Let A(G) and D(G) be the adjacency matrix and the degree diagonal matrix of a graph G, respectively. For any real number α∈[0,1], Nikiforov defined the Aα-matrix of a graph G as Aα(G)=αD(G)+(1−α)A(G). Let Sk(Aα(G)) be the sum of the k largest eigenvalues of Aα(G). In this paper, some bounds on Sk(Aα(G)) are obtained, which not only extends the results of the sum of the k largest eigenvalues of the adjacency matrix and signless Laplacian matrix, but it also gives new bounds on graph energy.
Citation: Zhen Lin. On the sum of the largest Aα-eigenvalues of graphs[J]. AIMS Mathematics, 2022, 7(8): 15064-15074. doi: 10.3934/math.2022825
[1] | Bilal A. Rather, Fawad Ali, Nasim Ullah, Al-Sharef Mohammad, Anwarud Din, Sehra . Aα matrix of commuting graphs of non-abelian groups. AIMS Mathematics, 2022, 7(8): 15436-15452. doi: 10.3934/math.2022845 |
[2] | Wafaa Fakieh, Zakeiah Alkhamisi, Hanaa Alashwali . On the Aα−-spectra of graphs and the relation between Aα- and Aα−-spectra. AIMS Mathematics, 2024, 9(2): 4587-4603. doi: 10.3934/math.2024221 |
[3] | Imrana Kousar, Saima Nazeer, Abid Mahboob, Sana Shahid, Yu-Pei Lv . Numerous graph energies of regular subdivision graph and complete graph. AIMS Mathematics, 2021, 6(8): 8466-8476. doi: 10.3934/math.2021491 |
[4] | Alfredo Sotelo-Pejerrey . Traces of certain integral operators related to the Riemann hypothesis. AIMS Mathematics, 2023, 8(10): 24971-24983. doi: 10.3934/math.20231274 |
[5] | Efruz Özlem Mersin . Sturm's Theorem for Min matrices. AIMS Mathematics, 2023, 8(7): 17229-17245. doi: 10.3934/math.2023880 |
[6] | Sakander Hayat, Sunilkumar M. Hosamani, Asad Khan, Ravishankar L. Hutagi, Umesh S. Mujumdar, Mohammed J. F. Alenazi . A novel edge-weighted matrix of a graph and its spectral properties with potential applications. AIMS Mathematics, 2024, 9(9): 24955-24976. doi: 10.3934/math.20241216 |
[7] | Shuo Wang, Juan Liu, Xindong Zhang . Properties of solutions for fractional-order linear system with differential equations. AIMS Mathematics, 2022, 7(8): 15704-15713. doi: 10.3934/math.2022860 |
[8] | Yinzhen Mei, Chengxiao Guo, Mengtian Liu . The bounds of the energy and Laplacian energy of chain graphs. AIMS Mathematics, 2021, 6(5): 4847-4859. doi: 10.3934/math.2021284 |
[9] | Jun He, Yan-Min Liu, Jun-Kang Tian, Ze-Rong Ren . A note on the inclusion sets for singular values. AIMS Mathematics, 2017, 2(2): 315-321. doi: 10.3934/Math.2017.2.315 |
[10] | Chang Liu, Jianping Li . Sharp bounds on the zeroth-order general Randić index of trees in terms of domination number. AIMS Mathematics, 2022, 7(2): 2529-2542. doi: 10.3934/math.2022142 |
Let A(G) and D(G) be the adjacency matrix and the degree diagonal matrix of a graph G, respectively. For any real number α∈[0,1], Nikiforov defined the Aα-matrix of a graph G as Aα(G)=αD(G)+(1−α)A(G). Let Sk(Aα(G)) be the sum of the k largest eigenvalues of Aα(G). In this paper, some bounds on Sk(Aα(G)) are obtained, which not only extends the results of the sum of the k largest eigenvalues of the adjacency matrix and signless Laplacian matrix, but it also gives new bounds on graph energy.
Let G be a simple undirected graph with vertex set V(G)={v1,v2,…,vn} and edge set E(G). For vi∈V(G), di=dG(vi) denotes the degree of vertex vi, and M1=M1(G)=∑ni=1d2i is called the first Zagreb index. The minimum and the maximum degree of G are denoted by δ(G) and Δ(G), or simply δ and Δ, respectively. Denote by Kn, Cn and Ks,n−s the complete graph, cycle and complete bipartite graph with n vertices, respectively. The positive inertia index p=p(M) and the negative inertia index of a matrix M are the number of positive and negative eigenvalues of M, respectively. For other undefined notations and terminology from graph theory, the readers are referred to [6].
For a graph G, Sk(A(G)) is the sum of the k largest eigenvalues of adjacency matrix A(G). Mohar [23] showed that Sk(A(G)) is at most 12(√k+1)n. This bound is shown to be the best possible, in the sense that for every k there exist graphs whose sum is 12(√k+12)n−o(k−2/5)n. Das et al. [11] proved an upper bound on Sk(A(G)) in terms of vertex number and negative inertia index. Let L(G)=D(G)−A(G) be the Laplacian matrix of a graph G. Based on the famous Grone-Merris-Bai theorem [3,14], Brouwer et al. [5] proposed the following conjecture.
