
In this research, the ˉq-homotopy analysis transform method (ˉq-HATM) is employed to identify fractional-order Whitham–Broer–Kaup equation (WBKE) solutions. The WBKE is extensively employed to examine tsunami waves. With the aid of Caputo and Atangana-Baleanu fractional derivative operators, to obtain the analytical findings of WBKE, the predicted algorithm employs a combination of ˉq-HAM and the Aboodh transform. The fractional operators are applied in this work to show how important they are in generalizing the frameworks connected with kernels of singularity and non-singularity. To demonstrate the applicability of the suggested methodology, various relevant problems are solved. Graphical and tabular results are used to display and assess the findings of the suggested approach. In addition, the findings of our recommended approach were analyzed in relation to existing methods. The projected approach has fewer processing requirements and a better accuracy rate. Ultimately, the obtained results reveal that the improved strategy is both trustworthy and meticulous when it comes to assessing the influence of nonlinear systems of both integer and fractional order.
Citation: Maysaa Al Qurashi, Saima Rashid, Sobia Sultana, Fahd Jarad, Abdullah M. Alsharif. Fractional-order partial differential equations describing propagation of shallow water waves depending on power and Mittag-Leffler memory[J]. AIMS Mathematics, 2022, 7(7): 12587-12619. doi: 10.3934/math.2022697
[1] | Mudassir Shams, Nasreen Kausar, Serkan Araci, Georgia Irina Oros . Numerical scheme for estimating all roots of non-linear equations with applications. AIMS Mathematics, 2023, 8(10): 23603-23620. doi: 10.3934/math.20231200 |
[2] | Asifa Tassaddiq, Muhammad Tanveer, Muhammad Arshad, Rabab Alharbi, Ruhaila Md Kasmani . Fractal generation and analysis using modified fixed-point iteration. AIMS Mathematics, 2025, 10(4): 9462-9492. doi: 10.3934/math.2025437 |
[3] | Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048 |
[4] | Aleksa Srdanov . Fractal form of the partition functions p (n). AIMS Mathematics, 2020, 5(3): 2539-2568. doi: 10.3934/math.2020167 |
[5] | Beatriz Campos, Alicia Cordero, Juan R. Torregrosa, Pura Vindel . Dynamical analysis of an iterative method with memory on a family of third-degree polynomials. AIMS Mathematics, 2022, 7(4): 6445-6466. doi: 10.3934/math.2022359 |
[6] | Mudassir Shams, Nasreen Kausar, Serkan Araci, Liang Kong . On the stability analysis of numerical schemes for solving non-linear polynomials arises in engineering problems. AIMS Mathematics, 2024, 9(4): 8885-8903. doi: 10.3934/math.2024433 |
[7] | Fan Sha, Jianbing Zhang . Randomized symmetric Gauss-Seidel method for solving linear least squares problems. AIMS Mathematics, 2024, 9(7): 17453-17463. doi: 10.3934/math.2024848 |
[8] | Sima Karamseraji, Shokrollah Ziari, Reza Ezzati . Approximate solution of nonlinear fuzzy Fredholm integral equations using bivariate Bernstein polynomials with error estimation. AIMS Mathematics, 2022, 7(4): 7234-7256. doi: 10.3934/math.2022404 |
[9] | Chang Phang, Abdulnasir Isah, Yoke Teng Toh . Poly-Genocchi polynomials and its applications. AIMS Mathematics, 2021, 6(8): 8221-8238. doi: 10.3934/math.2021476 |
[10] | Muhammad Tanveer, Imran Ahmed, Ali Raza, Sumaira Nawaz, Yu-Pei Lv . New escape conditions with general complex polynomial for fractals via new fixed point iteration. AIMS Mathematics, 2021, 6(6): 5563-5580. doi: 10.3934/math.2021329 |
In this research, the ˉq-homotopy analysis transform method (ˉq-HATM) is employed to identify fractional-order Whitham–Broer–Kaup equation (WBKE) solutions. The WBKE is extensively employed to examine tsunami waves. With the aid of Caputo and Atangana-Baleanu fractional derivative operators, to obtain the analytical findings of WBKE, the predicted algorithm employs a combination of ˉq-HAM and the Aboodh transform. The fractional operators are applied in this work to show how important they are in generalizing the frameworks connected with kernels of singularity and non-singularity. To demonstrate the applicability of the suggested methodology, various relevant problems are solved. Graphical and tabular results are used to display and assess the findings of the suggested approach. In addition, the findings of our recommended approach were analyzed in relation to existing methods. The projected approach has fewer processing requirements and a better accuracy rate. Ultimately, the obtained results reveal that the improved strategy is both trustworthy and meticulous when it comes to assessing the influence of nonlinear systems of both integer and fractional order.
Many theoretical and applied problems in different fields of study, such as physical sciences, biomedical engineering, chemistry, biological and chemical sciences, computer sciences, finance, statistics, economics and applied mathematical sciences contain symmetry, which may result a nonlinear polynomial equation
ϑ(ϰ)=0, | (1.1) |
with m distinct roots ℘1,...,℘m. There are numerous numerical iterative methods for computing the roots of polynomial equations. These methods can be classified into two types: numerical iterative methods that approximate a single root at a time and iterative numerical methods that approximate all of the roots of a nonlinear polynomial equation simultaneously.
The Newton-Raphson method given as
ϰ(i+1)=ϰ(i)−ϑ(ϰ(i))ϑ′(ϰ(i)), | (1.2) |
is one the most commonly used numerical methods to approximate a single root of Eq (1.1) at a time, thanks to its local quadratic convergence. Iterative methods, such as Eq (1.2), have a significant drawback in that they require derivative evaluation at each iteration, which incurs a significant computational cost, and diverge if ϑ′(ϰ(i))=0 or the initial guess is far from the root. See, for example, the work of Akram et al.[1], Cordero et al.[2], Agarwal et al. [3], Chicharro et al. [4], Behl et al.[5], Chun et al. [6], Zafar et al.[7] and many others). Simultaneous methods having global convergence property, are stable and applicable for parallel execution as well. Convergence analysis, computational efficiency and parallel implementation of simultaneous iterative techniques have been studied by McNamee [8], Nedzhibov [9], Proinov et al. [10], Mir et al. [11], Cholakov [12], Proinov and Vasileva [13], Proinov and Petkova [14], Sanchez et al.[15], Ivanov [16], Kanno et al.[17] as well as the references cited therein.
Weierstrass method (WDM)[18], which approximates all the roots of Eq (1.1) simultaneously, given by
ϰ(i+1)t=ϰ(i)t−ϑ(ϰ(i)t)mΠr≠tr=1(ϰ(i)t−ϰ(i)r), | (1.3) |
is one of the most famous iterative techniques used in comparison to Newton Raphson. The term ϑ(ϰ(i)t)mΠr≠tr=1(ϰ(i)t−ϰ(i)r) is called Weierstrass correction. The Weierstrass method, which simultaneously approximates all roots of Eq (1.1), has local quadratic convergence. Weierstrass introduced the method in 1891, and it was rediscovered by Kerner [19], Durand [20], Dochev [21], and Presic [22]. Dochev demonstrated the first local quadratic convergence of the Weierstrass iterative technique in 1962.
Later on, in 2015, Proinov [23] presented the general convergence theorem for the iterative process and discussed the use of the Weierstrass root approximating technique. In 2016, Nedzibove [24] developed a modified version of Eq (1.3), and Marcheva et al.[25] presented the local convergence theorem of the modified Weierstrass method in 2020. Song et al.[26] created and verified three new derivative-free simultaneous iterative Weierstrass computational methods for calculating all polynomial problem roots.
The goal of this paper is to develop and analyze the derivative-free family of Weierstrass-type methods with accelerated convergence in order to find the roots of the above problem, which should have better convergence behavior than the Weierstrass method. We analyze the convergence behavior of the proposed method by computing CPU-time, log of residual errors, computational errors, and drawing dynamical planes while solving numerical test problems. Several graphs are plotted to demonstrate that the newly constructed method outperforms existing methods in the literature in efficiency and accuracy.
First, we present the third order family of the single root finding method (MS), and then we generalize this scheme to simultaneously find all the roots of Eq (1.1):
ϰ(i+1)=ϰ(i)−((3α−1)ϑ′(ϰ(i))+(1−α)ϑ′(y(i))(2α−1)ϑ′(ϰ(i))+ϑ′(y(i)))ϑ(ϰ(i))ϑ′(ϰ(i)),i=0,1,2,..., | (2.1) |
where y(i)=ϰ(i)−ϑ(ϰ(i))ϑ′(ϰ(i)) and α∈ℜ.
The convergence theorem that follows validates our assumption.
Theorem 1. Let ¯−T be an open interval and ℘∈¯−T indicate the precise root of a function that is sufficiently differentiable for ϑ:¯−T⊆ℜ⟶ ℜ in an open interval ¯−T. The following error equation is satisfied if the convergence order of the family of iterative numerical procedures is three and ϰ(0) is close to ℘:
ς(i+1)=(−ℑ22α+2ℑ22+12ℑ3)(ς(i))3+O((ς(i))4), | (2.2) |
where ℑm=ϑm(℘)m!ϑ′(℘),m≥2.
