)(Γ2.ε_2)=({(ξ2υ¯2Ξ¯2Ξ¯2(1+ξ¯2)Γ2(1ξ¯2)Γ2(1+ξ¯2)Γ2+(1ξ¯2)Γ2/Ξ¯2)(ξ2υ_2Ξ_2Ξ_2(1+ξ_2)Γ2(1ξ_2)Γ2(1+ξ_2)Γ2+(1ξ_2)Γ2/Ξ_2)},{(Λ¯2τ¯2ϖ¯2ϖ¯22(Λ¯2)Γ2(2Λ¯2)Γ2+(Λ¯2)Γ2/ϖ¯2)(Λ_2τ_2ϖ_2ϖ_22(Λ_2)Γ2(2Λ_2)Γ2+(Λ_2)Γ2/ϖ_2)},{(Υ¯2ξ¯2ϕ¯2ϕ¯22(Υ¯2)Γ2(2Υ¯2)Γ2+(Υ¯2)Γ2/ϕ¯2)(Υ_2ξ_2ϕ_2ϕ_22(Υ_2)Γ2(2Υ_2)Γ2+(Υ_2)Γ2/ϕ_2)}).

    Then

    SVNPHFREWA{(¯1,¯2)(_1,_2)}={(Γ1.ε¯1)(Γ1.ε_1)ε(Γ2.ε¯2)(Γ2.ε_2)}=({(ξ1υ¯1Ξ¯1Ξ¯1(1+ξ¯1)Γ1(1ξ¯1)Γ1(1+ξ¯1)Γ1+(1ξ¯1)Γ1/Ξ¯1)(ξ1υ_1Ξ_1Ξ_1(1+ξ_1)Γ1(1ξ_1)Γ1(1+ξ1)Γ1+(1ξ1)Γ1/Ξ_1)},{(Λ¯1τ¯1ϖ¯1ϖ¯12(Λ¯1)Γ1(2Λ¯1)Γ1+(Λ¯1)Γ1/ϖ¯1)(Λ_1τ_1ϖ_1ϖ_12(Λ_1)Γ1(2Λ_1)Γ1+(Λ_1)Γ1/ϖ_1)},{(Υ¯1ξ¯1ϕ¯1ϕ¯12(Υ¯1)Γ1(2Υ¯1)Γ1+(Υ¯1)Γ1/ϕ¯1)(Υ_1ξ_1ϕ_1ϕ_12(Υ_1)Γ1(2Υ_1)Γ1+(Υ_1)Γ1/ϕ_1)})ε({(ξ2υ¯2Ξ¯2Ξ¯2(1+ξ¯2)Γ2(1ξ¯2)Γ2(1+ξ¯2)Γ2+(1ξ¯2)Γ2/Ξ¯2)(ξ2υ_2Ξ_2Ξ_2(1+ξ_2)Γ2(1ξ_2)Γ2(1+ξ_2)Γ2+(1ξ_2)Γ2/Ξ_2)},{(Λ¯2τ¯2ϖ¯2ϖ¯22(Λ2)Γ2(2Λ2)Γ2+(Λ2)Γ2/ϖ2)(Λ_2τ_2ϖ_2ϖ_22(Λ_2)Γ2(2Λ_2)Γ2+(Λ_2)Γ2/ϖ_2)},{(Υ¯2ξ¯2ϕ¯2ϕ¯22(Υ¯2)Γ2(2Υ¯2)Γ2+(Υ¯2)Γ2/ϕ¯2)(Υ_2ξ_2ϕ_2ϕ_22(Υ_2)Γ2(2Υ_2)Γ2+(Υ_2)Γ2/ϕ_2)})
    =({(ξ1υ¯1,Ξ¯1Ξ¯1ξ2υ¯2,Ξ¯2Ξ¯2(1+ξ¯1)Γ1.ε(1+ξ¯2)Γ2(1ξ¯1)Γ1.ε(1ξ¯2)Γ2(1+ξ¯1)Γ1.ε(1+ξ¯2)Γ2+(1ξ¯1)Γ1.ε(1ξ¯2)Γ2/Ξ¯1Ξ¯2)(ξ1υ_1,Ξ_1Ξ_1ξ2υ_2,Ξ_2Ξ_2(1+ξ_1)Γ1.ε(1+ξ_2)Γ2(1ξ_1)Γ1.ε(1ξ_2)Γ2(1+ξ_1)Γ1.ε(1+ξ_2)Γ2+(1ξ_1)Γ1.ε(1ξ_2)Γ2/Ξ_1Ξ_2)},{(Λ¯1τ¯1,ϖ¯1ϖ¯1Λ¯2τ¯2,ϖ¯2ϖ¯22(Λ¯1)Γ1(Λ¯2)Γ2(2Λ¯1)Γ1.ε(2Λ¯2)Γ2+(Λ¯1)Γ1.ε(Λ¯2)Γ2/ϖ¯1ϖ¯2)(Λ_1τ_1,ϖ_1ϖ_1Λ_2τ_2,ϖ_2ϖ_22(Λ_1)Γ1(Λ_2)Γ2(2Λ_1)Γ1.ε(2Λ_2)Γ2+(Λ_1)Γ1.ε(Λ_2)Γ2/ϖ_1ϖ_2)},{(Υ¯1ξ¯1,ϕ¯1ϕ¯1Υ¯2ξ¯2,ϕ¯2ϕ¯22(Υ¯1)Γ1(Υ¯2)Γ2(2Υ¯1)Γ1.ε(2Υ¯2)Γ2+(Υ¯1)Γ1.ε(Υ¯2)Γ2/ϕ¯1ϕ¯2)(Υ_1ξ_1,ϕ_1ϕ_1Υ_2ξ_2,ϕ_2ϕ_22(Υ_1)Γ1(Υ_2)Γ2(2Υ_1)Γ1.ε(2Υ_2)Γ2+(Υ_1)Γ1.ε(Υ_2)Γ2/ϕ_1ϕ_2)}).

    Thus, the result holds for p=2.

    Assume that the results holds for p=χ

    SVNPHFREWA{(¯1,¯2,....,¯χ)(_1,_2,....,_χ)}=({(ξυ¯ΞΞΠχ=1(1+ξ¯)ΓΠχ=1(1ξ¯)ΓΠχ=1(1+ξ¯)Γ+Πχ=1(1ξ¯)Γ/Πχ=1Ξ¯)(ξυ_Ξ_Ξ_Πχ=1(1+ξ_)ΓΠχ=1(1ξ_)ΓΠχ=1(1+ξ)Γ+Πχ=1(1ξ)Γ/Πχ=1Ξ_)},{(Λ¯τ¯ϖ¯ϖ¯2Πχ=1(Λ¯)ΓΠχ=1(2Λ¯)Γ+Πχ=1(Λ¯)Γ/Πχ=1ϖ¯)(Λ_τ_ϖ_ϖ_2Πχ=1(Λ_)ΓΠχ=1(2Λ_)Γ+Πχ=1(Λ_)Γ/Πχ=1ϖ_)},{(Υ¯ξ¯ϕ¯ϕ¯2Πχ=1(Υ¯)ΓΠχ=1(2Υ¯)Γ+Πχ=1(Υ¯)Γ/Πχ=1ϕ¯)(Υ_ξ_ϕ_ϕ_2Πχ=1(Υ_)ΓΠχ=1(2Υ_)Γ+Πχ=1(Υ_)Γ/Πχ=1ϕ_)}).

    Now we will prove for p=χ+1

    SVNPHFREWA{(¯1,¯2,....,¯χ+1)(_1,_2,....,_χ+1)}=SVNPHFREWA{(¯1,¯2,....,¯χ)(_1,_2,....,_χ)}ε{(Γχ+1.ε¯χ+1)(Γχ+1.ε_χ+1)}=({(ξυ¯Ξ¯Ξ¯Πχ=1(1+ξ¯)ΓΠχ=1(1ξ¯)ΓΠχ=1(1+ξ¯)Γ+Πχ=1(1ξ¯)Γ/Πχ=1Ξ¯)(ξυ_Ξ_Ξ_Πχ=1(1+ξ_)ΓΠχ=1(1ξ_)ΓΠχ=1(1+ξ_)Γ+Πχ=1(1ξ_)Γ/Πχ=1Ξ_)},{(Λ¯τ¯ϖ¯ϖ¯2Πχ=1(Λ¯)ΓΠχ=1(2Λ¯)Γ+Πχ=1(Λ¯)Γ/Πχ=1ϖ¯)(Λ_τ_ϖ_ϖ_2Πχ=1(Λ_)ΓΠχ=1(2Λ_)Γ+Πχ=1(Λ_)Γ/Πχ=1ϖ_)},{(Υ¯ξ¯ϕ¯ξ¯2Πχ=1(Υ¯)ΓΠχ=1(2Υ¯)Γ+Πχ=1(Υ¯)Γ/Πχ=1ϕ¯)(Υ_ξ_ϕ_ξ_2Πχ=1(Υ_)ΓΠχ=1(2Υ_)Γ+Πχ=1(Υ_)Γ/Πχ=1ϕ_)})
    ε({(ξχ+1υχ+1Ξχ+1Ξχ+1(1+ξχ+1)Γχ+1(1ξχ+1)Γχ+1(1+ξχ+1)Γχ+1+(1ξχ+1)Γχ+1/Ξχ+1)(ξχ+1υ_χ+1Ξ_χ+1Ξ_χ+1(1+ξ_χ+1)Γχ+1(1ξ_χ+1)Γχ+1(1+ξχ+1)Γχ+1+(1ξ_χ+1)Γχ+1/Ξ_χ+1)},{(Λχ+1τχ+1ϖχ+1ϖχ+12(Λχ+1)Γχ+1(2Λχ+1)Γχ+1+(Λχ+1)Γχ+1/ϖχ+1)(Λ_χ+1τ_χ+1ϖ_χ+1ϖ_χ+12(Λχ+1)Γχ+1(2Λ_χ+1)Γχ+1+(Λ_χ+1)Γχ+1/ϖ_χ+1)},{(Υχ+1ξχ+1ϕχ+1ϕχ+12(Υχ+1)Γχ+1(2Υχ+1)Γχ+1+(Υχ+1)Γχ+1/ϕχ+1)(Υ_χ+1ξ_χ+1ϕ_χ+1ϕ_χ+12(Υ_χ+1)Γχ+1(2Υ_χ+1)Γχ+1+(Υ_χ+1)Γχ+1/ϕ_χ+1)})
    =({(ξυ¯ΞΞΠχ+1=1(1+ξ¯)ΓΠχ+1=1(1ξ¯)ΓΠχ+1=1(1+ξ¯)Γ+Πχ+1=1(1ξ¯)Γ/Πχ+1=1Ξ¯)(ξυ_Ξ_Ξ_Πχ+1=1(1+ξ_)ΓΠχ+1=1(1ξ_)ΓΠχ+1=1(1+ξ_)Γ+Πχ+1=1(1ξ_)Γ/Πχ+1=1Ξ_)},{(Λ¯τ¯ϖ¯ϖ¯2Πχ+1=1(Λ¯)ΓΠχ+1=1(2Λ¯)Γ+Πχ+1=1(Λ¯)Γ/Πχ+1=1ϖ¯)(Λ_τ_ϖ_ϖ_2Πχ+1=1(Λ_)ΓΠχ+1=1(2Λ_)Γ+Πχ+1=1(Λ_)Γ/Πχ+1=1ϖ_)},{(Υ¯χ+1ξ¯χ+1ϕ¯χ+1ϕ¯χ+12Πχ+1=1(Υ¯)ΓΠχ+1=1(2Υ¯)Γ+Πχ+1=1(Υ¯)Γ/Πχ+1=1ϕ¯)(Υ_χ+1ξ_χ+1ϕ_χ+1ϕ_χ+12Πχ+1=1(Υ_)ΓΠχ+1=1(2Υ_)Γ+Πχ+1=1(Υ_)Γ/Πχ+1=1ϕ_)}).