Conjecture 1.1. (Brouwer's conjecture) Let G be a graph with n vertices and e(G) edges. For 1≤k≤n, we have
Sk(L(G))≤e(G)+(k+12). |
Inspired by Brouwer's conjecture, Ashraf et al. [2] proposed a similar conjecture as follows.
Conjecture 1.2. [2] Let G be a graph with n vertices and e(G) edges. For 1≤k≤n, we have
Sk(Q(G))≤e(G)+(k+12), |
where Q(G)=D(G)+A(G) is called the signless Laplacian matrix of G.
The above two conjectures have been proven to be correct for all graphs with at most ten vertices [2], all graphs with k=1,2,n−2,n−1,n [2,7], regular graphs [2], trees [17], unicyclic graphs [31,32], bicyclic graphs [31,32], tricyclic graphs [31,32] and so on. In particular, Haemers et al. [17] proved that Sk(L(T))≤e(T)+2k−1 when T is a tree with n vertices.
Another motivation to study Sk(A(G)) and Sk(Q(G)) came from the energy ε(A(G)) and signless Laplacian energy ε(Q(G)) of a graph G, which is very popular in mathematical chemistry. Let G be a graph with n vertices, m edges and the positive inertia index p. Then we have
ε(G)=ε(A(G))=n∑k=1|λk(A(G))|=2Sp(A(G)), |
and
ε(Q(G))=n∑k=1|λk(Q(G))−2mn|=max |
where \lambda_k(M) is the k -th largest eigenvalue of the matrix M . Thus, S_k(A(G)) and S_k(Q(G)) are close relation with the energy and signless Laplacian energy, respectively. For more details in this field, we refer the reader to [1,11,13,22]. In addition, S_k(A(G)) is related to Ky Fan norms of graphs introduced by Nikiforov [25], which are a fundamental matrix parameter anyway.
For any real \alpha \in[0, 1] , Nikiforov [24] defined the matrix A_{\alpha}(G) as
A_{\alpha}(G) = \alpha D(G)+(1-\alpha)A(G), |
where D(G) is the diagonal matrix of its vertex degrees, and A(G) is the adjacency matrix. It is easy to see that A_{0}(G) = A(G) and 2A_{1/2}(G) = Q(G) . The new matrix A_{\alpha}(G) not only can underpin a unified theory of A(G) and Q(G) , but it also brings many new interesting problems, see [18,19,20,24,26]. This matrix has recently attracted the attention of many researchers, and there are several research papers published recently, see [4,20,21,29] and the references therein.
Motivated by the above works, we study the sum of the k largest eigenvalues of A_{\alpha}(G) . Since S_k(A_{0}(G)) = S_k(A(G)) and 2S_k(A_{1/2}(G)) = S_k(Q(G)) , S_k(A_{\alpha}(G)) can be regard as a common generalization of S_k(A(G)) and S_k(Q(G)) . Moreover, if G is a graph with n vertices and m edges, then
\varepsilon_{\alpha}(G) = \sum\limits_{k = 1}^{n}\left\lvert \lambda_k(A_{\alpha}(G))-\frac{2\alpha m}{n} \right\rvert = \max\limits_{1\leq k \leq n}\left\{2S_{k}(A_{\alpha}(G))-\frac{4\alpha k m}{n}\right\}, |
where \varepsilon_{\alpha}(G) is the \alpha -energy of G defined by Guo and Zhou [15]. Thus, S_k(A_{\alpha}(G)) is a close relation with the \alpha -energy of G . It is not difficult to see that \varepsilon_{0}(G) = \varepsilon(A(G)) and 2\varepsilon_{1/2}(G) = \varepsilon(Q(G)) .
In this paper, we obtain some upper and lower bounds on the sum of the k largest eigenvalues of A_{\alpha}(G) , which extend the results of S_k(A(G)) and S_k(Q(G)) . In particular, we give new bounds on the energy of graphs in terms of the positive inertia index and the first Zagreb index. In addition, some graph operations on S_k(A_{\alpha}(G)) are presented, which provides new bounds for the energy of graph operations.
The remainder of this paper is organized as follows. In Section 2, we recall some useful notions and lemmas used further. In Section 3, some upper bounds on S_k(A_{\alpha}(G)) are obtained in terms of A_{\alpha} -spectral radius and the first Zagreb index. Similarly to Conjecture 2, a conjecture is proposed for \frac{1}{2}\leq \alpha < 1 . In Section 4, the line graph and the square of graphs on S_k(A_{\alpha}(G)) are presented.
The line graph \mathcal{L}(G) is the graph whose vertex set is the edges in G , where two vertices are adjacent if the corresponding edges in G have a common vertex. The square G^2 of a graph G is a graph with the same set of vertices as G such that two vertices are adjacent in G^2 if and only if their distance in G is at most 2 . The second smallest eigenvalue of the Laplacian of a graph G , best-known as the algebraic connectivity of G , is denoted by a(G) .