Proof. Let ℘ be a single exact-root of ϑ and ϰ(i)=℘+ς(i), where e(i) is the error at ith iterative step. The following is the result of expanding ϑ(ϰ(i)) around ϰ=℘, using Taylor's series with ϑ(℘)=0:
ϑ(ϰ(i))=ϑ′(℘)(ς(i)+ℑ2(ς(i))2+ℑ3(ς(i))3+...), | (2.3) |
and
ϑ′(ϰ(i))=ϑ′(℘)(1+2ℑ2ς(i)+3ℑ3(ς(i))2+...). | (2.4) |
Dividing (2.3) by (2.4), we have:
ϑ(ϰ(i))ϑ′(ϰ(i))=ς(i)−ℑ2(ς(r))2+(2ℑ2+2ℑ3)(ς(i))3+..., | (2.5) |
and
y(i)=℘+ℑ2(ς(i))2+(−2ℑ22+2ℑ3)(ς(i))3+..., |
ϑ′(y(i))=ϑ′(℘)(1+2ℑ22(ς(i))2+2(−2ℑ22+2ℑ3)(ς(i))3+...). |
Using ϑ′(y(i)) and ϑ′(u(i)) in the 2nd-step of (2.1), we have:
((3α−1)ϑ′(ϰ(i))+(1−α)ϑ′(y(i))(2α−1)ϑ′(ϰ(i))+ϑ′(y(i)))ϑ(ϰ(i))ϑ′(ϰ(i))=e(i)+(ℑ22α−12ℑ3−2ℑ22)(ς(i))3+... | (2.6) |
Thus,
ϰ(i+1)=ξ+(−ℑ22α+12ℑ3+2ℑ22)(ς(i))3+O((ς(i))4), |
and it becomes
ς(i+1)=(−ℑ22α+2ℑ22+12ℑ3)(ς(r))3+O((ς(i))4). | (2.7) |
Hence the theorem is proved.
Now, we convert iterative method (2.1) to simultaneous method by using Weierstrass correction [8] given by
Δ(ϰ(i)t)=ϑ(ϰ(i)t)mΠr≠tr=1(ϰ(i)t−ϰ(i)r),(t,r=1,2,3,...,m) |
as follows:
ϰ(i+1)t=ϰ(i)t−ϑ(ϰ(i)t)mΠr≠tr=1(ϰ(i)t−ϰ(i)r)((3α−1)mΠr≠tr=1(ϰ(i)t−ϰ(i)r)+(1−α)mΠr≠tr=1(y(i)t−y(i)r)mΠr≠tr=1(y(i)t−y(i)r)+(2α−1)mΠr≠tr=1(ϰ(i)t−ϰ(i)r)), | (2.8) |
where y(i)t=ϰ(i)t−ϑ(ϰ(i)t)mΠr≠tr=1(ϰ(i)t−ˆϰ(i)r),(t,r=1,2,3,...,n) and ˆϰ(i)r is a modified two step Steffensen-type [27] fourth-order convergent method, i.e., ˆϰ(i)r=y(i)r−ϑ(y(i)r)ϑ[ϰ(i)r,y(i)r]+ϑ[y(i)r,t(i)r]−ϑ[ϰ(i)r,t(i)r]+α(y(i)r−ϰ(i)r)(y(i)r−t(i)r), y(i)r=ϰ(i)r−ϑ(ϰ(i)r)ϑ[ϰ(i)r,t(i)r],t(i)r=ϰ(i)r+ϑ(ϰ(i)r), α∈ℜ. In this case, ϑ[.,.] is the divided difference of order one and two, respectively.
Remark 1. The family of derivative-free methods (2.8) determines all distinct roots of (1.1) simultaneously and is abbreviated as MM.
This section discusses MM convergence analysis.
Theorem 2. Let ℘1,℘2,...,℘m be m simple roots of (1.1). If ϰ(0)1, ϰ(0)2,...,ϰ(0)m are, respectively, the initial estimates of the roots and close to exact roots, then MM has fifth-order convergence.
Proof. Let ϵt=ϰt−℘t, ϵ′t=yt−℘t and ϵ′′t=zt−℘t be the residual errors in ϰt,yt and zt estimations, respectively. To simplify things, we leave out iteration index i. From the 1st-step of (2.8), we have:
yt−℘t=ut−℘i−Δ(ϰt),ϵ′t=ϵt−ϵiΔ(ϰt)ϵt=ϵi(1−Gt), | (2.9) |
where Δ(ϰt)=ϑ(ϰt)mΠj≠tj=1(ϰi−ˆuj) and
Gt=Δ(ϰt)ϵt=ϑ(ϰt)ϵtmΠj≠tj=1(ϰi−ˆuj)=mΠj=1(ϰt−ξj)ϵtmΠj≠tj=1(ϰt−ˆuj)=(ϰt−℘t)mΠj≠tj=1(ϰt−℘j)ϵtmΠj≠tj=1(ϰt−ˆϰj)=m∏j≠tj=1(ut−℘j)(ϰt−ˆϰj), | (2.10) |
with
ϰt−℘jϰt−ˆϰj=ϰt−ˆϰj+ˆϰj−℘jϰt−ˆϰj=1+ˆϰj−℘jϰt−ˆϰj=1+O (ϵ4), |
and ˆϰj−℘j=O (ϵ4) (see [27]). Now, for a small enough ϵ: if ℘t is a simple root, then |ϰi−ϰj| is bounded away from zero, resulting in the following expression:
m∏j≠tj=1(ϰi−℘j)(ϰt−ϰj)=(1+O (ϵ4i))m−1=1+(m−1) O (ϵ4t)=1+O (ϵ4t). |
Then it implies that:
Gi=1+O (ϵi4),Gi−1=O (ϵ4i). |
From (2.9), we have
ϵ′t=O (ϵ5t). | (2.11) |
Now by taking the 2nd-step of Eq (2.8), we have:
ϰt+1−℘t=ϰt−℘t−Δ(ϰt)((3α−1)mΠj≠tj=1(ϰt−ϰj)+(1−α)mΠj≠ij=1(yt−yj)mΠj≠tj=1(yt−yj)+(2α−1)mΠj≠tj=1(ϰt−ϰj)),ϵ′′t=ϵt−ϵiΔ(ϰt)ϵt((3α−1)+(1−α)mΠj≠tj=1(yi−yj)mΠj≠tj=1(ϰt−ϰj)mΠj≠tj=1(yt−yj)mΠj≠ij=1(ϰt−ϰj)+(2α−1)),ϵ′′t=ϵt−ϵtΔ(ϰt)ϵt((3α−1)+(1−α)m∏j≠tj=1(yt−yjϰt−ϰj)m∏j≠ij=1(yt−yjϰt−ϰj)+(2α−1)), | (2.12) |
where
m∏j≠ij=1(yi−yjϰt−ϰj)=m∏j≠tj=1((yt−℘t+℘t−yj+℘j−℘j)(ϰi−℘t+℘t−ϰj+℘j−℘j))=m∏j≠tj=1((ϵ′t−ϵ′j+℘t−℘j)(ϵt−ϵj+℘i−℘j)). | (2.13) |
Assume ϵt=ϵj are same order, say O(ϵt), then it follows that
=m∏j≠tj=1(1)=1. | (2.14) |
Using Eq (2.14) in Eq (2.12), we have:
ϵ′′t=ϵt−ϵt(Δ(xt)ϵt)((3α−1)+(1−α)1+(2α−1))=O (ϵ5i). | (2.15) |
Hence, the theorem is proved.
We employ the real and imaginary portions of the initial approximations across a grid of 250×250 of square [−2.5×2.5]2∈C in the complex plane to construct the basins of attraction of the iterative procedures used by MS, MM and the Zhang et al.[28] method (ZPH). Due to the global convergence behavior of the simultaneous technique, the maximum number of iterations was set at 15 and the stopping criterion was |ϑ(ϰ(i)t)|<10−5. We employ various colors to show the root at which the iterative technique converges, and black in all other cases. Basin colors sharpness signifies fewer iterations. We consider the following two non-linear functions for the generation of basins: ϑ1(ϰ)=ϰ3−1 with exact roots -1, -0.5+0.866i, -0.5-0.866i, and ϑ2(ϰ)=ϰ6−1i∗ϰ3+1 with exact roots -1.0167+0.587i, -1.1740i, 1.0167+0.587i, -0.7377-0.4259i, 0.8518i, 0.7377-0.4259i. Figures 1(a, c, e, g) and 2(a, c, e, g), present the basins of attraction of numerical iterative scheme MS for various parameter values of α and Figures 1(b, d, f, h) and 2(b, d, f, h) show basins of attraction of simultaneous methods MM (for various parameter values of α) and ZPH respectively for non-linear equation ϑ1(ϰ)−ϑ2(ϰ). Table 1 and color brightness in Figure 1(b, d, f) shows the ascendancy in efficiency of MM as compared to MS and ZPH.