    Thus

    SVNPHFREWA{(¯1,¯2,....,¯p)(_1,_2,....,_p)}=({(ξυ¯Ξ¯Ξ¯Πp=1(1+ξ¯)ΓΠp=1(1ξ¯)ΓΠp=1(1+ξ¯)Γ+Πp=1(1ξ¯)Γ/Πp=1Ξ¯)(ξυ_Ξ_Ξ_Πp=1(1+ξ_)ΓΠp=1(1ξ_)ΓΠp=1(1+ξ_)Γ+Πp=1(1ξ_)Γ/Πp=1Ξ_)},{(Λ¯τ¯ϖ¯ϖ¯2Πp=1(Λ¯)ΓΠp=1(2Λ¯)Γ+Πp=1(Λ¯)Γ/Πp=1ϖ¯)(Λ_τ_ϖ_ϖ_2Πp=1(Λ_)ΓΠp=1(2Λ_)Γ+Πp=1(Λ_)Γ/Πp=1ϖ_)},{(Υ¯ξ¯ϕ¯ϕ¯2Πp=1(Υ¯)ΓΠp=1(2Υ¯)Γ+Πp=1(Υ¯)Γ/Πp=1ϕ¯)(Υ_ξ_ϕ_ϕ_2Πp=1(Υ_)ΓΠp=1(2Υ_)Γ+Πp=1(Υ_)Γ/Πp=1ϕ_)}).

    There are some properties which are fulfilled by the SV-NPHFREWA as follows:

    Theorem 2. Let ={(υ¯/Ξ¯,τ¯/ϖ¯,Υ¯/ϕ¯)(υ_/Ξ_,τ_/ϖ_,Υ_/ϕ_)}(=1,2,.....,p)

    be a collection of SV-NPHFRNs, Γ=(Γ1,Γ2,....,Γp)T are the weights of with Γ[0,1] with p=1Γ=1; then we have the following:

    (1) Boundary:

    {(¯)(_)}SVNPHFREWA{(¯1,¯2,....,¯p)(_1,_2,....,_p)}{(¯+)(_)}

    where

    {(¯)(_)}={({(min1pmin¯ξ¯υ¯ξ/¯Ξ1¯Ξ2.....¯Ξp)(max1pmaxα_υ_α_/Ξ_1Ξ_2.....Ξ_p)},{(max1pmax¯Λ¯τ¯Λ/¯ϖ1¯ϖ2.....¯ϖp)(min1pminΛ_τ_Λ_/ϖ_1ϖ_2.....ϖ_p)},{(max1pmax¯Υ¯ξ¯Υ/¯ϕ1¯ϕ2.....¯ϕp)(min1pminΥ_α_Υ_/_1_2....._p)})}{(¯+)(_)}={({(max1pmax¯ξ¯υ¯ξ/¯Ξ1¯Ξ2.....¯Ξp)(min1pminα_υ_α_/Ξ_1Ξ_2.....Ξ_p)},{(min1pmin¯Λ¯τ¯Λ/¯ϖ1¯ϖ2.....¯ϖp)(max1pmaxΛ_τ_Λ_/ϖ_1ϖ_2.....ϖ_p)},{(min1pmin¯Υ¯ξ¯Υ/¯ϕ1¯ϕ2.....¯ϕp)(max1pmaxΥ_α_Υ_/_1_2....._p)})}

    (2) Monotonicity: Let (¯,_)={(υ¯/Ξ¯,τ¯/ϖ¯,Υ¯/ϕ¯)(υ_/Ξ_,τ_/ϖ_,Υ_/ϕ_)}(=1,2,.....,p)

    be a collection\ of SV-NPHFRNs. If (¯,_)(¯,_), while the probabilities are same, then

    SVNPHFEWA(1,2,....,p)SVNPHFEWA(1,2,....,p).

    Proof. Let f(ς)=1ς1+ς,ς[0,1]. Then, f(ς)=2(1+ς)<0, so f(ς) is a decreasing function.

    Let {max(¯ξ)max(α_)}={(max1pmax¯ξ¯υ(¯ξ))(min1pminα_υ_(α_))} and

    {min(¯ξ)min(α_)}={(min1pmin¯ξ¯υ(¯ξ))(max1pmaxα_υ_(α_))}

    {(min(¯ξ)(¯ξ)max(¯ξ) forall =1,2,.....,p)(max(α_)(α_)min(α_) forall =1,2,.....,p)}{f(max(¯ξ)(¯ξ)f(min(¯ξ))forall =1,2,.....,pf(min(α_)(α_)f(max(α_))forall =1,2,.....,p}{(1max(¯ξ)1+max(¯ξ)1(¯ξ)1+(¯ξ)1min(¯ξ)1+min(¯ξ))(1min(α_)1+min(α_)1(α_)1+(α_)1max(α_)1+max(α_))}.

    Since Γ=(Γ1,Γ2,....,Γp)T are the weights of (¯,_) with Γ[0,1] with p=1Γ=1, we have

    {{(1max(¯ξ)1+max(¯ξ))Γ(1¯ξ1+¯ξ)Γ(1min(¯ξ)1+min(¯ξ))Γ}(1min(α_)1+min(α_))Γ(1α_1+α_)Γ(1max(α_)1+max(α_))Γ},{{p=1(1max(¯ξ)1+max(¯ξ))Γp=1(1¯ξ1+¯ξ)Γp=1(1min(¯ξ)1+min(¯ξ))Γ}{p=1(1min(α_)1+min(α_))Γp=1(1α_1+α_)Γp=1(1max(α_)1+max(α_))Γ}},{{(1max(¯ξ)1+max(¯ξ))p=1Γp=1(1¯ξ1+¯ξ)Γ(1min(¯ξ)1+min(¯ξ))p=1Γ}{(1min(α_)1+min(α_))p=1Γp=1(1α_1+α_)Γ(1max(α_)1+max(α_))p=1Γ}}
    {((1max(¯ξ)1+max(¯ξ))p=1(1¯ξ1+¯ξ)Γ(1min(¯ξ)1+min(¯ξ)))((1max(α_)1+max(α_))p=1(1α_1+α_)Γ(1max(α_)1+max(α_)))}
    {((21+min(¯ξ))1+p=1(1¯ξ1+¯ξ)Γ(21+min(¯ξ)))((21+min(α_))1+p=1(1α_1+α_)Γ(21+min(α_)))}
    {((1+min(¯ξ)2)11+p=1(1¯ξ1+¯ξ)Γ(1+max(¯ξ)2))((1+max(α_)2)11+p=1(1α_1+α_)Γ(1+min(α_)2))}
    {((1+min(¯ξ))21+p=1(1¯ξ1+¯ξ)Γ(1+max(¯ξ)))((1+max(α_))21+p=1(1α_1+α_)Γ(1+min(α_)))}
    {(min(¯ξ)21+p=1(1¯ξ1+¯ξ)Γ1max(¯ξ))(max(α_)21+p=1(1α_1+α_)Γ1min(α_))}
    {(min(¯ξ)p=1(1+¯ξ)Γp=1(1¯ξ)Γp=1(1+¯ξ)Γ+p=1(1¯ξ)Γmax(¯ξ))(max(α_)p=1(1+α_)Γp=1(1α_)Γp=1(1+α_)Γ+p=1(1α_)Γmin(α_))}.

    Thus,

    {(min¯ξp=1(1+¯ξ)Γp=1(1¯ξ)Γp=1(1+¯ξ)Γ+p=1(1¯ξ)Γmax¯ξ)(maxα_p=1(1+α_)Γp=1(1α_)Γp=1(1+α_)Γ+p=1(1α_)Γminα_)}.