Lemma 2.1. [12] Let M and N be two real symmetric matrices of order n . Then we have
\sum\limits_{i = 1}^{k}\lambda_i(M+N)\leq \sum\limits_{i = 1}^{k}\lambda_i(M)+\sum\limits_{i = 1}^{k}\lambda_i(N) |
for any 1\leq k \leq n .
Lemma 2.2. [24] Let G be a graph with n vertices. Then we have
\sqrt{\frac{M_1}{n}}\leq \lambda_1(A_{\alpha}(G))\leq \Delta. |
Lemma 2.3. [9] Let G be a graph with n vertices and m\geq 1 edges. Then, \lambda_i(Q(G)) = \lambda_i(A(\mathcal{L}(G)))+2 , i = 1, 2, \ldots, s , where s = \min\{n, m\} .Further, if m > n , we have \lambda_i(A(\mathcal{L}(G))) = -2 for i\geq n+1 , and if n > m , we have \lambda_i(Q(G)) = 0 for i\geq m+1 .
Lemma 2.4. [8] For any C_3 -free and C_4 -free graph G , A(G^2) = A^2(G)-L(G) .
Theorem 3.1. Let G be a graph with n vertices.
(i) If 0\leq \alpha < \frac{1}{2} , then
(1-\alpha) S_k(Q(G))+(2\alpha-1)S_k(D(G))\leq S_k(A_{\alpha}(G))\leq \alpha S_k(Q(G))+(1-2\alpha)S_k(A(G)) |
for 1\leq k \leq n .
(ii) If \frac{1}{2}\leq \alpha < 1 , then
\alpha S_k(Q(G))+(1-2\alpha)S_k(A(G))\leq S_k(A_{\alpha}(G))\leq (1-\alpha) S_k(Q(G))+(2\alpha-1)S_k(D(G)) |
for 1\leq k \leq n .
If G is r -regular, then the equality in the above inequalities must hold.
Proof. (i) Since A_{\alpha}(G) = \alpha Q(G)+(1-2\alpha)A(G) for 0\leq \alpha < \frac{1}{2} , by Lemma 2.1, we have
S_k(A_{\alpha}(G))\leq \alpha S_k(Q(G))+(1-2\alpha)S_k(A(G)). |
If 0\leq \alpha < \frac{1}{2} , then \frac{1}{2}\leq 1-\alpha \leq 1 . Note that A_{1-\alpha}(G) = \alpha Q(G)+(1-2\alpha)D(G) . Since A_{\alpha}(G)+A_{1-\alpha}(G) = Q(G) , by Lemma 2.1, we have
\begin{eqnarray*} S_{k}(A_{\alpha}(G)) & \geq & S_{k}(Q(G))-S_{k}(A_{1-\alpha}(G))\\ & \geq & S_{k}(Q(G))-\alpha S_{k}(Q(G))-(1-2\alpha)S_{k}(D(G))\\ & \geq & (1-\alpha) S_k(Q(G))+(2\alpha-1)S_k(D(G)). \end{eqnarray*} |
(ii) Since A_{\alpha}(G) = (1-\alpha) Q(G)+(2\alpha-1)D(G) for \frac{1}{2}\leq \alpha < 1 , by Lemma 2.1, we have
S_k(A_{\alpha}(G))\leq (1-\alpha) S_k(Q(G))+(2\alpha-1)S_k(D(G)). |
If \frac{1}{2}\leq \alpha \leq 1 , then 0 \leq 1-\alpha \leq \frac{1}{2} . Note that A_{1-\alpha}(G) = (1-\alpha) Q(G)+(2\alpha-1)A(G) . Since A_{\alpha}(G)+A_{1-\alpha}(G) = Q(G) , by Lemma 2.1, we have
\begin{eqnarray*} S_{k}(A_{\alpha}(G)) & \geq & S_{k}(Q(G))-S_{k}(A_{1-\alpha}(G))\\ & \geq & S_{k}(Q(G))-(1-\alpha) S_{k}(Q(G))-(2\alpha-1)S_{k}(A(G))\\ & \geq & \alpha S_k(Q(G))+(1-2\alpha)S_k(A(G)). \end{eqnarray*} |
If G is r -regular, from [24], we have S_k(A_{\alpha}(G)) = \alpha k r+(1-\alpha)S_k(A(G)) and S_k(Q(G)) = kr+S_k(A(G)) . Thus, the two above equations hold. This completes the proof.
It is well known that the spectrum of any symmetric matrix majorizes its main diagonal, that is, S_k(Q(G))\geq S_k(D(G)) , and by Theorem 3.1, we have the following corollary.
Corollary 3.1. Let G be a graph with n vertices. If \frac{1}{2}\leq \alpha < 1 , then
S_k(A_{\alpha}(G))\leq \alpha S_k(Q(G)) |
for 1\leq k \leq n .
From Corollary 3.1 and Conjecture 1.1, we give a new conjecture.
Conjecture 3.1. Let G be a graph with n vertices and e(G) edges. If \frac{1}{2}\leq \alpha < 1 , then
S_k(A_{\alpha}(G))\leq \alpha e(G)+\alpha \binom{k+1}{2} |
for 1\leq k \leq n .