Method | MS | MM | ZPH | |||
Elapsed time | Iterations | Elapsed time | Iterations | Elapsed time | Iterations | |
ϑ1(ϰ) | 1.583536 | 25 | 0.456321 | 4 | 1.432156 | 7 |
ϑ2(ϰ) | 2.732514 | 23 | 0.632145 | 5 | 2.132564 | 7 |
Table 1 clearly demonstrates that the simultaneous method MM surpasses MS and ZPH in terms of actual time and number of cycles required for convergence to the exact root of the equation ϑ1(ϰ) and ϑ2(ϰ) for any initial guessed value used to generate basins of attraction.
Here, we compare the computation % efficiency of Zhang et al.'s [28] convergence order five technique (abbreviated as ZPH), i.e.,
ϰ(i+1)t=ϰ(i)t−2Δt(ϰ(i)t)1+n∑r≠tr=1Δr(ϰ(i)r)ϰ(i)t−ϰ(i)r+√(1+n∑r≠tr=1Δr(ϰ(i)r)ϰ(i)t−ϰ(i)r)2+4Δt(ϰ(i)t)n∑r≠tr=1Δr(ϰ(i)t)(ϰ(i)t−ϰ(i)r)(ϰ(i)t−Δt(ϰ(i)t)−ϰ(i)r), | (4.1) |
with our newly proposed method based on the efficiency index E defined in [29]
E=logτD, | (4.2) |
where D is the cost of numerical computer calculation
D=D(m)=δasASm+δmMm+δdDm | (4.3) |
and τ is the convergence order of iterative numerical schemes. Thus, (4.2) becomes:
E=logτδasASm+δmMm+δdDm. | (4.4) |
By using (4.4) and the information in Table 2, the percentage efficiency ratio of simultaneous numerical iterative methods can be determined employing the following formula forρ((MM),(ZPH)) given by:
ρ(MM),(ZPH))=(E(MM)E(ZPH)−1)×100 (in percent), | (4.5) |
where O(m)=B. The dominance efficiency of MM over ZPH is demonstrated clearly in Figure 3(a, b).
Methods | ASm | Mm | Dm |
ZPH | 8.0m2+B | 6.0m2+B | 2.0m2+B |
MM | 6.0m2+B | 3.0m2+B | 2.0m2+B |
The ZPH and MM family of techniques were utilized to demonstrate the use and effectiveness of several nonlinear problems from biological engineering [12] and applied sciences [29,30,31,32,33,34,35,36] are considered in this section. All calculations utilize CAS-Maple 18 64-digit floating point arithmetic, and the process of iteration is terminated when
¯ς(i)t=‖ϑ(ϰ(i)t)‖2<∈, |
where ¯ς(i)t represents the absolute error. For simultaneous calculations of all roots of Eq (1.1), we set
∈=10−30 |
as the fixed stopping criteria. In Tables 3–12, the quantity denoted CPU represents the time required to compute the root using the iterative schemes ZPH and MM, respectively. We use α=13 and β=12 in all numerical calculations. In Tables 4, 6, 8, 10, 12 for random initial vectors ((0)ϑ1-(0)ϑ3) taken from Appendix Table 13, MM and ZPH are represented by MMϑ1−MM3ϑ3 and ZPHϑ1−ZPHϑ3, respectively.
Method | CPU | ¯ς(5)1 | ¯ς(5)2 | ¯ς(5)3 | ¯ς(5)4 |
ZPH | 0.241 | 1.29e-17 | 1.62e-17 | 6.15e-32 | 4.16e-15 |
MM | 0.016 | 3.41e-51 | 1.15e-51 | 5.92e-53 | 5.82e-53 |
Method | CPU | ¯ς(17)1 | ¯ς(17)2 | ¯ς(17)3 | ¯ς(17)4 |
ZPHϑ1 | 2.1456 | 3.34e-07 | 2.43e-05 | 4.30e-07 | 8.35e-04 |
ZPHϑ2 | 3.1255 | 1.21e-03 | 0.32e-03 | 0.30e-08 | 1.13e-05 |
ZPHϑ3 | 2.9914 | 4.34e-05 | 2.31e-04 | 0.13e-03 | 4.35e-04 |
MMϑ1 | 1.1201 | 9.41e-34 | 4.3e-29 | 4.13e-32 | 7.81e-35 |
MMϑ2 | 1.32451 | 3.10e-32 | 2.3e-26 | 1.13e-18 | 8.03e-21 |
MMϑ3 | 0.93114 | 1.01e-33 | 2.3e-21 | 1.31e-19 | 8.73e-30 |
Method | CPU | ¯ς(17)1 | ¯ς(17)2 | ¯ς(17)3 |
ZPH | 0.1325 | 0.0200 | 0.0200 | 0.0030 |
MM | 0.0154 | 0.14e-09 | 9.15e-09 | 4.41e-09 |
Method | CPU | ¯ς(37)1 | ¯ς(37)2 | ¯ς(37)3 |
ZPHϑ1 | 5.4371 | 1.074e-20 | 3.398e-10 | 7.213e-18 |
ZPHϑ2 | 5.1351 | 2.087e-29 | 6.385e-11 | 0.321e-19 |
ZPHϑ3 | 3.1351 | 5.450e-27 | 7.378e-13 | 0.345e-17 |
MMϑ1 | 2.1221 | 0.494e-37 | 8.375e-30 | 3.345e-35 |
MMϑ2 | 1.8321 | 4.074e-35 | 0.378e-26 | 6.345e-35 |
MMϑ3 | 2.9321 | 6.0548e-31 | 1.378e-26 | 1378e-28 |
Method | CPU | ¯ς(6)1 | ¯ς(6)2 | ¯ς(6)3 | ¯ς(6)4 |
ZPH | 0.331 | 2.3e-23 | 2.3e-24 | 7.4e-33 | 3.1e-29 |
MM | 0.111 | 2.6e-30 | 2.6e-35 | 2.1e-35 | 2.3e-36 |
Method | CPU | ¯ς(11)1 | ¯ς(11)2 | ¯ς(11)3 | ¯ς(11)4 |
ZPHϑ1 | 2.1231 | 0.07e-30 | 2.23e-16 | 0.31e-18 | 8.73e-31 |
ZPHϑ2 | 2.4131 | 2.02e-30 | 1.32e-16 | 0.53e-18 | 1.53e-31 |
ZPHϑ3 | 3.1131 | 1.02e-30 | 5.35e-16 | 1.39e-18 | 8.03e-31 |
MMϑ1 | 1.0212 | 9.24e-41 | 4.53e-30 | 4.32e-32 | 7.18e-35 |
MMϑ2 | 1.8312 | 8.02e-47 | 2.30e-36 | 2.23e-28 | 8.23e-41 |
MMϑ3 | 1.7315 | 7.07e-48 | 2.37e-36 | 2.13e-28 | 1.32e-35 |
Method | CPU | ¯ς(7)1 | ¯ς(7)2 | ¯ς(7)3 | ¯ς(7)4 |
ZPH | 0.13121 | 3.02e-30 | 2.32e-16 | 2.32e-18 | 0.32e-31 |
MM | 0.02154 | 9.42e-36 | 4.13e-30 | 4.32e-32 | 7.81e-35 |
Method | CPU | ¯ς(10)1 | ¯ς(10)2 | ¯ς(10)3 | ¯ς(10)4 |
ZPHϑ1 | 2.031 | 3.50e-38 | 2.3e-18 | 4.38e-18 | 4.34e-33 |
ZPHϑ2 | 3.534 | 0.01e-39 | 2.3e-26 | 5.87e-18 | 3.53e-36 |
ZPHϑ3 | 4.1381 | 4.05e-35 | 4.31e-26 | 2.53e-17 | 2.34e-35 |
MMϑ1 | 3.0914 | 9.46e-46 | 0.30e-30 | 4.3e-32 | 7.85e-37 |
MMϑ2 | 1.0315 | 4.04e-45 | 2.35e-26 | 3.38e-28 | 8.13e-35 |
MMϑ3 | 2.1931 | 1.40e-41 | 4.35e-26 | 9.32e-29 | 1.32e-35 |
Method | CPU | ¯ς(6)1 | ¯ς(6)2 | ¯ς(6)3 | ¯ς(6)4 | ¯ς(6)5 | ¯ς(6)6 | ¯ς(6)7 | ¯ς(6)8 | ¯ς(6)9 |
ZPH | 0.431 | 3.0e-30 | 2.3e-25 | 0.0 | 0.0 | 0.0 | 2.3e-29 | 2.3e-35 | 0.0 | 0.0 |
MM | 0.221 | 9.4e-36 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Method | CPU | ¯ς(10)1 | ¯ς(10)2 | ¯ς(10)3 | ¯ς(10)4 | ¯ς(10)5 | ¯ς(10)6 | ¯ς(10)7 | ¯ς(10)8 | ¯ς(10)9 |
ZPHϑ1 | 2.031 | 4.34e-23 | 3.50e-28 | 2.36e-18 | 4.38e-18 | 0.34e-23 | 0.51e-38 | 0.53e-28 | 1.31e-18 | 4.34e-33 |
ZPHϑ2 | 3.534 | 0.11e-29 | 2.31e-26 | 2.31e-26 | 5.87e-15 | 3.13e-26 | 0.01e-39 | 0.31e-36 | 1.87e-18 | |
ZPHϑ3 | 4.1381 | 2.34e-35 | 4.15e-25 | 4.61e-26 | 2.53e-17 | 4.05e-35 | 1.34e-35 | 4.05e-35 | 0.311e-36 | 1.34e-25 |
MMϑ1 | 3.0914 | 0.0 | 0.30e-30 | 1.30e-30 | 0.0 | 9.46e-46 | 0.0 | 0.0 | 5.3e-32 | 0.85e-47 |
MMϑ2 | 1.0315 | 0.0 | 2.35e-46 | 3.38e-48 | 8.13e-45 | 4.04e-45 | 0.0 | 0.0 | 0.0 | 8.13e-35 |
MMϑ3 | 2.1931 | 1.40e-47 | 4.35e-46 | 0.0 | 0.0 | 1.40e-41 | 4.35e-26 | 9.32e-29 | 1.32e-35 | 1.32e-35 |
Example 1. An engineering application.