    Consider g(y)=2yy,y(0,1]. Then, g(y)=2y,i.e.,g(y) is a decreasing function on (0,1]. Let

    max(¯Λ,Λ_)={(max1pmax¯Λτ¯Λ)(min1pminΛ_τΛ_)},min(¯Λ,Λ_)={(min1pmin¯Λτ¯Λ)(max1pmaxΛ_τΛ_)},
    {(min(¯Λ)(¯Λ)max(¯Λ) for all =1,2,.....,p)(max(Λ_)(Λ_)min(Λ_) for all =1,2,.....,p)}
    {(g(max(¯Λ))g(¯Λ)g(min(¯Λ)) for all =1,2,.....,p)(g(min(Λ_))g(Λ_)g(max(Λ_)) for all =1,2,.....,p)}
    {(2max(¯Λ)max(¯Λ)2(¯Λ)(¯Λ)2min(¯Λ)min(¯Λ))(2min(Λ_)min(Λ_)2(Λ_)(Λ_)2max(Λ_)max(Λ_))}
    {((2max(¯Λ)max(¯Λ))Γ(2¯Λ¯Λ)Γ(2min(¯Λ)min(¯Λ))Γ)((2min(Λ_)min(Λ_))Γ(2Λ_Λ_)Γ(2max(Λ_)max(Λ_))Γ)}
    {(p=1(2max(¯Λ)max(¯Λ))Γp=1(2¯Λ¯Λ)Γp=1(2min(¯Λ)min(¯Λ))Γ)(p=1(2min(Λ_)min(Λ_))Γp=1(2Λ_Λ_)Γp=1(2max(Λ_)max(Λ_))Γ)}
    {((2max(¯Λ)max(¯Λ))p=1Γp=1(2¯Λ¯Λ)Γ(2min(¯Λ)min(¯Λ))p=1Γ)((2min(Λ_)min(Λ_))p=1Γp=1(2Λ_Λ_)Γ(2max(Λ_)max(Λ_))p=1Γ)}
    {((2max(¯Λ)max(¯Λ))p=1(2¯Λ¯Λ)Γ(2min(¯Λ)min(¯Λ)))((2min(Λ_)min(Λ_))p=1(2Λ_Λ_)Γ(2max(Λ_)max(Λ_)))}
    {(2max(¯Λ)1+p=1(2¯Λ¯Λ)Γ2min(¯Λ))(2min(Λ_)1+p=1(2Λ_Λ_)Γ2max(Λ_))}
    {(max(¯Λ)211+p=1(2¯Λ¯Λ)Γmin(¯Λ)2)(min(Λ_)211+p=1(2Λ_Λ_)Γmax(Λ_)2)}
    \begin{equation*} \left\{ \begin{array}{c} \left( \max \left( \overline{\Lambda }_{\Im _{\top }}\right) \leq \frac{2}{ 1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\left( \overline{\Lambda }_{\Im _{\top }}\right) }{\left( \overline{\Lambda }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}}\leq \min \left( \overline{\Lambda }_{\Im _{\top }}\right) \right) \\ \left( \min \left( \underline{\Lambda }_{\Im _{\top }}\right) \leq \frac{2}{ 1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{\Lambda }_{\Im _{\top }}}{\underline{\Lambda }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}}\leq \max \left( \underline{\Lambda }_{\Im _{\top }}\right) \right) \end{array} \right\} \end{equation*}
    \begin{equation*} \left\{ \begin{array}{c} \left( \max \left( \overline{\Lambda }_{\Im _{\top }}\right) \leq \frac{ 2\prod\limits_{\top = 1}^{p}\left( \left( \overline{\Lambda }_{\Im _{\top }}\right) \right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2- \overline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \overline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}\leq \min \left( \overline{\Lambda }_{\Im _{\top }}\right) \right) \\ \left( \min \left( \underline{\Lambda }_{\Im _{\top }}\right) \leq \frac{ 2\prod\limits_{\top = 1}^{p}\left( \left( \underline{\Lambda }_{\Im _{\top }}\right) \right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2- \underline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \underline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}\leq \max \left( \underline{\Lambda }_{\Im _{\top }}\right) \right) \end{array} \right\} \end{equation*}
    \begin{equation*} \left\{ \begin{array}{c} \left( \max_{\Im _{\top }}\overline{\Lambda }\leq \frac{2\prod\limits_{\top = 1}^{p}\left( \overline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}{ \prod\limits_{\top = 1}^{p}\left( 2-\overline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \overline{ \Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}\leq \min \overline{ \Lambda }_{\Im _{\top }}\right) \\ \left( \min \underline{\Lambda }_{\Im _{\top }}\leq \frac{ 2\prod\limits_{\top = 1}^{p}\left( \underline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2-\underline{ \Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \underline{\Lambda }_{\Im _{\top }}\right) ^{\Gamma _{\top }}} \leq \max \underline{\Lambda }_{\Im _{\top }}\right) \end{array} \right\}. \end{equation*}

    Consider g(y) = \frac{2-y}{y}, y\in (0, 1]. Then, g^{\prime }(y) = -\frac{2}{y}, i.e., g(y) is a decreasing function on (0, 1].

    Let max \Upsilon _{\Im _{\top }} = \max_{1\leq \top \leq p}\max_{\Upsilon _{\Im _{\top }}\in \xi _{\ell _{\flat _{\top }}}}\Upsilon _{\Im _{\top }} and min \Upsilon _{\Im _{\top }} = min _{1\leq \top \leq p} min _{\Upsilon _{\Im _{\top }}\in \xi _{\ell _{\flat _{\top }}}}.

    \begin{eqnarray*} \max (\overline{\Upsilon }_{\Im _{\top }},\underline{\Upsilon }_{\Im _{\top }}) & = &\left\{ \begin{array}{c} \left( \max_{1\leq \top \leq p}\max_{\overline{\Upsilon }_{\Im _{\top }}\in \xi _{\ell _{\flat _{\top }}}}\overline{\Upsilon }_{\Im _{\top }}\right) \\ \left( \min_{1\leq \top \leq p}\min_{\underline{\Upsilon }_{\Im _{\top }}\in \xi _{\ell _{\flat _{\top }}}}\underline{\Upsilon }_{\Im _{\top }}\right) \end{array} \right\} , \\ \min \left( \overline{\Upsilon }_{\Im _{\top }},\underline{\Upsilon }_{\Im _{\top }}\right) & = &\left\{ \begin{array}{c} \left( \min_{1\leq \top \leq p}\min_{\overline{\Upsilon }_{\Im _{\top }}\in \xi _{\ell _{\flat _{\top }}}}\overline{\Upsilon }_{\Im _{\top }}\right) \\ \left( \max_{1\leq \top \leq p}\max_{\underline{\Upsilon }_{\Im _{\top }}\in \xi _{\ell _{\flat _{\top }}}}\underline{\Upsilon }_{\Im _{\top }}\right) \end{array} \right\} , \end{eqnarray*}
    \begin{equation*} \left\{ \begin{array}{c} \left( \min \left( \overline{\Upsilon }_{\Im _{\top }}\right) \leq \left( \overline{\Upsilon }_{\Im _{\top }}\right) \leq \max \left( \overline{ \Upsilon }_{\Im _{\top }}\right) \text{ for all }\top = 1,2,.....,p\right) \\ \left( \max \left( \underline{\Upsilon }_{\Im _{\top }}\right) \leq \left( \underline{\Upsilon }_{\Im _{\top }}\right) \leq \min \left( \underline{ \Upsilon }_{\Im _{\top }}\right) \text{ for all }\top = 1,2,.....,p\right) \end{array} \right\} \end{equation*}
    \begin{equation*} \left\{ \begin{array}{c} \left( g\left( \max \left( \overline{\Upsilon }_{\Im _{\top }}\right) \right) \leq g\left( \overline{\Upsilon }_{\Im _{\top }}\right) \leq g\left( \min \left( \overline{\Upsilon }_{\Im _{\top }}\right) \right) \text{ for all }\top = 1,2,.....,p\right) \\ \left( g\left( \min \left( \underline{\Upsilon }_{\Im _{\top }}\right) \right) \leq g\left( \underline{\Upsilon }_{\Im _{\top }}\right) \leq g\left( \max \left( \underline{\Upsilon }_{\Im _{\top }}\right) \right) \text{ for all }\top = 1,2,.....,p\right) \end{array} \right\} \end{equation*}
    \begin{equation*} \left\{ \begin{array}{c} \left( \frac{2-\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\leq \frac{2-\left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\left( \overline{\Upsilon } _{\Im _{\top }}\right) }\leq \frac{2-\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) } \right) \\ \left( \frac{2-\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{ \min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\leq \frac{2-\left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\left( \underline{\Upsilon } _{\Im _{\top }}\right) }\leq \frac{2-\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) } \right) \end{array} \right\} \end{equation*}
    \begin{equation*} \left\{ \begin{array}{c} \left( \left( \frac{2-\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\overline{\Upsilon }_{\Im _{\top }}}{\overline{ \Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \overline{ \Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\right) \\ \left( \left( \frac{2-\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\underline{\Upsilon }_{\Im _{\top }}}{ \underline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\right) \end{array} \right\} \end{equation*}
    \begin{equation*} \left\{ \begin{array}{c} \left( \prod\limits_{\top = 1}^{p}\left( \frac{2-\max \left( \overline{ \Upsilon }_{\Im _{\top }}\right) }{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\overline{\Upsilon }_{\Im _{\top }}}{\overline{ \Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\right) \\ \left( \prod\limits_{\top = 1}^{p}\left( \frac{2-\min \left( \underline{ \Upsilon }_{\Im _{\top }}\right) }{\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{\Upsilon }_{\Im _{\top }}}{\underline{ \Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\Gamma _{\top }}\right) \end{array} \right\} \end{equation*}
    \begin{equation*} \left\{ \begin{array}{c} \left( \left( \frac{2-\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\sum_{\top = 1}^{p}\Gamma _{\top }}\leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\overline{\Upsilon }_{\Im _{\top }}}{\overline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \overline{\Upsilon } _{\Im _{\top }}\right) }\right) ^{\sum_{\top = 1}^{p}\Gamma _{\top }}\right) \\ \left( \left( \frac{2-\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) ^{\sum_{\top = 1}^{p}\Gamma _{\top }}\leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{\Upsilon }_{\Im _{\top }}}{\underline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \underline{ \Upsilon }_{\Im _{\top }}\right) }\right) ^{\sum_{\top = 1}^{p}\Gamma _{\top }}\right) \end{array} \right\} \end{equation*}
    \begin{equation*} \left\{ \begin{array}{c} \left( \left( \frac{2-\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) \leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\overline{\Upsilon }_{\Im _{\top }} }{\overline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) \right) \\ \left( \left( \frac{2-\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) \leq \prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{\Upsilon }_{\Im _{\top }}}{\underline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \left( \frac{2-\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }\right) \right) \end{array} \right\} \end{equation*}
    \begin{equation*} \left\{ \begin{array}{c} \left( \frac{2}{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\leq 1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\overline{\Upsilon }_{\Im _{\top }}}{\overline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \frac{ 2}{\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }\right) \\ \left( \frac{2}{\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) } \leq 1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{\Upsilon }_{\Im _{\top }}}{\underline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}\leq \frac{2}{\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) } \right) \end{array} \right\} \end{equation*}
    \begin{equation*} \left\{ \begin{array}{c} \left( \frac{\max \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{2}\leq \frac{1}{1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\overline{\Upsilon } _{\Im _{\top }}}{\overline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}}\leq \frac{\min \left( \overline{\Upsilon }_{\Im _{\top }}\right) }{2} \right) \\ \left( \frac{\min \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{2} \leq \frac{1}{1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{ \Upsilon }_{\Im _{\top }}}{\underline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}}\leq \frac{\max \left( \underline{\Upsilon }_{\Im _{\top }}\right) }{2}\right) \end{array} \right\} \end{equation*}
    \begin{equation*} \left\{ \begin{array}{c} \left( \max \left( \overline{\Upsilon }_{\Im _{\top }}\right) \leq \frac{2}{ 1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\left( \overline{\Upsilon }_{\Im _{\top }}\right) }{\left( \overline{\Upsilon }_{\Im _{\top }}\right) } \right) ^{\Gamma _{\top }}}\leq \min \left( \overline{\Upsilon }_{\Im _{\top }}\right) \right) \\ \left( \min \left( \underline{\Upsilon }_{\Im _{\top }}\right) \leq \frac{2}{ 1+\prod\limits_{\top = 1}^{p}\left( \frac{2-\underline{\Upsilon }_{\Im _{\top }}}{\underline{\Upsilon }_{\Im _{\top }}}\right) ^{\Gamma _{\top }}} \leq \max \left( \underline{\Upsilon }_{\Im _{\top }}\right) \right) \end{array} \right\} \end{equation*}
    \begin{equation*} \left\{ \begin{array}{c} \left( \max \left( \overline{\Upsilon }_{\Im _{\top }}\right) \leq \frac{ 2\prod\limits_{\top = 1}^{p}\left( \left( \overline{\Upsilon }_{\Im _{\top }}\right) \right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2- \overline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \overline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}\leq \min \left( \overline{\Upsilon }_{\Im _{\top }}\right) \right) \\ \left( \min \left( \underline{\Upsilon }_{\Im _{\top }}\right) \leq \frac{ 2\prod\limits_{\top = 1}^{p}\left( \left( \underline{\Upsilon }_{\Im _{\top }}\right) \right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2- \underline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \underline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}\leq \max \left( \underline{\Upsilon }_{\Im _{\top }}\right) \right) \end{array} \right\} \end{equation*}
    \begin{equation*} \left\{ \begin{array}{c} \left( \max_{\Im _{\top }}\overline{\Upsilon }\leq \frac{2\prod\limits_{ \top = 1}^{p}\left( \overline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2-\overline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \overline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}\leq \min \overline{\Upsilon }_{\Im _{\top }}\right) \\ \left( \min \underline{\Upsilon }_{\Im _{\top }}\leq \frac{ 2\prod\limits_{\top = 1}^{p}\left( \underline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}}{\prod\limits_{\top = 1}^{p}\left( 2-\underline{ \Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}+\prod\limits_{\top = 1}^{p}\left( \underline{\Upsilon }_{\Im _{\top }}\right) ^{\Gamma _{\top }}} \leq \max \underline{\Upsilon }_{\Im _{\top }}\right) \end{array} \right\} . \end{equation*}