Theorem 3.2. Let G be a graph with n vertices and m edges. If 0\leq \alpha < 1 , then
\begin{align} S_k(A_{\alpha}(G))\leq \frac{(n-k)\lambda_1(A_{\alpha}(G))+2\alpha(k-1)m+\sqrt{(k-1)(n-k)\Upsilon}}{n-1}, \end{align} | (3.1) |
where \Upsilon = (n-1)(\alpha^2M_1+2m(1-\alpha)^2-\lambda_1^2(A_{\alpha}(G)))-(2\alpha m-\lambda_1(A_{\alpha}(G)))^2 . The equality holds for k = 1 . Moreover, the equality holds if and only if \lambda_2(A_{\alpha}(G)) = \cdots = \lambda_k(A_{\alpha}(G)) and \lambda_{k+1}(A_{\alpha}(G)) = \cdots = \lambda_n(A_{\alpha}(G)) for k\geq 2 .
Proof. Let \lambda_i(A_{\alpha}(G)) = \lambda_i and S_k(A_{\alpha}(G)) = S_k for i = 1, 2, \ldots, n . Since \sum\limits_{i = 1}^{n}\lambda_i = 2\alpha m , \sum\limits_{i = 1}^{n}\lambda_i^2 = \alpha^2M_1+2m(1-\alpha)^2 , and by the Cauchy-Schwarz inequality, we have
\begin{eqnarray*} S_k & \leq & \lambda_1+\sqrt{(k-1)(\lambda_2^2+\cdots+\lambda_k^2)}\\ & = & \lambda_1+\sqrt{(k-1)\left(\alpha^2M_1+2m(1-\alpha)^2-\lambda_1^2-\sum\limits_{i = k+1}^{n}\lambda_i^2\right)}\\ & \leq & \lambda_1+\sqrt{(k-1)\left(\alpha^2M_1+2m(1-\alpha)^2-\lambda_1^2-\frac{1}{n-k}(2\alpha m-S_k)^2\right)} \end{eqnarray*} |
with equality if and only if \lambda_2 = \cdots = \lambda_k and \lambda_{k+1} = \cdots = \lambda_n for k\geq 2 . Thus,
(n-k)(S_k-\lambda_1)^2+(k-1)(S_k-2\alpha m)^2\leq (k-1)(n-k)(\alpha^2M_1+2m(1-\alpha)^2-\lambda_1^2), |
that is,
S_k\leq \frac{(n-k)\lambda_1+2\alpha(k-1)m+\sqrt{(k-1)(n-k)\Upsilon}}{n-1}, |
where
\begin{eqnarray*} \Upsilon & = & (n-1)(\alpha^2M_1+2m(1-\alpha)^2-\lambda_1^2)-(2\alpha m-\lambda_1)^2\\ & = & (n-1)\sum\limits_{i = 2}^{n}\lambda_i^2-\left(\sum\limits_{i = 2}^{n}\lambda_i\right)^2\\ & \geq & 0. \end{eqnarray*} |
This completes the proof.
Remark 3.1. If the equality in (3.1) holds, then this implies that G has at most three distinct A_{\alpha} -eigenvalues. If G is a connected graph with two distinct A_{\alpha} -eigenvalues, then G\cong K_n . Clearly, the equality in (3.1) holds for K_n . If G is a graph with three distinct A_{\alpha} -eigenvalues, then we refer to [30].
Corollary 3.2. Let G be a graph with n vertices and m edges. If p is the positive inertia index of A(G) , then
\begin{align} \mathcal{E}(G)\leq \frac{2(n-p)\lambda_1(A(G))+2\sqrt{(p-1)(n-p)[2(n-1)m-n\lambda_1^2(A(G))]}}{n-1}. \end{align} | (3.2) |
The equality holds for K_n and K_{s, \, t} ( s+t = n ).
Remark 3.2. There are many graphs such that the equality in (3.2) holds, we may refer to [10,28].
Let \alpha_0 be the smallest \alpha such that A_{\alpha}(G) is positive semidefinite for \alpha_0\leq \alpha \leq 1 . Recently, Nikiforov et al. [27] and Brondani et al. [4] found \alpha_0 for some special classes of graphs.
Theorem 3.3. Let 0\leq \alpha < \alpha_0 and G be a graph with n vertices and m edges.Then we have
S_{k}(A_{\alpha}(G))\leq 2\alpha m +\frac{1}{2}(2m(1-\alpha)^2+\alpha^2M_1)\sqrt{\frac{n(n-k)}{M_1}} |
with equality if and only if |\lambda_{k+1}(A_{\alpha}(G))| = \cdots = |\lambda_{n}(A_{\alpha}(G))| = \frac{2m(1-\alpha)^2+\alpha^2M_1}{2}\sqrt{\frac{n}{(n-k)M_1}} .