A non-linear expression described in [30]
ϑ3(ϰ)=ϰ4−7.79075ϰ3+14.7445ϰ2+2.511ϰ−1.674, | (5.1) |
depicts the minute modification of nitrogen hydrogen (NH) supply at 250 atm and 227 K. The exact roots of Eq (5.1) are ℘1=3.9485+0.3161i,℘2=3.9485−0.31610i,℘3=−0.38410,℘4=0.2778. The initial guessed values for calculating ϑ3(ϰ) are taken as equal to (0)ϰ1=3.50+0.30i, (0)ϰ2=3.50−0.30i, (0)ϰ3=−0.30+0.010i,(0)ϰ4=1.80+0.010i.
On the basis of efficiency achieved after five iterations, Table 3 unequivocally shows that the MM technique outperforms the ZPH method. Table 1 displays the global convergence behavior of the proposed numerical schemes on various randomly generated initial guesses (see Appendix Table 13).
In Table 4, ZPHϑ1−ZPHϑ3 and MMϑ1−MMϑ3 the numerical scheme ZPH and MM outputs for random initial vectors generated by the MATLAB computing tool. Numerical results of Table 4 clearly indicate numerical schemes are far better than ZPH for solving (5.1) and more complex engineering problems. The number of iterations and CPU time significantly increase when compared to the numerical results obtained in Table 3. Table 4 shows that for any initial vector choice, the method MM converges to exact roots with greater efficiency than ZPH.
Example 2. Predator-prey model (PPM).
Consider PPM in which predication rate [7] is denoted by
¯P(ϰ)=¯kϰ3¯a3+ϰ3,¯a,¯k>0, | (5.2) |
where ϰ is the amount of aphids as victims [31] and female microbes as a predator. Malthusian Model holds G(ϰ)=rϰ, as the growth rate of aphids. For solution of the PPM we take ¯P(ϰ)=¯G(ϰ). This implies
rϰ3−¯kϰ2+i¯a3=0. | (5.3) |
Taking ¯k=30 (the way pests are devoured), ¯a=20 (amount of bugs) and i=2−13 (hourly amount) in (5.3), we get:
ϑ4(ϰ)=0.7937005260ϰ3−30ϰ2+6349.604208. | (5.4) |
The exact roots of Eq (5.4) are ℘1=25.198,℘2=25.198,℘3=12.84. The initial guessed estimates for ϑ4(ϰ) are selected as:
(0)ϰ1=1.8+8.7i,(0)ϰ2=1.8−8.7i,(0)ϰ3=0.1+0.1i. |
After seventeen iterations, Table 5 clearly shows that the MM methodology outperforms the ZPH method in terms of efficiency. Table 6 displays the global convergence behavior of the proposed numerical schemes on various randomly generated initial guesses (see Appendix Table 13).
Table 6 shows the numerical schemes ZPHϑ1−ZPHϑ3 and MMϑ1−MMϑ3 outputs for random initial vectors generated by the MATLAB computing tool. The numerical results of the table clearly show that the proposed numerical schemes are superior to ZPH for solving (5.4) and more difficult engineering problems. The number of iterations and CPU time significantly increase when compared to the numerical results obtained in Table 5. Table 6 shows that for any initial vector choice, the method MM converges to exact roots with greater efficiency than ZPH on iteration 37.
Example 3. Beam positioning problem.
In this example, we look at a beam positioning problem [32], which yields a nonlinear function
ϑ5(ϰ)=ϰ4+4ϰ3−24ϰ2+16ϰ+16. | (5.5) |
The exact roots of Eq (5.5) are
℘1=2,℘2=−4−2√3,℘3=2,℘4=−4+2√3. |
The initial estimates for ϑ3(ϰ) are
(0)ϰ1,2=1.17,(0)ϰ3=−7.4641,(0)ϰ4=−0.5359. |
On the basis of efficiency achieved after six iterations, Table 7 unequivocally shows that the MM technique outperforms the ZPH method. Table 8 displays the global convergence behavior of the proposed numerical schemes on various randomly generated initial guesses (see Appendix Table 13).
Table 8 shows the numerical schemes ZPHϑ1−ZPHϑ3 and MMϑ1−MMϑ3 outputs for random initial vectors generated by the MATLAB computing tool. The numerical results of the Table 8 clearly show that the proposed numerical schemes are superior to ZPH for solving (5.5) and more difficult engineering problems. The number of iterations and CPU time significantly increase when compared to the numerical results obtained in Table 7. Table 8 shows that for any initial vector choice, the method MM converges to exact roots with greater efficiency than ZPH on iteration 11.
Example 4. [33] Nuclear boiler.
Consider a nuclear boiler, with the substances ˘A˘A and ˇRˇR, breastfed to the apparatus at rates of ˆQ and q-ˆQ, respectively. The following are the results of the multifaceted reaction system produced in the container:
˘A˘A+ˇRˇR⟶ßß,ßß+ˇRˇR⟶ˇCˇC,ˇCˇC+ˇRˇR⟶ˇDˇD,ˇCˇC+ˇRˇR⟶˘E˘E. |
Douglas et al. [34] tested this issue in order to create straightforward feedback control systems as:
ˆHℑ2.98(ϰ+2.25)(ϰ+1.45)(ϰ+2.85)2(ϰ+4.35)=−1, | (5.6) |
or
ˆHℑ∗2.98(ϰ+2.25)=−(ϰ+1.45)(ϰ+2.85)2(ϰ+4.35)1, | (5.7) |
where ˆHℑ denotes the proportional controller's gain. This control system is stable for all values of ˆHℑ that yield transfer function roots with negative real parts. Taking ˆHℑ=0 in (5.7), we have:
ϑ6(ϰ)=ϰ4+11.50ϰ3+47.49ϰ2+83.06325ϰ+51.23266875=0, | (5.8) |
ϑ6(ϰ) has the four negative real roots listed below:
℘1=−1.45,℘2=−2.85,℘3=−2.85,℘4=−4.45. |
We take the root as ℘=−4.45 and
(0)ϰ1=−1.0,(0)ϰ2=−2.1,(0)ϰ3=−1.8,(0)ϰ3=−3.9, |
are chosen as initial estimates for finding all roots of (5.8) simultaneously.
On the basis of efficiency achieved after seventh iterations, Table 9 unequivocally shows that the MM technique outperforms the ZPH method.
Table 10 displays the global convergence behavior of the proposed numerical schemes on various randomly generated initial guesses (see appendix Table 13).
Table 10 shows the numerical schemes ZPHϑ1−ZPHϑ3 and MMϑ1−MMϑ3 outputs for random initial vectors generated by the MATLAB computing tool. The numerical results of Table 10 clearly show that the proposed numerical schemes are superior to ZPH for solving (5.8) and more difficult engineering problems. The number of iterations and CPU time significantly increase when compared to the numerical results obtained in Table 9. Table 10 shows that for any initial vector choice, the method MM converges to exact roots with greater efficiency than ZPH on iteration 10.
Example 5. [27,35,36] Polynomial of higher degree.
Consider
ϑ7(ϰ)=(ϰ+1)(ϰ+3)(ϰ2−2ϰ+2)(ϰ−1)(ϰ2−4ϰ+5)(ϰ2+4ϰ+5), | (5.9) |
with exact roots:
℘1=−1.0,℘2=−3.0,℘3,4=1.0±i,℘5=1.0,℘6,7=−2.0±i,℘8,9=2.0±1.0i. |
The initial approximations of (5.9) have been taken as:
(0)ϰ1=−1.30+0.20i,(0)ϰ2=−2.80−0.20i,(0)ϰ3=1.2+1.3i,(0)ϰ4=0.8−1.20i,(0)ϰ5=0.80−0.30i,(0)ϰ6,7=−1.8±1.2i,(0)ϰ8,9=1.80±0.8i. |
On the basis of efficiency achieved after sixth iterations, Table 11 unequivocally shows that the MM technique outperforms the ZPH method. Table 12 displays the global convergence behavior of the proposed numerical schemes on various randomly generated initial guesses (see Appendix Table 13).
Table 12 shows the numerical schemes ZPHϑ1−ZPHϑ3 and MMϑ1−MMϑ3 outputs for random initial vectors generated by the MATLAB computing tool. The numerical results of the Table 12 clearly show that the proposed numerical schemes are superior to ZPH for solving (5.9) and more difficult engineering problems. The number of iterations and CPU time significantly increase when compared to the numerical results obtained in Table 11. Table 12 shows that for any initial vector choice, the method MM converges to exact roots with greater efficiency than ZPH on iteration 35.