    We present an approach for dealing with unpredictability in multi-attribute group decision-making (MAGDM) with single valued neutrosophic probabilistic hesitant fuzzy rough (SV-NPHFR) information. Consider a decision-making (DM) issue with a collection of variables \left\{ \Theta _{1}, \Theta _{2}, ......, \Theta _{n}\right\} of n substitutes and a set of n attributes \left\{ \hat{C}_{1}, \hat{C}_{2}, ...., \hat{C}_{n}\right\} with (w_{1}, w_{2}, ....., w_{n})^{T} the weights, that is, w_{\gimel }\in \lbrack 0, 1] , \oplus _{\gimel = 1}^{n}w_{\gimel } = 1. Also, consider a probabilistic terms \Xi _{\ell _{\gimel }} , \varpi _{\ell _{\gimel }} and \phi _{\ell _{\gimel }} such that \oplus _{\gimel = 1}^{n}\Xi _{\ell _{\gimel }} = 1, \oplus _{\gimel = 1}^{n}\varpi _{\ell _{\gimel }} = 1 and \oplus _{\gimel = 1}^{n}\phi _{\ell _{\gimel }} = 1 with the property that 0\leq \; \Xi _{\ell _{\gimel }}, \phi _{\ell _{\gimel }}, \; \varpi _{\ell _{\gimel }}\leq 1. To test the validity of k ^{\text{th}} substitute \Theta _{\gimel } under the the attribute \hat{C}_{\gimel }, let \left\{ \text{D }_{1}, \text{D }_{2}, ...., \text{D }_{\top }\right\} be a set of decision makers (DMs), and (\sigma _{1}, \sigma _{2}, ...., \sigma _{n})^{T} be DMs weights such that \sigma _{\gimel }\in \lbrack 0, 1] , \oplus _{\gimel = 1}^{n}\sigma _{\gimel } = 1 . The decision professional information of a certain decision support problem is given as follows:

    \begin{eqnarray*} M & = &\left[ \overline{\Im }(\Lambda _{\gimel j}^{\top })\right] _{m\times n} \\ & = &\left[ \begin{array}{l} \left( \overline{\Im }(\Lambda _{11}),\underline{\Im }(\Lambda _{11})\right) & \left( \overline{\Im }(\Lambda _{12}),\underline{\Im } (\Lambda _{12})\right) & \cdots & \left( \overline{\Im }(\Lambda _{1j}),\underline{\Im }(\Lambda _{1j})\right) \\ \left( \overline{\Im }(\Lambda _{21}),\underline{\Im }(\Lambda _{21})\right) & \left( \overline{\Im }(\Lambda _{22}),\underline{\Im } (\Lambda _{22})\right) & \cdots & \left( \overline{\Im }(\Lambda _{2j}),\underline{\Im }(\Lambda _{2j})\right) \\ \left( \overline{\Im }(\Lambda _{31}),\underline{\Im }(\Lambda _{31})\right) & \left( \overline{\Im }(\Lambda _{32}),\underline{\Im } (\Lambda _{32})\right) & \cdots & \left( \overline{\Im }(\Lambda _{3j}),\underline{\Im }(\Lambda _{3j})\right) \\ \vdots & \vdots & \ddots & \vdots \\ \left( \overline{\Im }(\Lambda _{\gimel 1}),\underline{\Im }(\Lambda _{\gimel 1})\right) & \left( \overline{\Im }(\Lambda _{\gimel 2}), \underline{\Im }(\Lambda _{\gimel 2})\right) & \cdots & \left( \overline{\Im }(\Lambda _{\gimel j}),\underline{\Im }(\Lambda _{\gimel j})\right) \end{array} \right] , \end{eqnarray*}

    where

    \begin{equation*} \overline{\Im }(\Lambda _{\gimel j}) = \left\{ \langle \Theta ,\upsilon _{\ell _{\overline{\Im }(\Lambda )}}(\Theta )/\Xi _{\ell _{\overline{\Im } (\Lambda )}},\Lambda _{\ell _{\overline{\Im }(\Lambda )}}(\Theta )/\varpi _{\ell _{\overline{\Im }(\Lambda )}},\Upsilon _{\ell _{\overline{\Im } (\Lambda )}}(\Theta )/\Xi _{\ell _{\overline{\Im }(\Lambda )}}\rangle |\Theta \in \mathbb{Q} \right\} \end{equation*}

    and

    \begin{equation*} \underline{\delta }(\Lambda _{\gimel j}) = \left\{ \langle \Theta ,\upsilon _{\ell _{\underline{\delta }(\Lambda )}}(\Theta )/\Xi _{\ell _{ \underline{\delta }(\Lambda )}},\Lambda _{\ell _{\underline{\delta }(\Lambda )}}(\Theta )/\varpi _{\ell _{\underline{\delta }(\Lambda )}},\Upsilon _{\ell _{\underline{\delta }(\Lambda )}}(\Theta )/\Xi _{\ell _{\underline{\delta } (\Lambda )}}\rangle |\Theta \in \mathbb{Q} \right\} \end{equation*}

    such that 0 < \left(\max (\upsilon _{\ell _{\overline{\Im }(\Lambda)}}(\Theta))\right) +\left(\min (\Lambda _{\ell _{\overline{\Im }(\Lambda)}}(\Theta))\right) +\left(\min (\Upsilon _{\ell _{\overline{\Im }(\Lambda)}}(\Theta))\right) \leq 3 and 0 < \left(\min (\upsilon _{\ell _{ \underline{\delta }(\Lambda)}}(\Theta)\right) +\left(\max (\Lambda _{\ell _{\underline{\delta }(\Lambda)}}(\Theta))\right) +\left(\max (\Upsilon _{\ell _{\underline{\delta }(\Lambda)}}(\Theta))\right) \leq 3 are the SV-NPHF rough values. The algorithm steps are described as follows for decision making:

    Step-1. Construct the assessment matrices for the experts as follows:

    \begin{equation*} \left( E\right) ^{_{\top }} = \left[ \begin{array}{l} \left( \overline{\Im }(\Lambda _{11}^{_{\top }}),\underline{\delta } (\Lambda _{11}^{_{\top }})\right) & \left( \overline{\Im }(\Lambda _{12}^{_{\top }}),\underline{\delta }(\Lambda _{12}^{_{\top }})\right) & \cdots & \left( \overline{\Im }(\Lambda _{1j}^{_{\top }}),\underline{ \delta }(\Lambda _{1j}^{_{\top }})\right) \\ \left( \overline{\Im }(\Lambda _{21}^{_{\top }}),\underline{\delta } (\Lambda _{21}^{_{\top }})\right) & \left( \overline{\Im }(\Lambda _{22}^{_{\top }}),\underline{\delta }(\Lambda _{22}^{_{\top }})\right) & \cdots & \left( \overline{\Im }(\Lambda _{2j}^{_{\top }}),\underline{ \delta }(\Lambda _{2j}^{_{\top }})\right) \\ \left( \overline{\Im }(\Lambda _{31}^{_{\top }}),\underline{\delta } (\Lambda _{31}^{_{\top }})\right) & \left( \overline{\Im }(\Lambda _{32}^{_{\top }}),\underline{\delta }(\Lambda _{32}^{_{\top }})\right) & \cdots & \left( \overline{\Im }(\Lambda _{3j}^{_{\top }}),\underline{ \delta }(\Lambda _{3j}^{_{\top }})\right) \\ \vdots & \vdots & \ddots & \vdots \\ \left( \overline{\Im }(\Lambda _{\gimel 1}^{_{\top }}),\underline{\delta } (\Lambda _{\gimel 1}^{_{\top }})\right) & \left( \overline{\Im }(\Lambda _{\gimel 2}^{_{\top }}),\underline{\delta }(\Lambda _{\gimel 2}^{_{\top }})\right) & \cdots & \left( \overline{\Im }(\Lambda _{\gimel j}^{_{\top }}),\underline{\delta }(\Lambda _{\gimel j}^{_{\top }})\right) \end{array} \right] \end{equation*}

    where \top shows the expert numbers.