Proof. By Lemma 2.2, we have \lambda_1(A_{\alpha}(G))\geq \sqrt{\frac{M_1}{n}} . We assume that
\sum\limits_{i = 1}^{n-k}\lambda_{n-i+1}^2(A_{\alpha}(G)) > \frac{n(2m(1-\alpha)^2+\alpha^2M_1)^2}{4M_1}, |
in which case
\begin{eqnarray*} 2m(1-\alpha)^2+\alpha^2M_1 & = & \sum\limits_{i = 1}^{k}\lambda_{i}^2(A_{\alpha}(G))+\sum\limits_{i = 1}^{n-k}\lambda_{n-i+1}^2(A_{\alpha}(G))\\ & \geq & \lambda_1^2(A_{\alpha}(G))+\sum\limits_{i = 1}^{n-k}\lambda_{n-i+1}^2(A_{\alpha}(G))\\ & > & \frac{M_1}{n}+\frac{n(2m(1-\alpha)^2+\alpha^2M_1)^2}{4M_1}. \end{eqnarray*} |
This implies that
\left(\sqrt{\frac{M_1}{n}}-\frac{1}{2}(2m(1-\alpha)^2+\alpha^2M_1)\sqrt{\frac{n}{M_1}}\right)^2 < 0, |
which is a contradiction. Thus,
\sum\limits_{i = 1}^{n-k}\lambda_{n-i+1}^2(A_{\alpha}(G))\leq \frac{n(2m(1-\alpha)^2+\alpha^2M_1)^2}{4M_1}. |
By the Cauchy-Schwarz inequality, we have
\begin{eqnarray*} S_{k}(A_{\alpha}(G))& = & 2\alpha m-\sum\limits_{i = 1}^{n-k}\lambda_{n-i+1}(A_{\alpha}(G))\\ & \leq & 2\alpha m+\sqrt{(n-k)\sum\limits_{i = 1}^{n-k}\lambda_{n-i+1}^2(A_{\alpha}(G))}\\ & \leq & 2\alpha m +\frac{1}{2}(2m(1-\alpha)^2+\alpha^2M_1)\sqrt{\frac{n(n-k)}{M_1}} \end{eqnarray*} |
with equality if and only if |\lambda_{k+1}(A_{\alpha}(G))| = \cdots = |\lambda_{n}(A_{\alpha}(G))| = \frac{2m(1-\alpha)^2+\alpha^2M_1}{2}\sqrt{\frac{n}{(n-k)M_1}} . This completes the proof.
Corollary 3.3. Let G be a graph with n vertices and m edges. If p is the positive inertia index of A(G) , then
\mathcal{E}(G)\leq 2m\sqrt{\frac{n(n-p)}{M_1}} |
with equality if and only if |\lambda_{p+1}(A(G))| = \cdots = |\lambda_{n}(A(G))| = m\sqrt{\frac{n}{(n-p)M_1}} .
Let M be a real symmetric partitioned matrix of order n described in the following block form:
\begin{pmatrix} M_{11} & \cdots & M_{1t} \\ \vdots & \ddots & \vdots \\ M_{t1} & \cdots & M_{tt} \end{pmatrix}, |
where the diagonal blocks M_{ii} are n_i\times n_i matrices for any i \in \{1, 2, \ldots, t\} and n = n_1+\cdots+n_t . For any i, j \in \{1, 2, \ldots, t\} , let b_{ij} denote the average row sum of M_{ij} , i.e., b_{ij} is the sum of all entries in M_{ij} divided by the number of rows. Then, \mathcal{B}(M) = (b_{ij}) (or denoted simply by \mathcal{B} ) is called the quotient matrix of M .
Lemma 3.1. [16] Let M be a symmetric partitioned matrix of order n with eigenvalues \xi_1\geq \xi_2 \geq \cdots \geq \xi_n , and let \mathcal{B} be its quotient matrix with eigenvalues \eta_1\geq \eta_2 \geq \cdots \geq \eta_r and n > r . Then, \xi_i \geq \eta_i \geq \xi_{n-r+i} for i = 1, 2, \ldots, r .
Let \mathcal{B} be the quotient matrix of A_{\alpha}(G) corresponding to the partition for the color classes of G . Then, the following corollary is immediate.
Corollary 3.4. Let G be a connected graph with n vertices, m edges, chromatic number \chi and independence number \theta . If 0\leq \alpha < 1 , then
S_{\chi}(A_{\alpha}(G))\geq \frac{2\alpha m}{\theta}. |
Theorem 3.4. Let 0\leq \alpha < 1 and G be a connected graph with n vertices and m edges. For any given vertices subset U = \{u_1, \ldots, u_{k-1}\} with 1\leq k \leq n ,
S_{k}(A_{\alpha}(G)) \geq \left(\alpha-\frac{1}{n-k+1}\right)\sum\limits_{u\in U}d_u+\frac{2m-(1-\alpha)|\partial(U, V(G)\backslash U)|}{n-k+1}, |
where \partial(U, V(G)\backslash U) is the set of edges which connect vertices in U with vertices in V(G)\backslash U .