● In comparison to the well-known Weierstrass-type method ZPH, our newly developed methods is more efficient and stable.
● The results of the numerical test problems from Tables 3-12, computational efficiency from Figure 3, residual error graphs from Figure 4(a-e), and dynamical planes from Figures 1(a-h) and 2(a-h) show that the proposed family of iterative techniques MM outperforms ZPH in terms of efficiency and convergence behavior.
● Furthermore, the elapsed time of iterative technique MM from Table 1 is faster than ZPH.
● This paper proposes a family of Weierstrass-type derivative-free simultaneous techniques of order five. Tables 1–12 and Figures 1–4 show that our MM techniques outperform the Weierstrass-type method ZPH in terms of efficiency, CPU time, basins of attraction, and residual errors. Color brightness inspection in the basins reveals that MM requires fewer iteration steps than the simultaneous method ZPH. The results of the numerical test examples in terms of CPU-time and residual errors demonstrate the effectiveness and rapid convergence of our proposed derivative-free family of iterative algorithms, MM, in comparison to ZPH.
In summary, the comprehensive empirical results establish that these novel MM techniques outperform ZPH in terms of efficiency, CPU time, basins of attraction, and residual errors. Examination of the color brightness in the basins reveals MM requires fewer iteration steps than ZPH. Overall, the test examples clearly demonstrate the effectiveness, rapid convergence, and computational advantages of the proposed MM algorithms over ZPH.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The work is supported by Provincia autonoma di Bolzano/Alto Adigeâ euro Ripartizione Innovazione, Ricerca, Universitá e Musei (contract nr. 19/34). Bruno Carpentieri is a member of the Gruppo Nazionale per it Calcolo Scientifico (GNCS) of the Istituto Nazionale di Alta Matematia (INdAM) and this work was partially supported by INdAM-GNCS under Progetti di Ricerca 2022.
All authors declare no conflicts of interest in this paper.
Inital Vector | (0)ϰ1 | (0)ϰ2 | (0)ϰ3 | (0)ϰ4 | (0)ϰ5 | (0)ϰ6 | (0)ϰ7 | (0)ϰ8 | (0)ϰ9 |
ϑ(0)1 | 0.1234 | 0.2541 | 0.0415 | 0.04125 | 0.25410 | 025412 | 0.5412 | 0.0354 | 0..35214 |
ϑ(0)2 | 0.2134 | 0.5412 | 0.03251 | 0.05412 | 0.10351 | 0.0541 | 0.09854 | 0.0214 | 0.874515 |
ϑ(0)3 | 0.3251 | 0.6541 | 0.210 | 0.14521 | 0.2321 | 0.0012 | 0.5214 | 0.2145 | 0.022145 |
[1] |
H. I. Abdel-Gawad, M. Tantawy, D. Baleanu, Fractional KdV and Boussenisq-Burger's equations, reduction to PDE and stability approaches, Math. Method. Appl. Sci., 43 (2020), 4125–4135. http://doi.org/10.1002/mma.6178 doi: 10.1002/mma.6178
![]() |
[2] |
H. I. Abdel-Gawad, M. Tantawy, Traveling wave solutions of DNA-Torsional model of fractional order, Appl. Math. Inf. Sci. Lett., 6 (2018), 85–89. http://doi.org/10.18576/amisl/060205 doi: 10.18576/amisl/060205
![]() |
[3] |
N. I. Okposo, P. Veeresha, E. N. Okposo, Solutions for time-fractional coupled nonlinear Schrödinger equations arising in optical solitons, Chinese J. Phy., 77 (2022), 965–984. http://doi.org/10.1016/j.cjph.2021.10.014 doi: 10.1016/j.cjph.2021.10.014
![]() |
[4] |
P. Veeresha, M. Yavuz, C. Baishya, A computational approach for shallow water forced Korteweg-De Vries equation on critical flow over a hole with three fractional operators, IJOCTA, 11 (2021), 52–67. http://doi.org/10.11121/ijocta.2021.1177 doi: 10.11121/ijocta.2021.1177
![]() |
[5] |
P. Veeresha, E. Ilhan, H. M. Baskonus, Fractional approach for analysis of the model describing wind-influenced projectile motion, Phy. Scr., 96 (2021), 075209. http://doi.org/10.1088/1402-4896/abf868 doi: 10.1088/1402-4896/abf868
![]() |
[6] |
P. Veeresha, D. Baleanu, A unifying computational framework for fractional Gross-Pitaevskii equations, Phy. Scr., 96 (2021), 125010. http://doi.org/10.1088/1402-4896/ac28c9 doi: 10.1088/1402-4896/ac28c9
![]() |
[7] |
P. Veeresha, D. G. Prakasha, H. M. Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos, 29 (2019), 013119. http://doi.org/10.1063/1.5074099 doi: 10.1063/1.5074099
![]() |
[8] |
C. Baishya, P. Veeresha, Laguerre polynomial-based operational matrix of integration for solving fractional differential equations with non-singular kernel, Proc. R. Soc. A, 477 (2021), 20210438. http://doi.org/10.1098/rspa.2021.0438 doi: 10.1098/rspa.2021.0438
![]() |
[9] |
S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y.-M. Chu, On multi-step methods for singular fractional q-integro-differential equations, Open Math., 19 (2021), 1378–1405. http://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
![]() |
[10] |
F. Jin, Z.-S. Qian, Y.-M. Chu, M. ur Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 12 (2022), 790–806. http://doi.org/10.11948/20210357 doi: 10.11948/20210357
![]() |
[11] |
S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y.-M. Chu, Some recent developments on dynamical ℏ-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), 2240110. http://doi.org/10.1142/S0218348X22401107 doi: 10.1142/S0218348X22401107
![]() |
[12] |
F.-Z. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y.-M. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional Fishers equations, Fractals, 30 (2022), 2240051. http://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
![]() |
[13] |
S. Rashid, E. I. Abouelmagd, S. Sultana, Y.-M. Chu, New developments in weighted n-fold type inequalities via discrete generalized h-proportional fractional operators, Fractals, 30 (2022), 2240056. http://doi.org/10.1142/S0218348X22400564 doi: 10.1142/S0218348X22400564
![]() |
[14] | Y.-M. Chu, S. Bashir, M. Ramzan, M. Y. Malik, Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects, Math. Method. Appl. Sci., in press. http://doi.org/10.1002/mma.8234 |
[15] |
S. A. Iqbal, M. G. Hafez, Y.-M. Chu, C. Park, Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative, J. Appl. Anal. Comput., 12 (2022), 770–789. http://doi.org/10.11948/20210324 doi: 10.11948/20210324
![]() |
[16] |
C. Baishya1, S. J. Achar, P. Veeresha, D. G. Prakasha, Dynamics of a fractional epidemiological model with disease infection in both the populations, Chaos, 31 (2021), 043130. http://doi.org/10.1063/5.0028905 doi: 10.1063/5.0028905