    Step-2. Conduct an analysis on the normalized version of the experts' matrices \left(\mathbb{N} \right) ^{\top }, as follows:

    \begin{equation*} \left( \mathbb{N} \right) ^{\top } = \left\{ \begin{array}{ccc} \Im (\Lambda _{\gimel j}) = \left( \underline{\delta }\left( \Lambda _{\gimel j}\right) ,\overline{\Im }\left( \Lambda _{\gimel j}\right) \right) & \text{ if} & \text{For benefit} \\ \left( \Im (\Lambda _{\gimel j})\right) ^{c} = \left( \left( \underline{\delta }\left( \Lambda _{\gimel j}\right) \right) ^{c},\left( \overline{\Im }\left( \Lambda _{\gimel j}\right) \right) ^{c}\right) & \text{if} & \text{For cost } \end{array} \right. \end{equation*}

    Step-3. Use novel list of algebraic AOs to determined the collected decision making expert information.

    Step-4. For each option under consideration, compute the aggregated SV-NPHFRNs by evaluating them to the given set of criteria and characteristics.

    Step-5. Calculate the relative importances of various options using a scoring formula.

    Step-6. In decreasing order, place all of the alternate ratings. When it comes to alternatives, a bigger value indicates superiority.

    The algorithm steps for multi-attribute decision making are given in Figure 1:

    Figure 1.  Algorithm flow chart.

    Sensor and data technologies: The social, economic, and political spheres are becoming rapidly digitalized. Agriculture, particularly livestock production, is one of the sectors of development that calls for the use of emerging technologies as the world enters various streams of technological progress. However, knowledge and skills are generally lacking, especially in underdeveloped nations. Therefore, it is essential to close this knowledge gap by gathering data and disseminating it to a broad audience in order to spur additional research in the area. It is vital to think about the potential use of these technologies in the period following the introduction of sensors for broader applications, such as the assessment of rangeland condition and animal production. The application of precision agricultural procedures for livestock, including individual animal behavior, grazing conditions, health conditions, and feed intakes, benefits more from technological advancements. It is crucial to evaluate the state of both rangeland resource conditions and livestock grazing behavior for grazing cattle. All around the world, rangeland resources are crucial to the production of cattle. Due to changes in the environment and management practices, forages and pastures are dynamic in terms of quantity, species composition, and chemical composition. For improved management and exploitation, the rangeland resources need to be evaluated and tracked. Traditional evaluations that involve mechanical or manual counting, identification, and chemical composition are time-consuming and labor-intensive. Under field conditions, sensors can be used to monitor the quality of grazing grounds, but they can also be used to better manage grazing stock by gaining an understanding of how animals graze. It is essential to comprehend current technology, such as sensors or bio sensors, in order to supplement or replace old procedures. The goal of this research article is to raise awareness of the technologies that are currently available and their applicability to rangeland resources, particularly in tropical rangelands. In most situations, GPS devices are used in the tropics to evaluate solely the status of the rangeland without taking the grazing cattle into account. The assessment further clarifies the significance of sensor technology for quickly and easily detecting changes in cattle health and movement at the field level. Sensors (bio sensors), like any other technology, have limitations, such as measurement accuracy and repetitive data complaints. However, the assessment clarifies the usage of sensor technology, which saves time and energy in animal production that would otherwise require a lot of it.

    Numerical example

    The applications of the suggested methodologies in this research are illustrated and their viability and efficacy are shown using an example concerning investment possibilities for a MADM problem that has been adapted from experts. In Figure 2, some views of cattle farms are shown.

    Figure 2.  Views of cattle farming using technology.

    Assume that a standard MADM problem Cattle farm evaluation of developing technology commercialization—needs to be resolved. \Theta _{1} , \Theta _{2} , \Theta _{3} and \Theta _{4} on a panel represent four potential developing technology such as, Sensor and data technologies, robots, temperature and moisture sensors, aerial images, and GPS technology respectively. Four factors must be taken into account while making a decision: ( \hat{C}_{1} ) Technological development; ( \hat{C}_{2} ) Risk premium and prospective markets; ( \hat{C}_{3} ) Environment for production, human resources and financial circumstances; and ( \hat{C}_{4} ) Opportunities for employment.

    Step-1. The information of professionals are given in Table 1(a)(d) in the form of SV-NPHFRS.

    Table 1(a).  Expert details.
    \begin{equation*} \begin{array}{c} \hline & \hat{C}_{1} & \hat{C}_{2} \\ \hline \Theta _{1} & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.5/0.5, 0.2/0.5\right), \\ \left(0.6/0.6, 0.3/0.4\right), \\ \left(0.3/1.0\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.6/0.8, 0.5/0.2\right) \\ \left(0.2/0.3, 0.5/0.7\right) \end{array} \right) \end{array} \right) & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.3/1.0\right), \\ \left(0.9/1.0\right), \\ \left(0.1/0.3, 0.7/0.7\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.4/1.0\right), \\ \left(0.2/1\right), \\ \left(0.7/1.0\right) \end{array} \right) \end{array} \right) \\ \Theta _{2} & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.4/0.1, 0.6/0.9\right), \\ \left(0.7/1.0\right), \\ \left(0.8/0.4, 0.9/0.6\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.3/0.2, 0.5/0.8\right), \\ \left(0.1/0.5, 0.6/0.5\right) \\ \left(0.8/1.0\right) \end{array} \right) \end{array} \right) & \left(\begin{array}{c} \left(\begin{array}{c} \left(0.8/1.0\right), \\ \left(0.2/0.5, 0.5/0.5\right), \\ \left(0.9/1.0\right) \end{array} \right), \\ \left(\begin{array}{c} \left(0.6/0.3, 0.7/0.7\right), \\ \left(0.2/1.0\right), \\ \left(0.5/1.0\right) \end{array} \right) \end{array} \right) \\ \hline \end{array} \end{equation*}

     | Show Table
    DownLoad: CSV
    Table 1(b).  Expert details.
    \begin{equation*} \begin{array}{c} \hline & \hat{C}_{3} & \hat{C}_{4} \\ \hline \Theta _{1} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.4/0.8, 0.5/0.2\right), \\ \left(0.6/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.6/1.0\right), \\ \left(0.1/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.3/1.0\right), \\ \left(0.2/0.4, 0.3/0.6\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.6/0.4, 0.3/0.6\right), \\ \left(0.3/1.0\right) \end{array} \right) \right) \end{array} \right) \\ \Theta _{2} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.6/0.7, 0.3/0.3\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.8/1.0\right), \\ \left(0.2/0.2, 0.5/0.8\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.4/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.3/0.6, 0.4/0.4\right), \\ \left(0.4/1.0\right) \end{array} \right) \right) \end{array} \right) \\ \hline \end{array} \end{equation*}

     | Show Table
    DownLoad: CSV
    Table 1(c).  Expert details.
    \begin{equation*} \begin{array}{c} \hline & \hat{C}_{1} & \hat{C}_{2} \\ \hline \Theta _{3} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.6/0.6, 0.3/0.4\right), \\ (0.3/0.7, 0.4/0.3 \end{array} \right) \right) \bf{, } \\ \left(\left(\begin{array}{c} \left(0.5/0.5, 0.2/0.5\right), \\ \left(0.3/1.0\right), \\ \left(0.8/0.2, 0.9/0.8\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.5/0.7, 0.2/0.2, 0.9/0.1\right), \\ \left(0.3/1.0\right), \\ \left(0.3/0.2, 0.4/0.8\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.7/0.3, 0.3/0.7\right), \\ \left(0.3/1.0\right), \\ \left(0.3/0.6, 0.4/0.4\right) \end{array} \right) \right) \end{array} \right) \\ \Theta _{4} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.8/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.2/0.4, 0.5/0.6\right), \\ \left(0.3/0.6, 0.3/0.4\right), \\ \left(0.1/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.6/0.4, 0.4/0.4, 0.3/0.2\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.3/1.0\right), \\ \left(0.7/0.2, 0.1/0.8\right) \end{array} \right) \right) \end{array} \right) \\ \hline \end{array} \end{equation*}

     | Show Table
    DownLoad: CSV
    Table 1(d).  Expert details.
    \begin{equation*} \begin{array}{c} \hline & \hat{C}_{3} & \hat{C}_{4} \\ \hline \Theta _{3} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.9/1.0\right), \\ \left(0.4/1.0\right), \\ \left(0.1/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.9/0.7, 0.3/0.3\right), \\ \left(0.3/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.3/1.0\right), \\ \left(0.4/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.5/1.0\right), \\ \left(0.2/0.6, 0.4/0.4\right), \\ \left(0.4/1.0\right) \end{array} \right) \right) \end{array} \right) \\ \Theta _{4} & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/1.0\right), \\ \left(0.1/1.0\right), \\ \left(0.5/0.3, 0.3/0.2, 0.4/0.5\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.8/1.0\right), \\ \left(0.7/0.6, 0.4/0.4\right), \\ \left(0.4/1.0\right) \end{array} \right) \right) \end{array} \right) & \left(\begin{array}{c} \left(\left(\begin{array}{c} \left(0.2/0.8, 0.5/0.1, 0.2/0.1\right), \\ \left(0.6/1.0\right), \\ \left(0.1/1.0\right) \end{array} \right) \right), \\ \left(\left(\begin{array}{c} \left(0.5/0.6, 0.2/0.4\right), \\ \left(0.6/1.0\right), \\ \left(0.3/0.2, 0.4/0.8\right) \end{array} \right) \right) \end{array} \right) \\ \hline \end{array} \end{equation*}

     | Show Table
    DownLoad: CSV

    Step-2. Expert opinion is of the beneficiary type. As a result, we don't need to normalize the SV-NPHFRNs in this context.

    Step-3. In this problem, just one professional is evaluated for the collection of questionable data. As a result, we are not obligated to detect the information gained.