Proof. If 2\leq k \leq n , then the quotient matrix of A_{\alpha}(G) corresponding to the partition V(G) = (\bigcup\limits_{x\in U}\{x\})\cup (V(G)\backslash U) of G is
\mathcal{B}(G) = \left[ \begin{array}{ccc|c} & & &b_{1,k}\\ & A_{\alpha}(U) & & \vdots\\ & & & b_{k-1,k}\\ \hline b_{k,1} &\cdots &b_{k,k-1} &b_{k,k}\\ \end{array} \right], |
where A_{\alpha}(U) is the principal submatrix of A_{\alpha}(G) . By Lemma 3.1, we have
\begin{eqnarray*} S_{k}(A_{\alpha}(G)) & \geq & S_{k}(\mathcal{B}(G))\\ & = & tr(A_{\alpha}(U))+b_{k,k}\\ & = & \alpha\sum\limits_{u\in U}d_u+\frac{2m-\sum\limits_{u\in U}d_u-(1-\alpha)|\partial(U, V(G)\backslash U)|}{n-k+1}\\ & = & \left(\alpha-\frac{1}{n-k+1}\right)\sum\limits_{u\in U}d_u+\frac{2m-(1-\alpha)|\partial(U, V(G)\backslash U)|}{n-k+1}. \end{eqnarray*} |
If k = 1 , then U is an empty set. Thus, \sum\limits_{u\in U}d_u = 0 and |\partial(U, V(G)\backslash U)| = 0 . Taking X = (1, \ldots, 1)^T , by Rayleigh's principle, we have
S_1(A_{\alpha}(G)) = \lambda_1(A_{\alpha}(G)) \geq \frac{2m}{n}. |
Therefore, the above inequality still holds for k = 1 . This completes the proof.
Corollary 3.5. Let G be a connected graph with n vertices, m edges and the positive inertia index p . Then we have
\mathcal{E}(G) \geq \frac{4m-2|\partial(U, V(G)\backslash U)|}{n-p+1}-\frac{2\sum\limits_{u\in U}d_u}{n-p+1}. |
Theorem 4.1. Let G be a graph with n vertices and m\geq 1 edges. Then we have
S_{k}(A_{\alpha}(\mathcal{L}(G)))\leq 2k(\alpha \Delta-1)+(1-\alpha)S_{k}(Q(G)) |
for 1\leq k \leq s , where s = \min\{n, m\} . If m > n , then
S_{k}(A_{\alpha}(\mathcal{L}(G)))\leq 2\alpha k(\Delta-1)+2(1-\alpha)(m-k) |
for n+1\leq k \leq m .
Proof. If a vertex w is in one-to-one correspondence with the edge uv of the graph G , then d_{\mathcal{L}(G)}(w) = d_G(u)+d_G(v)-2 . By Lemmas 2.1 and 2.3, we have
\begin{eqnarray*} S_{k}(A_{\alpha}(\mathcal{L}(G))) & \leq & \alpha S_{k}(D(\mathcal{L}(G)))+(1-\alpha)S_{k}(A(\mathcal{L}(G)))\\ & \leq & \alpha k(2\Delta-2)+(1-\alpha)(S_{k}(Q(G))-2k)\\ & = & 2k(\alpha \Delta-1)+(1-\alpha)S_{k}(Q(G)) \end{eqnarray*} |
for 1\leq k \leq s , where s = \min\{n, m\} . If m > n , then we have
S_{k}(A_{\alpha}(\mathcal{L}(G)))\leq \alpha k(2\Delta-2)+(1-\alpha)(2m-2n-2(k-n)) = 2\alpha k(\Delta-1)+2(1-\alpha)(m-k) |
for n+1\leq k \leq m . This completes the proof.
By the special cases of Conjecture 1.2 and Theorem 4.1, we have the following corollaries.
Corollary 4.1. If T is a tree with n vertices, then S_{k}(A_{\alpha}(\mathcal{L}(T)))\leq 2k\alpha(\Delta-1)+(1-\alpha)(n-2) for 1\leq k \leq n-1 . If U is a unicyclic graph with n vertices, then S_{k}(A_{\alpha}(\mathcal{L}(U)))\leq 2k(\alpha \Delta-1)+(1-\alpha)(n+\frac{k^2+k}{2}) for 1\leq k \leq n . If B is a bicyclic graph with n vertices, then S_{k}(A_{\alpha}(\mathcal{L}(B)))\leq 2k(\alpha \Delta-1)+(1-\alpha)(n+1+\frac{k^2+k}{2}) for 1\leq k \leq n .
Corollary 4.2. If T is a tree with n vertices, then \mathcal{E}(\mathcal{L}(T))\leq 2(n-2) . If U is a unicyclic graph with n vertices, then \mathcal{E}(\mathcal{L}(U)))\leq 2n+p^2-3p . If B is a bicyclic graph with n vertices, then \mathcal{E}(\mathcal{L}(B))\leq 2n+p^2-3p+2 .