![]() |
[17] |
E. Ilhan, P. Veeresha, H. M. Baskonus, Fractional approach for a mathematical model of atmospheric dynamics of CO2 gas with an efficient method, Chaos Soliton. Fract., 152 (2021), 111347. http://doi.org/10.1016/j.chaos.2021.111347 doi: 10.1016/j.chaos.2021.111347
![]() |
[18] |
P. Veeresha, H. M. Baskonus, W. Gao, Strong interacting internal waves in rotating ocean: Novel fractional approach, Axioms, 10 (2021), 123. http://doi.org/10.3390/axioms10020123 doi: 10.3390/axioms10020123
![]() |
[19] |
P. Veeresha, D. G. Prakasha, D. Kumar, An efficient technique for nonlinear time-fractional Klein–Fock–Gordon equation, Appl. Math. Comput., 364 (2020), 124637. http://doi.org/10.1016/j.amc.2019.124637 doi: 10.1016/j.amc.2019.124637
![]() |
[20] |
P. Veeresha, D. G. Prakasha, M. A. Qurashi, D. Baleanu, A reliable technique for fractional modified Boussinesq and approximate long wave equations, Adv. Differ. Equ., 2019 (2019), 253. http://doi.org/10.1186/s13662-019-2185-2 doi: 10.1186/s13662-019-2185-2
![]() |
[21] | T.-H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176. |
[22] |
M. Nazeer, F. Hussain, M. Ijaz Khan, Asad-ur-Rehman, E. R. El-Zahar, Y.-M. Chu, Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Appl. Math. Comput., 420 (2022), 126868. http://doi.org/10.1016/j.amc.2021.126868 doi: 10.1016/j.amc.2021.126868
![]() |
[23] |
Y.-M. Chu, B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. Ijaz Khan, S. U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano- material surface, Appl. Math. Comput., 419 (2022), 126883. http://doi.org/10.1016/j.amc.2021.126883 doi: 10.1016/j.amc.2021.126883
![]() |
[24] | T.-H. Zhao, M. Ijaz Khan, Y.-M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Method. Appl. Sci., in press. http://doi.org/10.1002/mma.7310 |
[25] | K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y.-M. Chu, Almost sectorial operators on Ψ-Hilfer derivative fractional impulsive integro-differential equations, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.7954 |
[26] |
Y.-M. Chu, U. Nazir, M. Sohail, M. M. Selim, J.-R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. http://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
![]() |
[27] |
S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y.-M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. http://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
![]() |
[28] |
B. S. T. Alkahtani, A. Atangana, Analysis of non-homogenous heat model with new trend of derivative with fractional order, Chaos Soliton. Fract., 89 (2016), 566–571. https://doi.org/10.1016/j.chaos.2016.03.027 doi: 10.1016/j.chaos.2016.03.027
![]() |
[29] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. |
[30] | T.-H. Zhao, M.-K. Wang, G.-J. Hai, Y.-M. Chu, Landen inequalities for Gaussian hypergeometric function, RACSAM, 116, (2022), 53. https://doi.org/10.1007/s13398-021-01197-y |
[31] |
T.-H. Zhao, M.-K. Wang, Y.-M. Chu, On the bounds of the perimeter of an ellipse, Acta Math. Sci., 42 (2022), 491–501. https://doi.org/10.1007/s10473-022-0204-y doi: 10.1007/s10473-022-0204-y
![]() |
[32] |
T.-H. Zhao, Z.-Y. He, Y.-M. Chu, Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals, Comput. Methods Funct. Theory, 21 (2021), 413–426. https://doi.org/10.1007/s40315-020-00352-7 doi: 10.1007/s40315-020-00352-7
![]() |
[33] |
L. Wang, X. Chen, Approximate analytical solutions of time fractional Whitham–Broer–Kaup equations by a residual power series method, Entropy, 17 (2015), 6519–6533. http://doi.org/10.3390/e17096519 doi: 10.3390/e17096519
![]() |
[34] |
S. Rashid, K. T. Kubra, H. Jafari, S. U. Lehre, A semi-analytical approach for fractional order Boussinesq equation in a gradient unconfined aquifers, Math. Method. Appl. Sci., 45 (2022), 1033–1062. http://doi.org/10.1002/mma.7833 doi: 10.1002/mma.7833
![]() |
[35] |
P. Veeresha, D. G. Prakasha, H. M. Baskonus, Novel simulations to the time-fractional Fisher's equation, Math. Sci., 13 (2019), 33–42. http://doi.org/10.1007/s40096-019-0276-6 doi: 10.1007/s40096-019-0276-6
![]() |
[36] |
M. I. El-Bahi, K. Hilal, Lie symmetry analysis, exact solutions, and conservation laws for the generalized time-fractional KdV-Like equation, J. Funct. Space., 2021 (2021), 6628130. http://doi.org/10.1155/2021/6628130 doi: 10.1155/2021/6628130
![]() |
[37] |
S. C. Shiralashetti, S. Kumbinarasaiah, Laguerre wavelets collocation method for the numerical solution of the Benjamina–Bona-Mohany equations, J. Taibah Univ. Sci., 13 (2019), 9–15. http://doi.org/10.1080/16583655.2018.1515324 doi: 10.1080/16583655.2018.1515324
![]() |
[38] | A. Kadem, D. Baleanu, On fractional coupled Whitham–Broer–Kaup equations, Rom. J. Phys., 56 (2011), 629–635. |
[39] |
G. B. Whitham, Variational methods and applications to water waves, Proc. R. Soc. Lond. A, 299 (1967), 6–25. http://doi.org/10.1098/rspa.1967.0119 doi: 10.1098/rspa.1967.0119
![]() |
[40] |
L. J. F. Broer, Approximate equations for long water waves, Appl. Sci. Res., 31 (1975), 377–395. http://doi.org/10.1007/BF00418048 doi: 10.1007/BF00418048
![]() |
[41] |
D. J. Kaup, A higher-order water-wave equation and the method for solving it, Progress of Theoretical Physics, 54 (1975), 396–408. http://doi.org/10.1143/PTP.54.396 doi: 10.1143/PTP.54.396
![]() |
[42] |
M. Al-Qurashi, S. Rashid, F. Jarad, M. Tahir, A. M. Alsharif, New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method, AIMS Mathematics, 7 (2022), 2044–2060. http://doi.org/10.3934/math.2022117 doi: 10.3934/math.2022117
![]() |
[43] |
S. Rashid, F. Jarad, T. M. Jawa, A study of behaviour for fractional order diabetes model via the nonsingular kernel, AIMS Mathematics, 7 (2022), 5072–5092. http://doi.org/10.3934/math.2022282 doi: 10.3934/math.2022282
![]() |
[44] |
S. Rashid, S. Sultana, R. Ashraf, M. K. A. Kaabar, On comparative analysis for the Black-Scholes model in the generalized fractional derivatives sense via Jafari transform, J. Funct. Space., 2021 (2021), 7767848. http://doi.org/10.1155/2021/7767848 doi: 10.1155/2021/7767848
![]() |
[45] |
S. T. Mohyud-Din, A. Ydrm, G. Demirli, Traveling wave solutions of Whitham–Broer–Kaup equations by homotopy perturbation method, J. King Saud Univ. Sci., 22 (2010), 173–176. http://doi.org/10.1016/j.jksus.2010.04.008 doi: 10.1016/j.jksus.2010.04.008