    Step-4. The SV-NPHFRWA operator is used to evaluate the alternatives' aggregation details under the given list of attributes:

    \Gamma = (0.34, 0.55, 0.11) ^{T}, we obtain the overall preference values \Theta _{\chi } of the alternative L_{\chi }(\chi = 1, 2, 3, 4) by utilizing the suggested SV-NPHFRWA operator.

    For illustration,

    \begin{eqnarray*} &&SV-NPHFREWA\left\{ \begin{array}{c} (\overline{\Im }_{1},\overline{\Im }_{2},....,\overline{\Im }_{p}) \\ (\underline{\delta }_{1},\underline{\delta }_{2},....,\underline{\delta } _{p}) \end{array} \right\} \\ & = &\left( \begin{array}{c} \left\{ \begin{array}{c} \left( \begin{array}{c} \bigcup\limits_{\substack{ \xi _{\overline{\Im }_{\top }}\in \upsilon _{ \overline{\Im }_{\top }} \\ \Xi _{\overline{\Im }_{\top }}\in \Xi _{ \overline{\Im }_{\top }}}} \\ \frac{\Pi _{\top = 1}^{p}\left( 1+\xi _{\overline{\Im }_{\top }}\right) ^{\Gamma _{\top }}-\Pi _{\top = 1}^{p}\left( 1-\xi _{\overline{\Im }_{\top }}\right) ^{\Gamma _{\top }}}{\Pi _{\top = 1}^{p}\left( 1+\xi _{\overline{\Im }_{\top }}\right) ^{\Gamma _{\top }}+\Pi _{\top = 1}^{p}\left( 1-\xi _{ \overline{\Im }_{\top }}\right) ^{\Gamma _{\top }}}/\Pi _{\top = 1}^{p}\Xi _{ \overline{\Im }_{\top }} \end{array} \right) \\ \left( \begin{array}{c} \bigcup\limits_{\substack{ \xi _{\underline{\delta }_{\top }}\in \upsilon _{ \underline{\delta }_{\top }} \\ \Xi _{\underline{\delta }_{\top }}\in \Xi _{ \underline{\delta }_{\top }}}} \\ \frac{\Pi _{\top = 1}^{p}\left( 1+\xi _{\underline{\delta }_{\top }}\right) ^{\Gamma _{\top }}-\Pi _{\top = 1}^{p}\left( 1-\xi _{\underline{\delta } _{\top }}\right) ^{\Gamma _{\top }}}{\Pi _{\top = 1}^{p}\left( 1+\xi _{ \underline{\delta }_{\top }}\right) ^{\Gamma _{\top }}+\Pi _{\top = 1}^{p}\left( 1-\xi _{\underline{\delta }_{\top }}\right) ^{\Gamma _{\top }}} /\Pi _{\top = 1}^{p}\Xi _{\underline{\delta }_{\top }} \end{array} \right) \end{array} \right\} , \\ \left\{ \begin{array}{c} \left( \begin{array}{c} \bigcup\limits_{\substack{ \Lambda _{\overline{\Im }_{\top }}\in \tau _{ \overline{\Im }_{\top }} \\ \varpi _{\overline{\Im }_{\top }}\in \varpi _{ \overline{\Im }_{\top }}}} \\ \frac{2\Pi _{\top = 1}^{p}\left( \Lambda _{\overline{\Im }_{\top }}\right) ^{\Gamma _{\top }}}{\Pi _{\top = 1}^{p}\left( 2-\Lambda _{\overline{\Im } _{\top }}\right) ^{\Gamma _{\top }}+\Pi _{\top = 1}^{p}\left( \Lambda _{ \overline{\Im }_{\top }}\right) ^{^{\Gamma _{\top }}}}/\Pi _{\top = 1}^{p}\varpi _{\overline{\Im }_{\top }} \end{array} \right) \\ \left( \begin{array}{c} \bigcup\limits_{\substack{ \Lambda _{\underline{\delta }_{\top }}\in \tau _{ \underline{\delta }_{\top }} \\ \varpi _{\underline{\delta }_{\top }}\in \varpi _{\underline{\delta }_{\top }}}} \\ \frac{2\Pi _{\top = 1}^{p}\left( \Lambda _{\underline{\delta }_{\top }}\right) ^{\Gamma _{\top }}}{\Pi _{\top = 1}^{p}\left( 2-\Lambda _{ \underline{\delta }_{\top }}\right) ^{\Gamma _{\top }}+\Pi _{\top = 1}^{p}\left( \Lambda _{\underline{\delta }_{\top }}\right) ^{^{\Gamma _{\top }}}}/\Pi _{\top = 1}^{p}\varpi _{\underline{\delta }_{\top }} \end{array} \right) \end{array} \right\} , \\ \left\{ \begin{array}{c} \left( \begin{array}{c} \bigcup\limits_{\substack{ \Upsilon _{\overline{\Im }_{\top }}\in \xi _{ \overline{\Im }_{\top }} \\ \phi _{\overline{\Im }_{\top }}\in \phi _{ \overline{\Im }_{\top }}}} \\ \frac{2\Pi _{\top = 1}^{p}\left( \Upsilon _{\overline{\Im }_{\top }}\right) ^{\Gamma _{\top }}}{\Pi _{\top = 1}^{p}\left( 2-\Upsilon _{\overline{\Im } _{\top }}\right) ^{\Gamma _{\top }}+\Pi _{\top = 1}^{p}\left( \Upsilon _{ \overline{\Im }_{\top }}\right) ^{^{\Gamma _{\top }}}}/\Pi _{\top = 1}^{p}\phi _{\overline{\Im }_{\top }} \end{array} \right) \\ \left( \begin{array}{c} \bigcup\limits_{\substack{ \Upsilon _{\underline{\delta }_{\top }}\in \xi _{ \underline{\delta }_{\top }} \\ \phi _{\underline{\delta }_{\top }}\in \phi _{\underline{\delta }_{\top }}}} \\ \frac{2\Pi _{\top = 1}^{p}\left( \Upsilon _{\underline{\delta }_{\top }}\right) ^{\Gamma _{\top }}}{\Pi _{\top = 1}^{p}\left( 2-\Upsilon _{\Im _{\top }}\right) ^{\Gamma _{\top }}+\Pi _{\top = 1}^{p}\left( \Upsilon _{ \underline{\delta }_{\top }}\right) ^{^{\Gamma _{\top }}}}/\Pi _{\top = 1}^{p}\phi _{\underline{\delta }_{\top }} \end{array} \right) \end{array} \right\} \end{array} \right). \end{eqnarray*}

    After obtain the overall preference values \Theta _{\chi } of the alternative L_{\chi }(\chi = 1, 2, 3, 4)

    \begin{equation*} s(\Theta _{\chi }) = \frac{1}{2}\left\{ \begin{array}{c} \left( \begin{array}{c} \left( \frac{1}{M_{\Theta }}\sum\nolimits_{\hslash _{\gimel }\in \tau _{\ell _{\dot{g}},\tilde{p}_{\gimel }\in \tilde{p}_{\ell _{\dot{g}}}}}(\hslash _{\gimel }\cdot \tilde{p}_{\gimel })\right) + \\ \left( \frac{1}{M_{\Theta }}\sum\nolimits_{\hslash _{\gimel }\in \tau _{\ell _{\dot{g}},\tilde{p}_{\gimel }\in \tilde{p}_{\ell _{\dot{g}}}}}(\hslash _{\gimel }\cdot \tilde{p}_{\gimel })\right) \end{array} \right) - \\ \left( \begin{array}{c} \left( \frac{1}{N_{\Theta }}\sum\nolimits_{\varrho _{\gimel }\in \Xi _{\ell _{\varsigma }},\varpi _{\gimel }\in \varpi _{\ell _{\dot{g}}}}(\varrho _{\gimel }\cdot \varpi _{\gimel })\right) + \\ \left( \frac{1}{N_{\Theta }}\sum\nolimits_{\varrho _{\gimel }\in \Xi _{\ell _{\varsigma }},\varpi _{\gimel }\in \varpi _{\ell _{\dot{g}}}}(\varrho _{\gimel }\cdot \varpi _{\gimel })\right) \end{array} \right) - \\ \left( \begin{array}{c} \left( \frac{1}{Z_{\Theta }}\sum\nolimits_{\Re _{\gimel }\in \Xi _{\ell _{\varsigma }},\phi _{\gimel }\in \phi _{\ell _{\dot{g}}}}(\varrho _{\gimel }\cdot \phi _{\gimel })\right) + \\ \left( \frac{1}{Z_{\Theta }}\sum\nolimits_{\Re _{\gimel }\in \Xi _{\ell _{\varsigma }},\phi _{\gimel }\in \phi _{\ell _{\dot{g}}}}(\varrho _{\gimel }\cdot \phi _{\gimel })\right) \end{array} \right) \end{array} \right\}. \end{equation*}

    Step-5. Score values of all alternatives under developed aggregation operator are presented using Table 1. The Score values are presented in Table 2.

    Table 2.  Score values.
    Operator s(\Theta _{1}) s(\Theta _{2}) s(\Theta _{3}) s(\Theta _{4})
    SV-NPHFREWA 0.1517 0.1248 0.1402 0.1419

     | Show Table
    DownLoad: CSV

    Step-6. Categorize the alternatives. \Theta _{\chi }(\chi = 1, 2, ...., 4) are listed in Table 3.

    Table 3.  Ranking of the alternatives.
    Operator Score Most Effective Alternative
    SV-NPHFREWA s(\Theta _{1}) > s(\Theta _{4}) > s(\Theta _{3}) > s(\Theta _{2}) \Theta _{1}

     | Show Table
    DownLoad: CSV

    We determined from the preceding mathematical formulation that choice \Theta _{1} is the best option among the rest, and it is therefore strongly recommended.

    The viability of the proposed process, the adaptability of its aggregation to handle certain inputs and outputs, the influence of score functions, sensitivity analysis, superiority, and, finally, the comparison of the proposed methodology with existing methodologies are all covered in this part. Also present the relationship strategy between alternatives and crossposting criteria using quaternion relationship function are presented. The suggested approach was exact and appropriate for all types of input data. The framework that was developed worked well for handling uncertainties. Using Einstein AOs, it contained the PHFS, RS, and NS spaces. We may effectively employ our model in a number of scenarios by extending the gap between the pleasure and displeasure classes by altering the practical significance of particular parameters. We faced a variety of elements and input parameters under the appropriate conditions in various MCDM problems. The suggested approaches are straightforward, easy to comprehend, and easily adaptable to a wide range of options and attributes. It should be highlighted that none of these theories provide a comprehensive explanation of how to handle a scenario in which the attributes are intertwined. The effectiveness of the aforementioned MADM tactics was further confirmed through this comparative analysis and relationship function with other approaches.