Theorem 4.2. Let G be a C_3 -free and C_4 -free graph with n vertices, m edges and the algebraic connectivity a(G) . If 0\leq \alpha \leq 1 , then
S_{k}(A_{\alpha}(G^2))\leq \alpha(M_1(G)-(n-k)\delta^2(G))+(1-\alpha)(k\Delta^2(G)-(k-1)a(G)). |
Proof. By Lemma 2.2, we have
\begin{eqnarray*} S_{k}(A^2(G)) & = & \lambda_1(A^2(G))+\lambda_2(A^2(G))+\cdots+\lambda_k(A^2(G))\\ & \leq & k\lambda_1^2(A(G))\\ & \leq & k\Delta^2(G). \end{eqnarray*} |
Since \sum\limits_{u \in V(G^2)}d_u = M_1(G) , by Lemmas 2.1 and 2.4, we have
\begin{eqnarray*} S_{k}(A_{\alpha}(G^2)) & \leq & \alpha S_{k}(D(G^2))+(1-\alpha)S_{k}(A(G^2))\\ & \leq & \alpha S_{k}(D(G^2))+(1-\alpha)(S_{k}(A^2(G))+S_{k}(-L(G)))\\ & \leq & \alpha(M_1(G)-(n-k)\delta^2(G)) +(1-\alpha)(k\Delta^2(G)-(k-1)a(G)). \end{eqnarray*} |
This completes the proof.
Corollary 4.3. Let G be a C_3 -free and C_4 -free graph with n vertices, m edges and the algebraic connectivity a(G) . If p is the positive inertia index of A(G^2) , then
\mathcal{E}(G^2)\leq 2p\Delta^2(G)-2(p-1)a(G). |
In this paper, we study the sum of the k largest eigenvalues of the A_{\alpha} -matrix of a graph, which not only extends the results of the sum of the k largest eigenvalues of the adjacency matrix and signless Laplacian matrix, but it also gives new bounds on graph energy.
This work was supported by the National Natural Science Foundation of China (No. 12071411).
The authors declare no conflicts of interest.
[1] |
N. Abreu, D. M. Cardoso, I. Gutman, E. A. Martins, M. Robbiano, Bounds for the signless Laplacian energy, Linear Algebra Appl., 435 (2011), 2365–2374. https://doi.org/10.1016/j.laa.2010.10.021 doi: 10.1016/j.laa.2010.10.021
![]() |
[2] |
F. Ashraf, G. R. Omidi, B. Tayfeh-Rezaie, On the sum of signless Laplacian eigenvalues of a graph, Linear Algebra Appl., 438 (2013), 4539–4546. https://doi.org/10.1016/j.laa.2013.01.023 doi: 10.1016/j.laa.2013.01.023
![]() |
[3] |
H. Bai, The Grone-Merris conjecture, Trans. Amer. Math. Soc., 363 (2011), 4463–4474. https://doi.org/10.1090/S0002-9947-2011-05393-6 doi: 10.1090/S0002-9947-2011-05393-6
![]() |
[4] |
A. E. Brondani, F. A. M. França, C. S. Oliveira, Positive semidefiniteness of A_{\alpha}(G) on some families of graphs, Discrete Appl. Math., 2020. https://doi.org/10.1016/j.dam.2020.12.007 doi: 10.1016/j.dam.2020.12.007
![]() |
[5] | A. E. Brouwer, W. H. Haemers, Spectra of graphs, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-1939-6 |
[6] | J. A. Bondy, U. S. R. Murty, Graph theory, London: Springer, 2008. |
[7] |
X. D. Chen, G. L. Hao, D. Q. Jin, J. J. Li, Note on a conjecture for the sum of signless Laplacian eigenvalues, Czechoslovak Math. J., 68 (2018), 601–610. https://doi.org/10.21136/CMJ.2018.0548-16 doi: 10.21136/CMJ.2018.0548-16
![]() |
[8] |
Y. Y. Chen, D. Li, Z. W. Wang, J. X. Meng, A_{\alpha}-spectral radius of the second power of a graph, Appl. Math. Comput., 359 (2019), 418–425. https://doi.org/10.1016/j.amc.2019.04.077 doi: 10.1016/j.amc.2019.04.077
![]() |
[9] |
D. Cvetković, S. K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, Ⅰ, Publ. Inst. Math. (Beograd) (N. S.), 85 (2009), 19–33. https://doi.org/10.2298/PIM0999019C doi: 10.2298/PIM0999019C
![]() |
[10] |
E. R. van Dam, Nonregular graphs with three eigenvalues, J. Combin. Theory Ser. B, 73 (1998), 101–118. https://doi.org/10.1006/jctb.1998.1815 doi: 10.1006/jctb.1998.1815
![]() |
[11] |
K. C. Das, S. A. Mojallal, S. W. Sun, On the sum of the k largest eigenvalues of graphs and maximal energy of bipartite graphs, Linear Algebra Appl., 569 (2019), 175–194. https://doi.org/10.1016/j.laa.2019.01.016 doi: 10.1016/j.laa.2019.01.016
![]() |
[12] |
K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations Ⅰ, Proc. Natl. Acad. Sci. USA, 35 (1949), 652–655. https://doi.org/10.1073/pnas.35.11.652 doi: 10.1073/pnas.35.11.652
![]() |
[13] |