![]() |
[46] |
S. Saha Ray, A novel method for travelling wave solutions of fractional Whitham-Broer-Kaup, fractional modified Boussinesq and fractional approximate long wave equations in shallow water, Math. Method. Appl. Sci., 38 (2015), 1352–1368. http://doi.org/10.1002/mma.3151 doi: 10.1002/mma.3151
![]() |
[47] |
B. Tian, Y. Qiu, Exact and explicit solutions of Whitham–Broer–Kaup equations in shallow water, Pure and Applied Mathematics Journal, 5 (2016), 174–180. http://doi.org/10.11648/j.pamj.20160506.11 doi: 10.11648/j.pamj.20160506.11
![]() |
[48] | P. Veeresha, D. G. Prakasha, H. M. Baskonus, An efficient technique for coupled fractional Whitham–Broer–Kaup equations describing the propagation of shallow water waves, In: 4th International conference on computational mathematics and engineering sciences (CMES-2019), Cham: Springer, 2019, 49–75. http://doi.org/10.1007/978-3-030-39112-6_4 |
[49] |
J. Singh, D. Kumar, R. Swroop, Numerical solution of time- and space-fractional coupled Burgers' equations via homotopy algorithm, Alex. Eng. J., 55 (2016), 1753–1763. http://doi.org/10.1016/j.aej.2016.03.028 doi: 10.1016/j.aej.2016.03.028
![]() |
[50] |
S. J. Liao, Homotopy analysis method: A new analytical technique for nonlinear problems, Commun. Nonlinear Sci. Numer. Simul., 2 (1997), 95–100. https://doi.org/10.1016/S1007-5704(97)90047-2 doi: 10.1016/S1007-5704(97)90047-2
![]() |
[51] |
S. J. Liao, Homotopy analysis method: a new analytic method for nonlinear problems, Appl. Math. Mech., 19 (1998), 957–962. http://doi.org/10.1007/BF02457955 doi: 10.1007/BF02457955
![]() |
[52] | K. S. Aboodh, The new integral transform "Aboodh transform", Global Journal of Pure and Applied Mathematics, 9 (2013), 35–43. |
[53] |
H. Bulut, D. Kumar, J. Singh, R. Swroop, H. M. Baskonus, Analytic study for a fractional model of HIV infection of CD4+T lymphocyte cells, Math. Nat. Sci., 2 (2018), 33–43. http://doi.org/10.22436/mns.02.01.04 doi: 10.22436/mns.02.01.04
![]() |
[54] |
P. Veeresha, D. G. Prakasha, Solution for fractional Zakharov-Kuznetsov equations by using two reliable techniques, Chinese J. Phys., 60 (2019), 313–330. http://doi.org/10.1016/j.cjph.2019.05.009 doi: 10.1016/j.cjph.2019.05.009
![]() |
[55] |
D. G. Prakasha, P. Veeresha, Analysis of lakes pollution model with Mittag-Leffler kernel, J. Ocean Eng. Sci., 5 (2020), 310–322. http://doi.org/10.1016/j.joes.2020.01.004 doi: 10.1016/j.joes.2020.01.004
![]() |
[56] | M. H. Cherif, D. Ziane, A new numerical technique for solving systems of nonlinear fractional partial differential equations, Int. J. Anal. Appl., 15 (2017), 188–197. |
[57] |
M. A. Awuya, D. Subasi, Aboodh transform iterative method for solving fractional partial differential equation with Mittag–Leffler kernel, Symmetry, 13 (2021), 2055. http://doi.org/10.3390/sym13112055 doi: 10.3390/sym13112055
![]() |
[58] | G. M. Mittag-Leffler, Sur La nonvelle Fonction Eα(x), C. R. Acad. Sci. Paris, (Ser. II), 137 (1903), 554–558. |
[59] |
S. M. El-Sayed, D. Kaya, Exact and numerical travelling wave solutions of Whitham–Broer–Kaup equations, Appl. Math. Comput., 167 (2005), 1339–1349. http://doi.org/10.1016/j.amc.2004.08.012 doi: 10.1016/j.amc.2004.08.012
![]() |
[60] |
M. Rafei, H. Daniali, Application of the variational iteration method to the Whitham-Broer-Kaup equations, Comput. Math. Appl, 54 (2007), 1079–1085. http://doi.org/10.1016/j.camwa.2006.12.054 doi: 10.1016/j.camwa.2006.12.054
![]() |
1. | Fitriana Yuli Saptaningtyas, Wim T Van Horssen, Fajar Adi-Kusumo, Lina Aryati, On accurate asymptotic approximations of roots for polynomial equations containing a small, but fixed parameter, 2024, 9, 2473-6988, 28542, 10.3934/math.20241385 | |
2. | Chih-Wen Chang, Sania Qureshi, Ioannis K. Argyros, Francisco I. Chicharro, Amanullah Soomro, A modified two-step optimal iterative method for solving nonlinear models in one and higher dimensions, 2025, 229, 03784754, 448, 10.1016/j.matcom.2024.09.021 | |
3. | Mudassir Shams, Bruno Carpentieri, Chaos in Inverse Parallel Schemes for Solving Nonlinear Engineering Models, 2024, 13, 2227-7390, 67, 10.3390/math13010067 | |
4. | Mudassir Shams, Bruno Carpentieri, Efficient families of higher-order Caputo-type numerical schemes for solving fractional order differential equations, 2025, 124, 11100168, 337, 10.1016/j.aej.2025.02.111 | |
5. | Sania Qureshi, Ioannis K. Argyros, Higinio Ramos, Amanullah Soomro, Paras Nizamani, G Thangkhenpau, Sunil Panday, A stable optimal solver for nonlinear equations with semilocal convergence using majorizing sequences in banach spaces, 2025, 2254-3902, 10.1007/s40324-025-00402-x |
Method | MS | MM | ZPH | |||
Elapsed time | Iterations | Elapsed time | Iterations | Elapsed time | Iterations | |
ϑ1(ϰ) | 1.583536 | 25 | 0.456321 | 4 | 1.432156 | 7 |
ϑ2(ϰ) | 2.732514 | 23 | 0.632145 | 5 | 2.132564 | 7 |
Methods | ASm | Mm | Dm |
ZPH | 8.0m2+B | 6.0m2+B | 2.0m2+B |
MM | 6.0m2+B | 3.0m2+B | 2.0m2+B |
Method | CPU | ¯ς(5)1 | ¯ς(5)2 | ¯ς(5)3 | ¯ς(5)4 |
ZPH | 0.241 | 1.29e-17 | 1.62e-17 | 6.15e-32 | 4.16e-15 |
MM | 0.016 | 3.41e-51 | 1.15e-51 | 5.92e-53 | 5.82e-53 |
Method | CPU | ¯ς(17)1 | ¯ς(17)2 | ¯ς(17)3 | ¯ς(17)4 |
ZPHϑ1 | 2.1456 | 3.34e-07 | 2.43e-05 | 4.30e-07 | 8.35e-04 |
ZPHϑ2 | 3.1255 | 1.21e-03 | 0.32e-03 | 0.30e-08 | 1.13e-05 |
ZPHϑ3 | 2.9914 | 4.34e-05 | 2.31e-04 | 0.13e-03 | 4.35e-04 |
MMϑ1 | 1.1201 | 9.41e-34 | 4.3e-29 | 4.13e-32 | 7.81e-35 |
MMϑ2 | 1.32451 | 3.10e-32 | 2.3e-26 | 1.13e-18 | 8.03e-21 |
MMϑ3 | 0.93114 | 1.01e-33 | 2.3e-21 | 1.31e-19 | 8.73e-30 |
Method | CPU | ¯ς(17)1 | ¯ς(17)2 | ¯ς(17)3 |
ZPH | 0.1325 | 0.0200 | 0.0200 | 0.0030 |
MM | 0.0154 | 0.14e-09 | 9.15e-09 | 4.41e-09 |
Method | CPU | ¯ς(37)1 | ¯ς(37)2 | ¯ς(37)3 |
ZPHϑ1 | 5.4371 | 1.074e-20 | 3.398e-10 | 7.213e-18 |
ZPHϑ2 | 5.1351 | 2.087e-29 | 6.385e-11 | 0.321e-19 |
ZPHϑ3 | 3.1351 | 5.450e-27 | 7.378e-13 | 0.345e-17 |
MMϑ1 | 2.1221 | 0.494e-37 | 8.375e-30 | 3.345e-35 |
MMϑ2 | 1.8321 | 4.074e-35 | 0.378e-26 | 6.345e-35 |
MMϑ3 | 2.9321 | 6.0548e-31 | 1.378e-26 | 1378e-28 |
Method | CPU | ¯ς(6)1 | ¯ς(6)2 | ¯ς(6)3 | ¯ς(6)4 |
ZPH | 0.331 | 2.3e-23 | 2.3e-24 | 7.4e-33 | 3.1e-29 |
MM | 0.111 | 2.6e-30 | 2.6e-35 | 2.1e-35 | 2.3e-36 |