    Example: We take into account four records of the cattle-forums that are cited in Table 4 data.

    Table 4.  Quaternion neutrosophic fuzzy relation S (cattle-farm\rightarrow Alternatives).
    S \Theta _{1} \Theta _{2} \Theta _{3} \Theta _{4}
    Forum-1 (0.8, 0.3, 0.6) (0.4, 0.6, 0.9) (0.9, 0.8, 0.6) (0.5, 0.5, 0.8)
    Forum-2 (0.3, 0.4, 0.8) (0.5, 0.3, 0.6) (0.7, 0.9, 0.9) (0.8, 0.9, 0.3)
    Forum-3 (0.3, 0.2, 0.2) (0.1, 0.6, 0.8) (0.9, 0.3, 0.4) (0.3, 0.6, 0.9)
    Forum-4 (0.6, 0.4, 0.8) (0.3, 0.4, 0.1) (0.2, 0.6, 0.1) (0.8, 0.3, 0.9)

     | Show Table
    DownLoad: CSV

    We take into account four entries that are cited in Table 5 data.

    Table 5.  Quaternion neutrosophic fuzzy relation T (Alternatives\rightarrow Criteria).
    T \hat{C}_{1} \hat{C}_{2} \hat{C}_{3} \hat{C}_{4}
    \Theta _{1} (0.3, 0.5, 0.9) (0.7, 0.8, 0.9) (0.6, 0.7, 0.8) (0.9, 0.3, 0.5)
    \Theta _{2} (0.6, 0.7, 0.7) (0.8, 0.3, 0.4) (0.7, 0.3, 0.4) (0.5, 0.6, 0.7)
    \Theta _{3} (0.9, 0.6, 0.3) (0.7, 0.8, 0.3) (0.0.8, 0.3, 0.1) (0.8, 0.6, 0.2)
    \Theta _{4} (0.8, 0.3, 0.7) (0.9, 0.3, 0.4) (0.7, 0.3, 0.2) (0.6, 0.4, 0.5)

     | Show Table
    DownLoad: CSV

    The Table 6 shows the relationship between Table 4 and Table 5.

    Table 6.  Quaternion neutrosophic fuzzy relation R (cattle-farm\rightarrow Criteria).
    R \hat{C}_{1} \hat{C}_{2} \hat{C}_{3} \hat{C}_{4}
    Forum-1 (0.9, 0.5, 0.6) (0.7, 0.5, 0.6) (0.8, 0.4, 0.6) (0.8, 0.3, 0.6)
    Forum-2 (0.8, 0.5, 0.5) (0.7, 0.3, 0.4) (0.7, 0.3, 0.5) (0.7, 0.4, 0.5)
    Forum-3 (0.9, 0.5, 0.4) (0.7, 0.6, 0.4) (0.8, 0.3, 0.4) (0.8, 0.3, 0.3)
    Forum-4 (0.8, 0.6, 0.3) (0.8, 0.6, 0.3) (0.7, 0.3, 0.3) (0.6, 0.3, 0.4)

     | Show Table
    DownLoad: CSV

    In the Table 7, We find the results of relationship function. The results are found using the following formulas on quaternion neutrosophic numbers:

    Table 7.  Results of relationship.
    \hat{C}_{1} \hat{C}_{2} \hat{C}_{3} \hat{C}_{4}
    Forum-1 0.6 0.4 0.56 0.62
    Forum-2 0.55 0.58 0.55 0.5
    Forum-3 0.7 0.46 0.68 0.71
    Forum-4 0.58 0.62 0.61 0.48

     | Show Table
    DownLoad: CSV
    \xi_T(P_i,F_k) = \bigvee\limits_{s\in S}[\xi_T(P_i,T)\bigwedge \xi_R(T,F_k)]
    \tau_T(P_i,F_k) = \bigwedge\limits_{s\in S}[\tau_T(P_i,T)\bigvee \tau_R(T,F_k)]
    \Upsilon_T(P_i,F_k) = \bigwedge\limits_{s\in S}[\Upsilon_T(P_i,T)\bigvee \Upsilon_R(T,F_k)].

    After getting the information relationship of (cattle-farm \rightarrow Criteria), we apply the following formula on the neutrosophic quaternion numbers to obtained the Table 7. S_R = \xi_R-\Im_R.\Theta_R by following the rule of the quaternion numbers, ij = k, jk = i, ki = j .

    In this Table 7 we can find that, form cattle-farm-2 and cattle-farm-4, the best criteria is \hat{C}_{2} . For cattle-farm-1, \hat{C}_{4} is best, and for cattle-farm-3 the best option is \hat{C}_{4} .

    In particular, the comparison study was based on the same example situation, where the weight of the traits was the same as above. Table 8 below shows the results utilizing multiple approaches and complete weight data. We apply the single-valued neutrosophic probabilistic hesitant fuzzy Dombi weighted averaging and geometric (SV-NPHFDWA and SV-NPHFDWG) AOs [34], single-valued neutrosophic probabilistic hesitant fuzzy weighted averaging and geometric (SV-NPHFWA and SV-NPHFWG) AOs [35], and single-valued neutrosophic probabilistic hesitant fuzzy rough weighted averaging and geometric (SV-NPHFRWA and SV-NPHFRWG) AOs [36].

    Table 8.  Comparison analysis.
    \text{Operators} \text{Score} \text{Most Effective Alternative}
    \text{SV-NPHFDWA} Undefined No Outcome
    \text{SV-NPHFDWG} Undefined No Outcome
    \text{SV-NPHFWA} Undefined No Outcome
    \text{SV-NPHFWG} Undefined No Outcome
    \text{SV-NHFROWA} (Defined) Undefined No Outcome
    \text{SV-NHFRHWA} (Defined) Undefined No Outcome
    \text{SV-NHFRHWG} (Defined) Undefined No Outcome
    \text{SV-NPHFRWA} s(\Theta _{1}) > s(\Theta _{3}) > s(\Theta_{2}) > s(\Theta _{4}) s(\Theta _{1})
    \text{SV-NPHFRWG} s(\Theta _{4}) > s(\Theta _{1}) > s(\Theta_{3}) > s(\Theta _{2}) s(\Theta _{4})
    \text{SV-NPHFREWA} (Proposed) s(\Theta _{1}) > s(\Theta _{4}) > s(\Theta_{3}) > s(\Theta _{2}) s(\Theta _{1})
    \text{SV-NPHFRWG} (Defined) s(\Theta _{1}) > s(\Theta_{3}) > s(\Theta _{4}) > s(\Theta _{2}) s(\Theta _{1})

     | Show Table
    DownLoad: CSV

    The desirable alternative is therefore s(\Theta _{1}) when the SV-NPHFREWA operator is employed. If another types of procedures is used, the best option is s(\Theta _{1}) . For all of the compared methods, the worst alternative is always s(\Theta _{2}) . The other operators failed to give output because our information had rough data that cannot be handled by other operators. The results show the effectiveness and viability of the SV-NPHFREWA and SV-NPHFREWG operators utilizing the compared methods and the suggested method in this paper for the identical single-valued neutrosophic hesitant fuzzy rough information.

    The SV-NPHFRE-AO) has a number of benefits for decision-making, but there are also certain drawbacks and concerns to take into account:

    ● SV-NPHFRE-AO is a complex method that requires a deep understanding of the underlying concepts and mathematical operations. This can make it challenging to apply in practice, particularly for decision-makers who are not familiar with advanced mathematical methods.

    ● SV-NPHFRE-AO requires a significant amount of data to be effective. This can be a limitation in decision-making situations where data is scarce or difficult to obtain.

    ● There is currently no standard approach to using SV-NPHFRE-AO in decision making, which can make it difficult to compare results across different studies or applications.

    ● SV-NPHFRE-AO is a subjective method that relies on human judgment to some extent. This can introduce bias and inconsistencies into the decision-making process, particularly if there are differences in opinion among decision-makers.

    ● SV-NPHFRE-AO can be difficult to interpret, particularly for non-experts. This can make it challenging to communicate the results of the decision-making process to stakeholders or other decision-makers.

    ● SV-NPHFRE-AO may not be scalable to large decision-making problems due to the complexity of the method and the amount of data required.

    The limitations and issues of SV-NPHFREA in decision making should be carefully considered before applying the method. Decision-makers should ensure that they have the necessary expertise and data to use SV-NPHFREA effectively, and that they are aware of the limitations and potential biases inherent in the method.

    We deal with significant and technical data every day. To work more efficiently and compute full information, we developed methodologies and tools for this type of data. Aggregation entails inherent costs to reduce the volume of data to a single value. For situations where each item has a range of probable values specified by MD, indeterminacy, and non-MD, the SV-NPHFRE-AO was created as a potent fusion of an SV-N, PHFS, and RS. More information about these techniques' advantages is provided below.

    (1) First, we've established some SV-NPHFRS operational standards based on Einstein operations.

    (2) Due to the significance of operating procedures, the weighted averaging and geometric Einstein aggregation operators have also been designed to deal with SV-NHFR data, including SV-NHFRA and SV-NHFRG aggregation data in decision-making issues.

    (3) Then, we designed the the weighted averaging Einstein aggregation operators to deal with SV-NPHFR data, including sv-neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging (SV-NPHFREWA) aggregation operator.

    (4) A number of helpful characteristics have been demonstrated for them.

    (5) The MCDM techniques proposed in this paper are also capable of recognizing more correlation between attributes and alternatives, demonstrating that they have a higher accuracy and a larger setpoint than the existing methodologies, which are unable to take into account the inter-relationships of attributes in practical uses. This shows that by using the MCDM methodologies outlined in this paper, even additional links between features may be discovered.

    (6) Proposed AOs could be used in studies of two-sided matching decisions with multi-granular and incomplete criterion weight information, as well as studies of consensus reaching with non-cooperative behavior management. This analysis of the constraints imposed by proposed AOs does not take into account the degrees of participation, abstention, or non-membership. Over here, the intended AOs are being implemented with a novel hybrid structure of prioritized, interactive AOs.