H. A. Ganie, B. A. Chat, S. Pirzada, Signless Laplacian energy of a graph and energy of a line graph, Linear Algebra Appl., 544 (2018), 306–324. https://doi.org/10.1016/j.laa.2018.01.021 doi: 10.1016/j.laa.2018.01.021
![]() |
[14] |
R. Grone, R. Merris, The Laplacian spectrum of a graph Ⅱ, SIAM J. Discrete Math., 7 (1994), 221–229. https://doi.org/10.1137/S0895480191222653 doi: 10.1137/S0895480191222653
![]() |
[15] |
H. Y. Guo, B. Zhou, On the \alpha-spectral radius of graphs, Appl. Anal. Discrete Math., 14 (2020), 431–458. https://doi.org/10.2298/AADM180210022G doi: 10.2298/AADM180210022G
![]() |
[16] |
W. H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl., 226–228 (1995), 593–616. https://doi.org/10.1016/0024-3795(95)00199-2 doi: 10.1016/0024-3795(95)00199-2
![]() |
[17] |
W. H. Haemers, A. Mohammadian, B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs, Linear Algebra Appl., 432 (2010), 2214–2221. https://doi.org/10.1016/j.laa.2009.03.038 doi: 10.1016/j.laa.2009.03.038
![]() |
[18] |
S. T. Liu, K. C. Das, S. W. Sun, J. L. Shu, On the least eigenvalue of A_{\alpha}-matrix of graphs, Linear Algebra Appl., 586 (2020), 347–376. https://doi.org/10.1016/j.laa.2019.10.025 doi: 10.1016/j.laa.2019.10.025
![]() |
[19] |
H. Q. Lin, X. G. Liu, J. Xue, Graphs determined by their A_{\alpha}-spectra, Discrete Math., 342 (2019), 441–450. https://doi.org/10.1016/j.disc.2018.10.006 doi: 10.1016/j.disc.2018.10.006
![]() |
[20] |
Z. Lin, L. Y. Miao, S. G. Guo, Bounds on the A_{\alpha}-spread of a graph, Electron. J. Linear Algebra, 36 (2020), 214–227. https://doi.org/10.13001/ela.2020.5137 doi: 10.13001/ela.2020.5137
![]() |
[21] |
Z. Lin, L. Y. Miao, S. G. Guo, The A_{\alpha}-spread of a graph, Linear Algebra Appl., 606 (2020), 1–22. https://doi.org/10.1016/j.laa.2020.07.022 doi: 10.1016/j.laa.2020.07.022
![]() |
[22] | X. L. Li, Y. T. Shi, I. Gutman, Graph energy, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-4220-2 |
[23] |
B. Mohar, On the sum of k largest eigenvalues of graphs and symmetric matrices, J. Combin. Theory Ser. B, 99 (2009), 306–313. https://doi.org/10.1016/j.jctb.2008.07.001 doi: 10.1016/j.jctb.2008.07.001
![]() |
[24] |
V. Nikiforov, Merging the A- and Q-spectral theories, Appl. Anal. Discrete Math., 11 (2017), 81–107. https://doi.org/10.2298/AADM1701081N doi: 10.2298/AADM1701081N
![]() |
[25] |
V. Nikiforov, On the sum of k largest singular values of graphs and matrices, Linear Algebra Appl., 435 (2011), 2394–2401. https://doi.org/10.1016/j.laa.2010.08.014 doi: 10.1016/j.laa.2010.08.014
![]() |
[26] |
V. Nikiforov, O. Rojo, On the \alpha-index of graphs with pendent paths, Linear Algebra Appl., 550 (2018), 87–104. https://doi.org/10.1016/j.laa.2018.03.036 doi: 10.1016/j.laa.2018.03.036
![]() |
[27] |
V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of A_{\alpha}(G), Linear Algebra Appl., 519 (2017), 156–163. https://doi.org/10.1016/j.laa.2016.12.042 doi: 10.1016/j.laa.2016.12.042
![]() |
[28] |
P. Rowlinson, A problem concerning graphs with just three distinct eigenvalues, Linear Algebra Appl., 592 (2020), 260–269. https://doi.org/10.1016/j.laa.2020.01.024 doi: 10.1016/j.laa.2020.01.024
![]() |
[29] |
G. X. Tian, Y. X. Chen, S. Y. Cui, The extremal \alpha-index of graphs with no 4-cycle and 5-cycle, Linear Algebra Appl., 619 (2021), 160–175. https://doi.org/10.1016/j.laa.2021.02.022 doi: 10.1016/j.laa.2021.02.022
![]() |
[30] |
M. A. Tahir, X. D. Zhang, Graphs with three distinct \alpha-eigenvalues, Acta Math. Vietnam., 43 (2018), 649–659. https://doi.org/10.1007/s40306-018-0275-y doi: 10.1007/s40306-018-0275-y
![]() |
[31] |
S. Z. Wang, Y. F. Huang, B. L. Liu, On a conjecture for the sum of Laplacian eigenvalues, Math. Comput. Model., 56 (2012), 60–68. https://doi.org/10.1016/j.mcm.2011.12.047 doi: 10.1016/j.mcm.2011.12.047
![]() |
[32] |
J. S. Yang, L. H. You, On a conjecture for the signless Laplacian eigenvalues, Linear Algebra Appl., 446 (2014), 115–132. https://doi.org/10.1016/j.laa.2013.12.032 doi: 10.1016/j.laa.2013.12.032
![]() |