Method | CPU | ¯ς(11)1 | ¯ς(11)2 | ¯ς(11)3 | ¯ς(11)4 |
ZPHϑ1 | 2.1231 | 0.07e-30 | 2.23e-16 | 0.31e-18 | 8.73e-31 |
ZPHϑ2 | 2.4131 | 2.02e-30 | 1.32e-16 | 0.53e-18 | 1.53e-31 |
ZPHϑ3 | 3.1131 | 1.02e-30 | 5.35e-16 | 1.39e-18 | 8.03e-31 |
MMϑ1 | 1.0212 | 9.24e-41 | 4.53e-30 | 4.32e-32 | 7.18e-35 |
MMϑ2 | 1.8312 | 8.02e-47 | 2.30e-36 | 2.23e-28 | 8.23e-41 |
MMϑ3 | 1.7315 | 7.07e-48 | 2.37e-36 | 2.13e-28 | 1.32e-35 |
Method | CPU | ¯ς(7)1 | ¯ς(7)2 | ¯ς(7)3 | ¯ς(7)4 |
ZPH | 0.13121 | 3.02e-30 | 2.32e-16 | 2.32e-18 | 0.32e-31 |
MM | 0.02154 | 9.42e-36 | 4.13e-30 | 4.32e-32 | 7.81e-35 |
Method | CPU | ¯ς(10)1 | ¯ς(10)2 | ¯ς(10)3 | ¯ς(10)4 |
ZPHϑ1 | 2.031 | 3.50e-38 | 2.3e-18 | 4.38e-18 | 4.34e-33 |
ZPHϑ2 | 3.534 | 0.01e-39 | 2.3e-26 | 5.87e-18 | 3.53e-36 |
ZPHϑ3 | 4.1381 | 4.05e-35 | 4.31e-26 | 2.53e-17 | 2.34e-35 |
MMϑ1 | 3.0914 | 9.46e-46 | 0.30e-30 | 4.3e-32 | 7.85e-37 |
MMϑ2 | 1.0315 | 4.04e-45 | 2.35e-26 | 3.38e-28 | 8.13e-35 |
MMϑ3 | 2.1931 | 1.40e-41 | 4.35e-26 | 9.32e-29 | 1.32e-35 |
Method | CPU | ¯ς(6)1 | ¯ς(6)2 | ¯ς(6)3 | ¯ς(6)4 | ¯ς(6)5 | ¯ς(6)6 | ¯ς(6)7 | ¯ς(6)8 | ¯ς(6)9 |
ZPH | 0.431 | 3.0e-30 | 2.3e-25 | 0.0 | 0.0 | 0.0 | 2.3e-29 | 2.3e-35 | 0.0 | 0.0 |
MM | 0.221 | 9.4e-36 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Method | CPU | ¯ς(10)1 | ¯ς(10)2 | ¯ς(10)3 | ¯ς(10)4 | ¯ς(10)5 | ¯ς(10)6 | ¯ς(10)7 | ¯ς(10)8 | ¯ς(10)9 |
ZPHϑ1 | 2.031 | 4.34e-23 | 3.50e-28 | 2.36e-18 | 4.38e-18 | 0.34e-23 | 0.51e-38 | 0.53e-28 | 1.31e-18 | 4.34e-33 |
ZPHϑ2 | 3.534 | 0.11e-29 | 2.31e-26 | 2.31e-26 | 5.87e-15 | 3.13e-26 | 0.01e-39 | 0.31e-36 | 1.87e-18 | |
ZPHϑ3 | 4.1381 | 2.34e-35 | 4.15e-25 | 4.61e-26 | 2.53e-17 | 4.05e-35 | 1.34e-35 | 4.05e-35 | 0.311e-36 | 1.34e-25 |
MMϑ1 | 3.0914 | 0.0 | 0.30e-30 | 1.30e-30 | 0.0 | 9.46e-46 | 0.0 | 0.0 | 5.3e-32 | 0.85e-47 |
MMϑ2 | 1.0315 | 0.0 | 2.35e-46 | 3.38e-48 | 8.13e-45 | 4.04e-45 | 0.0 | 0.0 | 0.0 | 8.13e-35 |
MMϑ3 | 2.1931 | 1.40e-47 | 4.35e-46 | 0.0 | 0.0 | 1.40e-41 | 4.35e-26 | 9.32e-29 | 1.32e-35 | 1.32e-35 |
Inital Vector | (0)ϰ1 | (0)ϰ2 | (0)ϰ3 | (0)ϰ4 | (0)ϰ5 | (0)ϰ6 | (0)ϰ7 | (0)ϰ8 | (0)ϰ9 |
ϑ(0)1 | 0.1234 | 0.2541 | 0.0415 | 0.04125 | 0.25410 | 025412 | 0.5412 | 0.0354 | 0..35214 |
ϑ(0)2 | 0.2134 | 0.5412 | 0.03251 | 0.05412 | 0.10351 | 0.0541 | 0.09854 | 0.0214 | 0.874515 |
ϑ(0)3 | 0.3251 | 0.6541 | 0.210 | 0.14521 | 0.2321 | 0.0012 | 0.5214 | 0.2145 | 0.022145 |
Method | MS | MM | ZPH | |||
Elapsed time | Iterations | Elapsed time | Iterations | Elapsed time | Iterations | |
ϑ1(ϰ) | 1.583536 | 25 | 0.456321 | 4 | 1.432156 | 7 |
ϑ2(ϰ) | 2.732514 | 23 | 0.632145 | 5 | 2.132564 | 7 |
Methods | ASm | Mm | Dm |
ZPH | 8.0m2+B | 6.0m2+B | 2.0m2+B |
MM | 6.0m2+B | 3.0m2+B | 2.0m2+B |
Method | CPU | ¯ς(5)1 | ¯ς(5)2 | ¯ς(5)3 | ¯ς(5)4 |
ZPH | 0.241 | 1.29e-17 | 1.62e-17 | 6.15e-32 | 4.16e-15 |
MM | 0.016 | 3.41e-51 | 1.15e-51 | 5.92e-53 | 5.82e-53 |
Method | CPU | ¯ς(17)1 | ¯ς(17)2 | ¯ς(17)3 | ¯ς(17)4 |
ZPHϑ1 | 2.1456 | 3.34e-07 | 2.43e-05 | 4.30e-07 | 8.35e-04 |
ZPHϑ2 | 3.1255 | 1.21e-03 | 0.32e-03 | 0.30e-08 | 1.13e-05 |
ZPHϑ3 | 2.9914 | 4.34e-05 | 2.31e-04 | 0.13e-03 | 4.35e-04 |
MMϑ1 | 1.1201 | 9.41e-34 | 4.3e-29 | 4.13e-32 | 7.81e-35 |
MMϑ2 | 1.32451 | 3.10e-32 | 2.3e-26 | 1.13e-18 | 8.03e-21 |
MMϑ3 | 0.93114 | 1.01e-33 | 2.3e-21 | 1.31e-19 | 8.73e-30 |
Method | CPU | ¯ς(17)1 | ¯ς(17)2 | ¯ς(17)3 |
ZPH | 0.1325 | 0.0200 | 0.0200 | 0.0030 |
MM | 0.0154 | 0.14e-09 | 9.15e-09 | 4.41e-09 |
Method | CPU | ¯ς(37)1 | ¯ς(37)2 | ¯ς(37)3 |
ZPHϑ1 | 5.4371 | 1.074e-20 | 3.398e-10 | 7.213e-18 |
ZPHϑ2 | 5.1351 | 2.087e-29 | 6.385e-11 | 0.321e-19 |
ZPHϑ3 | 3.1351 | 5.450e-27 | 7.378e-13 | 0.345e-17 |
MMϑ1 | 2.1221 | 0.494e-37 | 8.375e-30 | 3.345e-35 |
MMϑ2 | 1.8321 | 4.074e-35 | 0.378e-26 | 6.345e-35 |
MMϑ3 | 2.9321 | 6.0548e-31 | 1.378e-26 | 1378e-28 |
Method | CPU | ¯ς(6)1 | ¯ς(6)2 | ¯ς(6)3 | ¯ς(6)4 |
ZPH | 0.331 | 2.3e-23 | 2.3e-24 | 7.4e-33 | 3.1e-29 |
MM | 0.111 | 2.6e-30 | 2.6e-35 | 2.1e-35 | 2.3e-36 |
Method | CPU | ¯ς(11)1 | ¯ς(11)2 | ¯ς(11)3 | ¯ς(11)4 |
ZPHϑ1 | 2.1231 | 0.07e-30 | 2.23e-16 | 0.31e-18 | 8.73e-31 |
ZPHϑ2 | 2.4131 | 2.02e-30 | 1.32e-16 | 0.53e-18 | 1.53e-31 |
ZPHϑ3 | 3.1131 | 1.02e-30 | 5.35e-16 | 1.39e-18 | 8.03e-31 |
MMϑ1 | 1.0212 | 9.24e-41 | 4.53e-30 | 4.32e-32 | 7.18e-35 |
MMϑ2 | 1.8312 | 8.02e-47 | 2.30e-36 | 2.23e-28 | 8.23e-41 |
MMϑ3 | 1.7315 | 7.07e-48 | 2.37e-36 | 2.13e-28 | 1.32e-35 |
Method | CPU | ¯ς(7)1 | ¯ς(7)2 | ¯ς(7)3 | ¯ς(7)4 |
ZPH | 0.13121 | 3.02e-30 | 2.32e-16 | 2.32e-18 | 0.32e-31 |
MM | 0.02154 | 9.42e-36 | 4.13e-30 | 4.32e-32 | 7.81e-35 |
Method | CPU | ¯ς(10)1 | ¯ς(10)2 | ¯ς(10)3 | ¯ς(10)4 |
ZPHϑ1 | 2.031 | 3.50e-38 | 2.3e-18 | 4.38e-18 | 4.34e-33 |
ZPHϑ2 | 3.534 | 0.01e-39 | 2.3e-26 | 5.87e-18 | 3.53e-36 |
ZPHϑ3 | 4.1381 | 4.05e-35 | 4.31e-26 | 2.53e-17 | 2.34e-35 |
MMϑ1 | 3.0914 | 9.46e-46 | 0.30e-30 | 4.3e-32 | 7.85e-37 |
MMϑ2 | 1.0315 | 4.04e-45 | 2.35e-26 | 3.38e-28 | 8.13e-35 |
MMϑ3 | 2.1931 | 1.40e-41 | 4.35e-26 | 9.32e-29 | 1.32e-35 |
Method | CPU | ¯ς(6)1 | ¯ς(6)2 | ¯ς(6)3 | ¯ς(6)4 | ¯ς(6)5 | ¯ς(6)6 | ¯ς(6)7 | ¯ς(6)8 | ¯ς(6)9 |
ZPH | 0.431 | 3.0e-30 | 2.3e-25 | 0.0 | 0.0 | 0.0 | 2.3e-29 | 2.3e-35 | 0.0 | 0.0 |
MM | 0.221 | 9.4e-36 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Method | CPU | ¯ς(10)1 | ¯ς(10)2 | ¯ς(10)3 | ¯ς(10)4 | ¯ς(10)5 | ¯ς(10)6 | ¯ς(10)7 | ¯ς(10)8 | ¯ς(10)9 |
ZPHϑ1 | 2.031 | 4.34e-23 | 3.50e-28 | 2.36e-18 | 4.38e-18 | 0.34e-23 | 0.51e-38 | 0.53e-28 | 1.31e-18 | 4.34e-33 |
ZPHϑ2 | 3.534 | 0.11e-29 | 2.31e-26 | 2.31e-26 | 5.87e-15 | 3.13e-26 | 0.01e-39 | 0.31e-36 | 1.87e-18 | |
ZPHϑ3 | 4.1381 | 2.34e-35 | 4.15e-25 | 4.61e-26 | 2.53e-17 | 4.05e-35 | 1.34e-35 | 4.05e-35 | 0.311e-36 | 1.34e-25 |
MMϑ1 | 3.0914 | 0.0 | 0.30e-30 | 1.30e-30 | 0.0 | 9.46e-46 | 0.0 | 0.0 | 5.3e-32 | 0.85e-47 |
MMϑ2 | 1.0315 | 0.0 | 2.35e-46 | 3.38e-48 | 8.13e-45 | 4.04e-45 | 0.0 | 0.0 | 0.0 | 8.13e-35 |
MMϑ3 | 2.1931 | 1.40e-47 | 4.35e-46 | 0.0 | 0.0 | 1.40e-41 | 4.35e-26 | 9.32e-29 | 1.32e-35 | 1.32e-35 |
Inital Vector | (0)ϰ1 | (0)ϰ2 | (0)ϰ3 | (0)ϰ4 | (0)ϰ5 | (0)ϰ6 | (0)ϰ7 | (0)ϰ8 | (0)ϰ9 |
ϑ(0)1 | 0.1234 | 0.2541 | 0.0415 | 0.04125 | 0.25410 | 025412 | 0.5412 | 0.0354 | 0..35214 |
ϑ(0)2 | 0.2134 | 0.5412 | 0.03251 | 0.05412 | 0.10351 | 0.0541 | 0.09854 | 0.0214 | 0.874515 |
ϑ(0)3 | 0.3251 | 0.6541 | 0.210 | 0.14521 | 0.2321 | 0.0012 | 0.5214 | 0.2145 | 0.022145 |