    (7) Future work will use state-of-the-art decision-making methods like TOPSIS, VIKOR, TODAM, GRA, and EDAS to examine the theoretical basis of SV-NPHFSs for Einstein operations. We will also talk about the ways in which these techniques are used in other areas, including soft computing, robotics, horticulture, intelligent systems, the social sciences, economics, and human resource management.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Contributions from each author are distributed equally.

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups Project under grant number (R.G.P.1/109/44).

    There are no conflicting interests declared by the authors.



    [1] A. Mardani, R. E. Hooker, S. Ozkul, S. Yifan, M. Nilashi, H. Z. Sabzi, et al., Application of decision making and fuzzy sets theory to evaluate the healthcare and medical problems: A review of three decades of research with recent developments, Expert Syst. Appl., 137 (2019), 202–231. https://doi.org/10.1016/j.eswa.2019.07.002 doi: 10.1016/j.eswa.2019.07.002
    [2] Z. Bashir, A. Wahab, T. Rashid, Three-way decision with conflict analysis approach in the framework of fuzzy set theory, Soft Comput., 26 (2022), 309–326. https://doi.org/10.1007/s00500-021-06509-3 doi: 10.1007/s00500-021-06509-3
    [3] X. Gou, Z. Xu, H. Liao, Hesitant fuzzy linguistic entropy and cross-entropy measures and alternative queuing method for multiple criteria decision making, Inform. Sci., 388 (2017), 225–246. https://doi.org/10.1016/j.ins.2017.01.033 doi: 10.1016/j.ins.2017.01.033
    [4] X. Fu, Y. Zhang, Y. G. Zhang, Y. L. Yin, S. C. Yan, Y. Z. Zhao, et al., Research and application of a new multilevel fuzzy comprehensive evaluation method for cold stress in dairy cows, J. Dairy Sci., 105 (2022), 9137–9161. https://doi.org/10.3168/jds.2022-21828 doi: 10.3168/jds.2022-21828
    [5] L. P. Maziero, M. G. M. Chacur, C. P. Cremasco, F. F. Putti, L. R. A. G. Filho, Fuzzy system for assessing bovine fertility according to semen characteristics, Livest. Sci., 256 (2022), 104821. https://doi.org/10.1016/j.livsci.2022.104821 doi: 10.1016/j.livsci.2022.104821
    [6] R. Zhang, Z. Xu, X. Gou, ELECTRE II method based on the cosine similarity to evaluate the performance of financial logistics enterprises under double hierarchy hesitant fuzzy linguistic environment, Fuzzy Optim. Decis. Ma., 22 (2023), 23–49. https://doi.org/10.1007/s10700-022-09382-3 doi: 10.1007/s10700-022-09382-3
    [7] R. Bosma, U. Kaymak, J. V. Berg, H. Udo, J. Verreth, Using fuzzy logic modelling to simulate farmers' decision-making on diversification and integration in the Mekong Delta, Vietnam, Soft Comput., 15 (2011), 295–310. https://doi.org/10.1007/s00500-010-0618-7 doi: 10.1007/s00500-010-0618-7
    [8] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [9] D. J. Dubois, Fuzzy sets and systems: Theory and applications, Academic press, 144 (1980).
    [10] K. T. Atanassov, Intuitionistic fuzzy sets, in Intuitionistic fuzzy sets, Physica, Heidelberg, 1999, 1–137. https://doi.org/10.1007/978-3-7908-1870-3_1
    [11] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single valued neutrosophic sets, Infin. Study, 2010.
    [12] J. Ye, Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment, Int. J. Gen. Syst., 42 (2013), 386–394. https://doi.org/10.1080/03081079.2012.761609 doi: 10.1080/03081079.2012.761609
    [13] R. Şahin, Multi-criteria neutrosophic decision making method based on score and accuracy functions under neutrosophic, Comput. Sci., 2014. https://doi.org/10.5281/zenodo.22994
    [14] Y. Jin, M. Kamran, N. Salamat, S. Zeng, R. H. Khan, Novel distance measures for single-valued neutrosophic fuzzy sets and their applications to multicriteria group decision-making problem, J. Func. Space., 2022.
    [15] M. Riaz, M. R. Hashmi, D. Pamucar, Y. M. Chu, Spherical linear Diophantine fuzzy sets with modeling uncertainties in MCDM, Comput. Model. Eng. Sci., 126 (2021), 1125–1164. https://doi.org/10.32604/cmes.2021.013699 doi: 10.32604/cmes.2021.013699
    [16] S. Broumi, F. Smarandache, M. Dhar, Rough neutrosophic sets, Infin. Study, 2014. https://doi.org/10.5281/zenodo.30310
    [17] R. Krishankumaar, A. R. Mishra, X. Gou, K. S. Ravichandran, New ranking model with evidence theory under probabilistic hesitant fuzzy context and unknown weights, Neural Comput. Appl., 2022, 1–15. https://doi.org/10.1007/s00521-021-06653-9
    [18] Z. Hao, Z. Xu, H. Zhao, Z. Su, Probabilistic dual hesitant fuzzy set and its application in risk evaluation, Knowl.-Based Syst., 127 (2017), 16–28. https://doi.org/10.1016/j.knosys.2017.02.033 doi: 10.1016/j.knosys.2017.02.033
    [19] W. Zhou, Z. Xu, Group consistency and group decision making under uncertain probabilistic hesitant fuzzy preference environment, Inform. Sci., 414 (2017), 276–288. https://doi.org/10.1016/j.ins.2017.06.004 doi: 10.1016/j.ins.2017.06.004
    [20] X. Gou, Z. Xu, H. Liao, F. Herrera, Probabilistic double hierarchy linguistic term set and its use in designing an improved VIKOR method: The application in smart healthcare, J. Oper. Res. Soc., 72 (2021), 2611–2630. https://doi.org/10.1080/01605682.2020.1806741 doi: 10.1080/01605682.2020.1806741
    [21] M. Rasheed, E. Tag-Eldin, N. A. Ghamry, M. A. Hashmi, M. Kamran, U. Rana, Decision-making algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set and Choquet integral, AIMS Math., 8 (2023), 12422–12455. https://doi.org/10.3934/math.2023624 doi: 10.3934/math.2023624
    [22] H. Garg, A novel trigonometric operation-based q-rung orthopair fuzzy aggregation operator and its fundamental properties, Neural Comput. Appl., 32 (2020), 15077–15099. https://doi.org/10.1007/s00521-020-04859-x doi: 10.1007/s00521-020-04859-x
    [23] K. Ullah, T. Mahmood, H. Garg, Evaluation of the performance of search and rescue robots using T-spherical fuzzy Hamacher aggregation operators, Int. J. Fuzzy Syst., 22 (2020), 570–582. https://doi.org/10.1007/s40815-020-00803-2 doi: 10.1007/s40815-020-00803-2
    [24] C. Carlsson, R. Fullér, Fuzzy reasoning in decision making and optimization, Springer Science & Business Media, 82 (2001).
    [25] N. Gonul Bilgin, D. Pamučar, M. Riaz, Fermatean neutrosophic topological spaces and an spplication of neutrosophic Kano method, Symmetry, 14 (2022), 2442. https://doi.org/10.3390/sym14112442 doi: 10.3390/sym14112442
    [26] Z. Xu, W. Zhou, Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment, Fuzzy Optim. Deci. Ma., 16 (2017), 481–503. https://doi.org/10.1007/s10700-016-9257-5 doi: 10.1007/s10700-016-9257-5
    [27] S. Shao, X. Zhang, Y. Li, C. Bo, Probabilistic single-valued (interval) neutrosophic hesitant fuzzy set and its application in multi-attribute decision making, Symmetry, 10 (2018), 419. https://doi.org/10.3390/sym10090419 doi: 10.3390/sym10090419
    [28] R. M. Zulqarnain, A. Iampan, I. Siddique, H. Abd, E. W. Khalifa, Some fundamental operations for multi-polar interval-valued neutrosophic soft set and a decision-making approach to solve MCDM problem, Neutrosophic Sets Sy., 51 (2022), 205–220.
    [29] R. M. Zulqarnain, X. L. Xin, M. Saqlain, M. Saeed, F. Smarandache, M. I. Ahamad, Some fundamental operations on interval valued neutrosophic hypersoft set with their properties, Neutrosophic Sets Sy., 40 (2021), 134–148. https://doi.org/10.5281/zenodo.4549352 doi: 10.5281/zenodo.4549352
    [30] M. Kamran, S. Ashraf, M. Naeem, A promising approach for decision modeling with single-valued neutrosophic probabilistic hesitant fuzzy Dombi operators, Yugoslav J. Oper. Res., 2023. http://dx.doi.org/10.2298/YJOR230115007S
    [31] R. Sahin, F. Altun, Decision making with MABAC method under probabilistic single-valued neutrosophic hesitant fuzzy environment, J. Amb. Intel. Hum. Comp., 11 (2020), 4195–4212. https://doi.org/10.1007/s12652-020-01699-4 doi: 10.1007/s12652-020-01699-4
    [32] M. Riaz, Y. Almalki, S. Batool, S. Tanveer, Topological structure of single-valued neutrosophic hesitant fuzzy sets and data analysis for uncertain supply chains, Symmetry, 14 (2022), 1382. https://doi.org/10.3390/sym14071382 doi: 10.3390/sym14071382
    [33] C. F. Liu, Y. S. Luo, New aggregation operators of single-valued neutrosophic hesitant fuzzy set and their application in multi-attribute decision making, Pattern Anal. Appl., 22 (2019), 417–427. https://doi.org/10.1007/s10044-017-0635-6 doi: 10.1007/s10044-017-0635-6
    [34] M. Kamran, S. Ashraf, M. Naeem, A promising approach for decision modeling with single-valued neutrosophic probabilistic hesitant fuzzy Dombi operators, Jugoslav J. Oper. Res., 2023.
    [35] G. Kaur, H. Garg, A novel algorithm for autonomous parking vehicles using adjustable probabilistic neutrosophic hesitant fuzzy set features, Expert Syst. Appl., 2023, 120101. https://doi.org/10.1016/j.eswa.2023.120101
    [36] M. Kamran, R. Ismail, E. H. A. Al-Sabri, N. Salamat, M. Farman, S. Ashraf, An optimization strategy for MADM framework with confidence level aggregation operators under probabilistic neutrosophic hesitant fuzzy rough environment, Symmetry, 15 (2023), 578. https://doi.org/10.3390/sym15030578 doi: 10.3390/sym15030578
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1594) PDF downloads(89) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog