
In this paper, we will check the existence and stability of the dengue internal transmission model with fraction order derivative as well as analyze it qualitatively. The solution has been determined using Atangana-Baleanu in Caputo sense (ABC) with the help of Sumudu transform (ST). Atangana-Toufik (AT) and fractal fractional operator are used to analyze the dengue transmission which is an advanced approach for such types of biological models. Existence theory and uniqueness for the equilibrium solution are provided via nonlinear functional analysis and fixed point theory. Global stability of the system was also proved by using the Lyapunov function. Such kind of study helps us to analyze dengue transmission which shows the actual effect of dengue transmission in society, also will be helpful in future analysis and control strategies.
Citation: Kottakkaran Sooppy Nisar, Aqeel Ahmad, Mustafa Inc, Muhammad Farman, Hadi Rezazadeh, Lanre Akinyemi, Muhammad Mannan Akram. Analysis of dengue transmission using fractional order scheme[J]. AIMS Mathematics, 2022, 7(5): 8408-8429. doi: 10.3934/math.2022469
[1] | Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046 |
[2] | Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216 |
[3] | Asma Hanif, Azhar Iqbal Kashif Butt . Atangana-Baleanu fractional dynamics of dengue fever with optimal control strategies. AIMS Mathematics, 2023, 8(7): 15499-15535. doi: 10.3934/math.2023791 |
[4] | Asma Hanif, Azhar Iqbal Kashif Butt, Tariq Ismaeel . Fractional optimal control analysis of Covid-19 and dengue fever co-infection model with Atangana-Baleanu derivative. AIMS Mathematics, 2024, 9(3): 5171-5203. doi: 10.3934/math.2024251 |
[5] | Shao-Wen Yao, Muhammad Farman, Maryam Amin, Mustafa Inc, Ali Akgül, Aqeel Ahmad . Fractional order COVID-19 model with transmission rout infected through environment. AIMS Mathematics, 2022, 7(4): 5156-5174. doi: 10.3934/math.2022288 |
[6] | Najat Almutairi, Sayed Saber, Hijaz Ahmad . The fractal-fractional Atangana-Baleanu operator for pneumonia disease: stability, statistical and numerical analyses. AIMS Mathematics, 2023, 8(12): 29382-29410. doi: 10.3934/math.20231504 |
[7] | Weerawat Sudsutad, Chatthai Thaiprayoon, Jutarat Kongson, Weerapan Sae-dan . A mathematical model for fractal-fractional monkeypox disease and its application to real data. AIMS Mathematics, 2024, 9(4): 8516-8563. doi: 10.3934/math.2024414 |
[8] | Khaled A. Aldwoah, Mohammed A. Almalahi, Kamal Shah, Muath Awadalla, Ria H. Egami . Dynamics analysis of dengue fever model with harmonic mean type under fractal-fractional derivative. AIMS Mathematics, 2024, 9(6): 13894-13926. doi: 10.3934/math.2024676 |
[9] | Windarto, Muhammad Altaf Khan, Fatmawati . Parameter estimation and fractional derivatives of dengue transmission model. AIMS Mathematics, 2020, 5(3): 2758-2779. doi: 10.3934/math.2020178 |
[10] | Najat Almutairi, Sayed Saber . Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives. AIMS Mathematics, 2023, 8(11): 25863-25887. doi: 10.3934/math.20231319 |
In this paper, we will check the existence and stability of the dengue internal transmission model with fraction order derivative as well as analyze it qualitatively. The solution has been determined using Atangana-Baleanu in Caputo sense (ABC) with the help of Sumudu transform (ST). Atangana-Toufik (AT) and fractal fractional operator are used to analyze the dengue transmission which is an advanced approach for such types of biological models. Existence theory and uniqueness for the equilibrium solution are provided via nonlinear functional analysis and fixed point theory. Global stability of the system was also proved by using the Lyapunov function. Such kind of study helps us to analyze dengue transmission which shows the actual effect of dengue transmission in society, also will be helpful in future analysis and control strategies.
Dengue is a multifaceted disease with affects human health badly. The dengue fever symptoms start to appear in 2 to 7 days [1,2,3]. It is during this period that differentiating dengue from other febrile diseases proves troublesome [4]. Most people do not give attention to this disease and do self-medication which does not effective for this disease. Secondary dengue infection increases the risk of disease harshness [5,6]. Unfortunately at a time, there is no specific vaccine exists for dengue treatment [7,8,9]. Dengue fever is similar to flu which can affect all age groups [10], the fever spread due to a mosquito named Aedes. When an infected mosquito bites a normal person the virus is entered into the body of a human through the skin. Hence, the most severe clinical presentation during the infection course does not correlate with a high viral load [11]. According to WHO, dengue-infected people can be divided into two groups uncomplicated and severe [12]. The people who suffer severe conditions are associated with organ impairment or harsh plasma escape and the left are considered uncomplicated [13].
The generalization of classical calculus is called fractional calculus which is concerned with the operation of integration and differentiation of fractional order. In the 19th century by using fractional calculus mathematicians introduce fractional differential equations, fractional dynamics, and fractional geometry. Fractional calculus is used in almost every field of science. It is used to model physical as well as engineering processes. The standard mathematical model of integer order does not work properly. Due to this reason, fractional calculus made a major contribution to the field of mechanics, chemistry, biology, and image processing. By using fractional calculus several physical problems are solved. By using integer-order derivatives the system shows many problems such as history and nonlocal effect. Primarily, all the studies were depending on Caputo fractional-order and Reimann-Liouville fractional derivatives (RLFD). Now a day it had been highlighted that these derivatives have an issue and the issue is they have a singular kernel. That is the reason so many new definitions were presented in the studies [18,19,20]. These new definitions were very impactful because they have nonsingular kernels which are according to their needs. Caputo fractional derivatives [21], the Caputo-Fabrizio derivative, and AB [22] fractional derivative e have differed from each other only because Caputo is defined by a power law, Fabrizio is defined by using exponential decay law, and ABC is defined by Mittage-Leffler (ML) law. Tateishi et al. describe the role of fractional time operator derivative in a study of anomalous diffusion [23]. We extended the nutrient-phytoplankton-zooplankton model involving variable-order fractional differential operators in [24]. To analyze the dynamics of the fractional calcium oscillation model, powerful techniques are applied to the governing non-linear fractional studied in [25] and some other applications of real-world problems are also studied in [26,27,28]. In [27] authors used Caputo derivative which kernel is singular and nonlocal properties. But we used ABC operator which is non-singular and nonlocal kernels.
This paper is organized as follows: In sections 1 and 2 consists of an introduction and basic definitions for analysis. Section 3 is for the stability and uniqueness of the proposed scheme with fixed pint theory. Gloabal stablitity was also proved with Lyapunov function. A numerical algorithm for results is developed with the AT scheme and Fractal fractional operator by using the Mittag Leffler function in sections 4 and 5. Conclusions of results are described in section 6.
Definition 2.1. The ABC of function ϕ(t) defined as [15,19,20]:
ABCaDαt(ϕ(t))=AB(α)n−αt∫adndwnϕ(w)Eα{−α(t−w)αn−α}dw,n−1<α<n, | (1) |
where Eα is the Mittag-Leffler, AB(α) is normalization function and AB(0)=AB(1)=1. By applying Laplace transform, we have
[ABCaDαtϕ(t)](s)=AB(α)1−αsαL[ϕ(t)](s)−sα−1ϕ(0)sα+a1−a. | (2) |
By using ST for (1), we acquire
ST[ABC0Dαtϕ(t)](s)=B(α)1−α{αΓ(α+1)Eα(−11−αwα)}×[ST(ϕ(t))−ϕ(0)]. | (3) |
Definition 2.2. The fractional integral of ABC with order α given by
ABCaIαt(ϕ(t))=1−αB−αϕ(t)+αB(α)Γ(α)t∫aϕ(s)(t−s)α−1ds. | (4) |
Definition 2.3. For a function g(t)∈W12(0,1),b>a and α1∈[0,1], the definition of ABC is given by
ABC0Dα1tg(t)=AB(α1)1−α1t∫0ddτg(τ)Eα1[−α11−α1(t−τ)α1]dτ, |
where
AB(α1)=1−α1+α1Γ(α1). |
Definition 2.4. Suppose that g(t) is continuous on an open interval (a,b), then the fractal-fractional integral of g(t) of order α1 having Mittag-Leffler type kernel and given by
FFMJα1,α20,t(g(t))=α1α2AB(α1)Γ(α1)t∫0sα2−1g(s)(t−s)α1ds+α2(1−α1)tα2−1g(t)AB(α1). |
To develop the equation the dengue viruses are virulent and no other microorganism that about the human body. Initially, macrophages, monocytes, and other cells of the reticuloendothelial organ are a major source of dengue. The susceptible cell is denoted by S, the infected cell by I, and the free virus by V is shown in Figure 1.
By transforming the model in [29], with ABC is as follows:
ABC0DσtS=α−βS(τ)V(τ)−δS(τ), |
ABC0DσtI=βS(τ)V(τ)−σI(τ), | (5) |
ABC0DσtV=μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ), |
with initial conditions
S(0)=S0≥0,I(0)=I0≥0,V(0)=V0≥0. | (6) |
In the given model, we will suppose that all the parameters are taken as positive. By using the greenest supposition that α shows the growth of susceptible cells and at the rate δS(τ) they expire. Free virus particles infect susceptible cells at a rate corresponding to the product of their plenitudes βS(τ)V(τ). The viability of the process is shown by β. Septic cells yield free virus at a rate proportional to their plenitude μnI(τ), with n being the multiplication rate, and free infection particles are expelled from the system at a rate (p1+p2)V(τ), where γ1 is the natural demise rate of the virus and γ2 is the death rate of the virus by T-cells. The free virus also moves to the susceptible cells compartment as βS(τ)V(τ) and infected cells bite the dust at a rate σI(τ).
Equilibrium points of model
The equilibrium point of (5) is attained by cracking the non-linear algebraic equations
Dγ1S(τ)=Dγ2I(τ)=Dγ3V(τ)=0. |
System (5) has a disease-free equilibrium point F0(α/δ,0,0) if R0<1, while if R0>1, there is in addition to F0, a positive endemic equilibrium F∗ (S∗, I∗, V∗) and the values of S∗,I∗ and V∗ are as follows:
S∗=α(p1+p2)β(μn_σ)=αδR0 |
I∗=αβ(μn−σ)−σβ(p1+p2)αβ(μn_σ)=α(R0−1)αR0 |
V∗=αβ(μn−σ)−σβ(p1+p2)αβ(P1+P2)=αβ(R0−1) |
where R0 is the basic reproduction number defined in [29] as follows:
R0=αβ(μn−σ)αδ(P2+P1). |
The value that R0 takes can signpost the situations where an epidemic is conceivable. Threshold quantity (R0) is used to analyze the stability of the system (5) and the values of the following parameters given in Table 1.
Parameters | DFE | EE | Unit |
α | 0.56 | 0.56 | Day−1 |
β | 0.001 | 0.1 | Day−1 |
δ | 0.1313 | 0.0041 | Day−1 |
σ | 0.5 | 0.32 | Day−1 |
μn | 156 | 175 | Day−1 |
P1 | 4 | 4 | Day−1 |
P2 | 25 | 25 | Day−1 |
Applying ST on the proposed model given in (5) we get
q(σ)σΓ(σ+1)1−σNσ(−11−σVσ)ST{S(τ)−S(0)}=ST[α−βS(τ)V(τ)−δS(τ)], |
q(σ)σΓ(σ+1)1−σNσ(−11−σVσ)ST{I(τ)−I(0)}=ST[βS(τ)V(τ)−σI(τ)], | (7) |
q(σ)σΓ(σ+1)1−σNσ(−11−σVσ)ST{V(τ)−V(0)}=ST[μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ)]. |
Rearranging, we get
ST(S(τ))=S(0)+1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST[α−βS(τ)V(τ)−δS(τ)], |
ST(I(τ))=I(0)+1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST[βS(τ)V(τ)−σI(τ)], |
ST(V(τ))=V(0)+1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST[μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ)]. | (8) |
Now using the inverse ST on Eq (8), we have
S(τ)=S(0)+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{α−βS(τ)V(τ)−δS(τ)}], |
I(τ)=I(0)+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{βS(τ)V(τ)−σI(τ)}], |
V(τ)=V(0)+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ)}]. |
We next obtain the following recursive formula.
S(n+1)(τ)=Sn(0)+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{α−βSn(τ)Vn(τ)−δSn(τ)}], |
I(n+1)(τ)=In(0)+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{βSn(τ)Vn(τ)−σIn(τ)}],V(n+1)(τ)=Vn(0)+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{μnIn(τ)−(p1+p2)Vn(τ)−βSn(τ)Vn(τ)}]. | (9) |
And the solution of (9) is provided by
S(τ)=limn→∞Sn(τ),I(τ)=limn→∞In(τ),V(τ)=limn→∞Vn(τ) |
Theorem 3.1. The When the reproductive number R0>1, the endemic equilibrium points F∗ of the SIV model is globally asymptotically stable.
Proof. The Lyapunov function can be written as
M(S∗,I∗,V∗)=(S−S∗−S∗logS∗S)+(I−I∗−I∗logI∗I)+(V−V∗−V∗logV∗V). | (10) |
Therefore, applying the derivative respect to t on both sides yields
dMdt=˙M=(S−S∗S)˙S+(I−I∗I)˙I+(V−V∗V)˙V. | (11) |
Now, we can write their values for derivatives as follows
dMdt=˙M=(S−S∗S)(α−βSV−δS)+(I−I∗I)(βSV−σI) |
+(V−V∗V)(μnI−(p1+p2)V−βSV). | (12) |
Putting S=S−S∗,I=I−I∗,L=V−V∗ leads to
dMdt=(S−S∗S)(α−β(S−S∗)(V−V∗)−δ(S−S∗)) |
+(I−I∗I)(β(S−S∗)(V−V∗)−σ(I−I∗)) |
+(V−V∗V)(μn(I−I∗)−(p1+p2)(V−V∗)−β(S−S∗)(V−V∗)). | (13) |
We can organize the above as follows
dMdt=α−βSV+βS∗V+βSV∗−βS∗V∗−α(S∗S)+βSV(S∗S) |
−βS∗V(S∗S)−βSV∗(S∗S)+βS∗V∗(S∗S)−δS(S−S∗)2 |
+βSV−βS∗V−βSV∗+βS∗V∗−βSV(I∗I)+βS∗V(I∗I) |
+βSV∗(I∗I)−βS∗V∗(I∗I)−σI(I−I∗)2+μnI−μnI∗ |
−βSV+βS∗V+βSV∗−βS∗V∗−μnI(V∗V)+μnI∗(V∗V) |
+βSV(V∗V)−βS∗V(V∗V)+βSV∗(V∗V)+βS∗V∗(V∗V) |
−(p1+p2)V(V−V∗)2. | (14) |
To avoid the complexity, the above can be written as
dMdt=Σ−Ω | (15) |
where
Σ=α+βS∗V+βSV∗+βSV(S∗S)+βS∗V∗(S∗S)+βSV+βS∗V∗+βS∗V(I∗I)+βSV∗(I∗I)+μnI+βS∗V+βSV∗+μnI∗(V∗V)+βSV(V∗V)+βSV∗(V∗V)+βS∗V∗(V∗V), |
Ω=βSV+βS∗V∗+α(S∗S)+βS∗V(S∗S)+βSV∗(S∗S)+δS(S−S∗)2+βS∗V+βSV∗+βSV(I∗I)+βS∗V∗(I∗I)+σI(I−I∗)2+βSV+βS∗V∗+μnI(V∗V)+βS∗V(V∗V)+(p1+p2)V(V−V∗)2. |
It is concluded that if Σ<Ω, this yields, dMdt<0, however when, S=S∗,I=I∗,V=V∗
0=Σ−Ω⇒dMdt=0. | (16) |
We can see that the largest compact invariant set for the suggested model in
{(S∗,I∗,V∗)∈Γ;dMdt=0} | (17) |
is the point {F∗} the endemic equilibrium of the considered model. By the help of the Lasalles invariance concept, it follows that F∗ is globally asymptotically stable in Γ if Σ<Ω.
Theorem 3.2. Let (X,|.|) be a Banach space and H a self-map of X satisfying
‖Hx−Hr‖≤θ‖X−Hx‖+θ‖x−r‖, |
S(n+1)(τ)=Sn(0)+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{α−βSn(τ)Vn(τ)−δSn(τ)}], |
I(n+1)(τ)=In(0)+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{βSn(τ)Vn(τ)−σIn(τ)}],V(n+1)(τ)=Vn(0)+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{μnIn(τ)−(p1+p2)Vn(τ)−βSn(τ)Vn(τ)}], |
where 1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ) is the fractional Lagrange multiplier.
Proof. Define K be a self-map [30] is given by
K[S(n+1)(τ)]=S(n+1)(τ)=Sn(0)+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)ST{α−βSn(τ)Vn(τ)−δSn(τ)}], |
K[I(n+1)(τ)]=I(n+1)(τ)=In(0)+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{βSn(τ)Vn(τ)−σIn(τ)}], | (18) |
K[V(n+1)(τ)]=V(n+1)(τ)=Vn(0)+ST−1×[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{μnIn(τ)−(p1+p2)Vn(τ)−βSn(τ)Vn(τ)}]. |
Applying the properties of the norm and triangular inequality, we get
‖K[Sn(τ)]−K[Sm(τ)]‖≤‖Sn(τ)−Sm(τ)‖+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{α+β‖Sn(τ)Vn(τ)−Sm(τ)Vm(τ)‖+δ‖Sn(τ)−Sm(τ)‖}] |
‖K[In(τ)]−K[Im(τ)]‖≤‖In(τ)−Im(τ)‖+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{β‖Sn(τ)Vn(τ)−Sm(τ)Vm(τ)‖+σ‖In(τ)−Im(τ)‖}], | (19) |
‖K[Vn(τ)]−K[Vm(τ)]‖≤‖Vn(τ)−Vm(τ)‖+ST−1[1−σq(σ)σΓ(σ+1)Nσ(−11−σVσ)×ST{μn‖In(τ)−Im(τ)‖+(p1+p2)‖Vn(τ)−Vm(τ)‖+β‖Sn(τ)Vn(τ)−Sm(τ)Vm(τ)‖}]. |
K fulfills the conditions associated with Theorem 3.2 when
θ=(0,0,0,0,0),θ={‖Sn(t)−Sm(t)‖×‖−(Sn(t)+Sm(t))‖+α−β‖Sn(τ)Vn(τ)−Sm(τ)Vm(τ)‖−δ‖Sn(τ)−Sm(τ)‖×‖(In(t)−Im(t))‖×‖−(In(t)+Im(t))‖+β‖Sn(τ)Vn(τ)−Sm(τ)Vm(τ)‖−σ‖In(τ)−Im(τ)‖×‖(Vn(t)−Vm(t))‖×‖−(Vn(t)+Vm(t))‖+μn‖In(τ)−Im(τ)‖−(p1+p2)‖Vn(τ)−Vm(τ)‖−β‖Sn(τ)Vn(τ)−Sm(τ)Vm(τ)‖. |
Hence K is Picard K-stable.
Theorem 3.3. The special solution of Eq (5) using the iteration method is the unique singular solution.
Proof. Take into consideration the following Hilbert space H=L2((p,q)×(0,T)) which can be defined as
h:(p,q)×(0,T)→R,∬ghdgdh<∞. |
In this regard, the following operators are considered
θ(0,0,0,0,0),θ={α−βS(τ)V(τ)−δS(τ)βS(τ)V(τ)−σI(τ)μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ). |
We establish that the inner product of
(T(S11−S12,I21−I22,V31−V32,),(V1,V2,V3)). |
Where (S11−S12,I21−I22,V31−V32), are the special solutions of the system. Taking into account the inner function and the norm, we have
{α−β(S11−S12)(V31−V32)−δ(S11−S12),V1}≤α‖V1‖+β‖S11−S12‖‖V31−V32‖‖V1‖+δ‖S11−S12‖‖V1‖, |
{β(S11−S12)(V31−V32)−σ(I21−I22),V2}≤β‖S11−S12‖‖V31−V32‖‖V2‖+σ‖I21−I22‖‖V2‖, |
{μn(I21−I22)−(p1+p2)(V31−V32)−β(S11−S12)(V31−V32),V3}≤μn‖I21−I22‖‖V3‖+(p1+p2)‖V31−V32‖‖V3‖+β‖S11−S12‖‖V31−V32‖‖V3‖. |
In the case of a large number e1,e2 and e3, both solutions happen to be converged to the exact solution. Employing the topology concept, we can obtain five positive very small parameters (χe1,χe2 and χe3).
‖S−S11‖,‖S−S12‖≤χe1ϖ,‖I−I21‖,‖I−I22‖≤χe2ς,‖V−V31‖,‖V−V32‖≤χe3υ, |
where
ϖ=3(α+β‖S11−S12‖‖V31−V32‖+δ‖S11−S12‖)‖V1‖ |
ς=3(β‖S11−S12‖‖V31−V32‖+σ‖I21−I22‖)‖V2‖ |
υ=3(μn‖I21−I22‖+(p1+p2)‖V31−V32‖+β‖S11−S12‖‖V31−V32‖)‖V3‖. |
But, it is obvious that
(α+β‖S11−S12‖‖V31−V32‖+δ‖S11−S12‖)≠0 |
(β‖S11−S12‖‖V31−V32‖+σ‖I21−I22‖)≠0 |
(μn‖I21−I22‖+(p1+p2)‖V31−V32‖+β‖S11−S12‖‖V31−V32‖)≠0, |
where ‖V1‖,‖V2‖,‖V3‖≠0.
Therefore, we have
‖S11−S12‖=0,‖I21−I22‖=0,‖V31−V32‖=0, |
which yields that
S11=S12,I21=I22,V31=V32. |
This completes the proof of uniqueness.
Applying the advanced numerical scheme AT method on system given in Eq (5) and fundamental theorem of fractional calculus, we get
S(τ)−S(0)=(1−σ)ABC(σ){α−βS(τ)V(τ)−δS(τ)}+σΓ(σ)×ABC(σ)∫t0{α−βS(t)V(t)−δS(t)}(τ−t)σ−1dt, |
I(τ)−I(0)=(1−σ)ABC(σ){βS(τ)V(τ)−σI(τ)}+σΓ(σ)×ABC(σ)∫τ0{βS(t)V(t)−σI(t)}(τ−t)σ−1dt, |
V(τ)−V(0)=(1−σ)ABC(σ){μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ)}+σΓ(σ)×ABC(σ)∫τ0{μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ)}(τ−t)σ−1dt. | (20) |
At a given point τn+1,n=0,1,2,3,…, the above equation is reformulated as
S(τn+1)−S(0)=(1−σ)ABC(σ){α−βS(τn)V(τn)−δS(τn)}+σΓ(σ)×ABC(σ)∫t0{α−βS(t)V(t)−δS(t)}(τn+1−t)σ−1dt, |
I(τn+1)−I(0)=(1−σ)ABC(σ){βS(τn)V(τn)−σI(τn)}+σΓ(σ)×ABC(σ)∫τn+10{βS(t)V(t)−σI(t)}(τn+1−t)σ−1dt, | (21) |
V(τn+1)−V(0)=(1−σ)ABC(σ){μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ)}+σΓ(σ)×ABC(σ)∫τn+10{μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ)}(τn+1−t)σ−1dt. |
Also, we have
S(τn+1)−S(0)=(1−σ)ABC(σ){α−βS(τn)V(τn)−δS(τn)}+σΓ(σ)×ABC(σ)n∑k=0∫τk+1τk{α−βS(t)V(t)−δS(t)}(τn+1−t)σ−1dt, |
I(τn+1)−I(0)=(1−σ)ABC(σ){βS(τn)V(τn)−σI(τn)} |
+σΓ(σ)×ABC(σ)n∑k=0∫τk+1τk{βS(t)V(t)−σI(t)}(τn+1−t)σ−1dt, |
V(τn+1)−V(0)=(1−σ)ABC(σ){μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ)}+σΓ(σ)×ABC(σ)∑nk=0∫τk+1τk{μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ)}(τn+1−t)σ−1dt. | (22) |
By using equation above equations, we have
Sn+1=S0+(1−σ)ABC(σ){α−βS(τn)V(τn)−δS(τn)}+σΓ(σ)×ABC(σ)n∑k=0{α−βSkVk−δSkh×∫τk+1τk{(t−τk−1)}(τn+1−t)α−1dt−α−βSk−1Vk−1−δSk−1h×∫τk+1τk{(t−τk−1)}(τn+1−t)σ−1dt}, |
I(τn+1)−I(0)=(1−σ)ABC(σ){βS(τn)V(τn)−σI(τn)}+σΓ(σ)×ABC(σ)∑nk=0{βSkVk−σIkh×∫τk+1τk{(t−τk−1)}(τn+1−t)σ−1dt−βSk−1Vk−1−σIk−1h×∫τk+1τk{(t−τk−1)}(τn+1−t)σ−1dt}, |
V(τn+1)−V(0)=(1−σ)ABC(σ){μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ)}+σΓ(σ)×ABC(σ)×∑nk=0{μnIk−(p1+p2)Vk−βSkVkh×μnIk−1−(p1+p2)Vk−1−βSk−1Vk−1h×∫τk+1τk{(t−τk−1)}(τn+1−t)σ−1dt}. | (23) |
Thus integrating equation (21) and Eq (22), and replacing them in equations of the system (23) we get
Sn+1=S0+(1−σ)ABC(σ){α−βS(τn)V(τn)−δS(τn)}+σABC(σ)n∑k=0(hσ{α−βSkVk−δSk}Γ(σ+2)×{(n+1−k)α(n−k+2+α)−(n−k)α(n−k+2+2α)}−hα{α−βSk−1Vk−1−δSk−1}Γ(α+2)×{(n+1−k)α+1−(n−k)α(n−k+1+α)}), |
I(τn+1)−I(0)=(1−σ)ABC(σ){βS(τn)V(τn)−σI(τn)} |
+σABC(σ)∑nk=0(hα{βSkVk−σIk}Γ(σ+2)×{(n+1−k)α(n−k+2+α)−(n−k)α(n−k+2+2α)}−hα{βSk−1Vk−1−σIk−1}Γ(σ+2)×{(n+1−k)α+1−(n−k)α(n−k+1+α)}), | (24) |
V(τn+1)−V(0)=(1−σ)ABC(σ){μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ)}+σABC(σ)n∑k=0(hσ{μnIk−(p1+p2)Vk−βSkVk}Γ(σ+2)×{(n+1−k)α(n−k+2+α)−(n−k)α(n−k+2+2α)}−hα{μnIk−1−(p1+p2)Vk−1−βSk−1Vk−1}Γ(α+2)×{(n+1−k)α+1−(n−k)α(n−k+1+α)}). |
We have the following model with fractal fraction operator in ABC sense is given as
FFDα1,α20,τS=α−βS(τ)V(τ)−δS(τ), |
FFDα1,α20,τI=βS(τ)V(τ)−σI(τ), | (25) |
FFDα1,α20,τV=μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ), |
with initial conditions (6).
Numerical procedure with fractal fractional
We present the numerical algorithm for the fractal-fractional Dengue model (5). The following is obtained by integrating the system (5).
S(τ)−S(0)=(1−α1)C(α1)α2τα2−1{α−βS(τ)V(τ)−δS(τ)}+α1α2C(α1)Γ(α1)τ∫0tα2−1{α−βS(t)V(t)−δS(t)}(τ−t)α1−1dt, |
I(τ)−I(0)=(1−α1)C(α1)α2τα2−1{βS(τ)V(τ)−σI(τ)} |
+α1α2C(α1)Γ(α1)τ∫0tα2−1{βS(t)V(t)−σI(t)}(τ−t)α1−1dt, | (26) |
V(τ)−V(0)=(1−α1)C(α1)α2τα2−1{μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ)}+α1α2C(α1)Γ(α1)τ∫0tα2−1{μnI(t)−(p1+p2)V(t)−βS(τ)V(t)}(τ−t)α1−1dt. |
Let
k(τ,S(τ))=α2τα2−1{α−βS(τ)V(τ)−δS(τ)}, |
k(τ,I(τ))=α2τα2−1{βS(τ)V(τ)−σI(τ)}, |
k(τ,V(τ))=α2τα2−1{μnI(τ)−(p1+p2)V(τ)−βS(τ)V(τ)}. |
Then, we have
S(τ)−S(0)=(1−α1)C(α1)k(τ,S(τ))+α1C(α1)Γ(α1)τ∫0k(t,S(t))(τ−t)α1−1dt, |
I(τ)−I(0)=(1−α1)C(α1)k(τ,I(τ))+α1C(α1)Γ(α1)τ∫0k(t,S(t))(τ−t)α1−1dt, | (27) |
V(τ)−V(0)=(1−α1)C(α1)k(τ,V(τ))+α1C(α1)Γ(α1)τ∫0k(t,S(t))(τ−t)α1−1dt. |
At τn+1=(n+1)Δτ, we have
S(τn+1)−S(0)=(1−α1)C(α1)k(τn,S(τn))+α1C(α1)Γ(α1)τn+1∫0k(t,S(t))(τn+1−t)α1−1dt, |
I(τn+1)−I(0)=(1−α1)C(α1)k(τn,I(τn))+α1C(α1)Γ(α1)τn+1∫0k(t,I(t))(τn+1−t)α1−1dt, | (28) |
V(τn+1)−V(0)=(1−α1)C(α1)k(τn,V(τn))+α1C(α1)Γ(α1)τn+1∫0k(t,V(t))(τn+1−t)α1−1dt. |
Also, we have
S(tn+1)=S(0)+(1−α1)C(α1)k(τn,S(τn))+α1C(α1)Γ(α1)n∑j=2τj+1∫τjk(t,S(t))(τn+1−t)α1−1dt, |
I(tn+1)=I(0)+(1−α1)C(α1)k(τn,I(τn))+α1C(α1)Γ(α1)n∑j=2τj+1∫τjk(t,I(t))(τn+1−t)α1−1dt, |
V(tn+1)=V(0)+(1−α1)C(α1)k(τn,V(τn))+α1C(α1)Γ(α1)n∑j=2τj+1∫τjk(t,V(t))(τn+1−t)α1−1dt. |
In general, approximating the function k(t,y(t)), using the Newton polynomial, we have
Pn(t)=k(τn−2,y(τn−2))+k(τn−1,y(τn−1))−k(τn−2,y(τn−2))Δτ(t−τn−2)+k(τn,y(τn))−2k(τn−1,y(τn−1))+k(τn−2,y(τn−2))2(Δτ)2(t−τn−2)(t−τn−1). | (29) |
Using Eq (29) into the above system, we have
Sn+1=S0+(1−α1)C(α1)k(τn,S(τn))+α1C(α1)Γ(α1)n∑j=2τj+1∫τj{k(τj−2,Sj−2)+k(τj−1,Sj−1)−k(τj−2,Sj−2)Δτ(t−τj−2)+k(τj,Sj)−2k(τj−1,Sj−1)+k(τj−2,Sj−2)2(Δτ)2(t−τj−2)(t−τj−1)}(τn+1−t)α1−1dt, |
In+1=I0+(1−α1)C(α1)k(τn,I(τn))+α1C(α1)Γ(α1)∑nj=2τj+1∫τj{k(τj−2,Ij−2)+k(τj−1,Ij−1)−k(τj−2,Ij−2)Δτ(t−τj−2)+k(τj,Ij)−2k(τj−1,Ij−1)+k(τj−2,Ij−2)2(Δτ)2(t−τj−2)(t−τj−1)}(τn+1−t)α1−1dt, | (30) |
Vn+1=V0+(1−α1)C(α1)k(τn,V(τn))+α1C(α1)Γ(α1)n∑j=2τj+1∫τj{k(τj−2,Vj−2)+k(τj−1,Vj−1)−k(τj−2,Vj−2)Δτ(t−τj−2)+k(τj,Vj)−2k(τj−1,Vj−1)+k(τj−2,Vj−2)2(Δτ)2(t−τj−2)(t−τj−1)}(τn+1−t)α1−1dt. |
Rearranging the above system, we have
Sn+1=S0+(1−α1)C(α1)k(τn,S(τn))+α1C(α1)Γ(α1)n∑j=2{τj+1∫τjk(τj−2,Sj−2)(τn+1−t)α1−1dt+τj+1∫τjk(τj−1,Sj−1)−k(τj−2,Sj−2)Δτ(t−τj−2)(τn+1−t)α1−1dt+τj+1∫τjk(τj,Sj)−2k(τj−1,Sj−1)+k(τj−2,Sj−2)2(Δτ)2(t−τj−2)(t−τj−1)(τn+1−t)α1−1dt,} |
In+1=I0+(1−α1)C(α1)k(τn,I(τn))+α1C(α1)Γ(α1)n∑j=2{τj+1∫τjk(τj−2,Ij−2)(τn+1−t)α1−1dt+τj+1∫τjk(τj−1,Ij−1)−k(τj−2,Ij−2)Δτ(t−τj−2)(τn+1−t)α1−1dt+τj+1∫τjk(τj,Ij)−2k(τj−1,Ij−1)+k(τj−2,Ij−2)2(Δτ)2(t−τj−2)(t−τj−1)(τn+1−t)α1−1dt}, | (31) |
Vn+1=V0+(1−α1)C(α1)k(τn,V(τn))+α1C(α1)Γ(α1)n∑j=2{τj+1∫τjk(τj−2,Vj−2)(τn+1−t)α1−1dt+τj+1∫τjk(τj−1,Vj−1)−k(τj−2,Vj−2)Δτ(t−τj−2)(τn+1−t)α1−1dt+τj+1∫τjk(τj,Vj)−2k(τj−1,Vj−1)+k(τj−2,Vj−2)2(Δτ)2(t−τj−2)(t−τj−1)(τn+1−t)α1−1dt}. |
Writing further above system , we have
Sn+1=S0+(1−α1)C(α1)k(τn,S(τn))+α1C(α1)Γ(α1)n∑j=2k(τj−2,Sj−2)τj+1∫τj(τn+1−t)α1−1dt+α1C(α1)Γ(α1)n∑j=2k(τj−1,Sj−1)−k(τj−2,Sj−2)Δττj+1∫τj(t−τj−2)(τn+1−t)α1−1dt+α1C(α1)Γ(α1)n∑j=2k(τj,Sj)−2k(τj−1,Sj−1)+k(τj−2,Sj−2)2(Δτ)2τj+1∫τj(t−τj−2)(t−τj−1)(τn+1−t)α1−1dt, |
{I}^{n+1} = {I}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\rm{C}\left({\alpha }_{1}\right)}k\left({\tau }_{n}, I\left({\tau }_{n}\right)\right)\\ +\frac{{\alpha }_{1}}{\rm{C}\left({\alpha }_{1}\right){\rm{\Gamma }}\left({\alpha }_{1}\right)}\sum \limits_{j = 2}^{n}k\left({t}_{j-2}, {I}^{j-2}\right)\underset{{\tau }_{j}}{\overset{{\tau }_{j+1}}{\int }}{\left({\tau }_{n+1}-t\right)}^{{\alpha }_{1}-1}dt\\ +\frac{{\alpha }_{1}}{\rm{C}\left({\alpha }_{1}\right){\rm{\Gamma }}\left({\alpha }_{1}\right)}\sum\limits _{j = 2}^{n}\frac{k\left({\tau }_{j-1}, {I}^{j-1}\right)-k\left({\tau }_{j-2}, {I}^{j-2}\right)}{\Delta \tau }\underset{{\tau }_{j}}{\overset{{\tau }_{j+1}}{\int }}\left(t-{\tau }_{j-2}\right){\left({\tau }_{n+1}-t\right)}^{{\alpha }_{1}-1}dt\\ +\frac{{\alpha }_{1}}{\rm{C}\left({\alpha }_{1}\right){\rm{\Gamma }}\left({\alpha }_{1}\right)}\sum\limits _{j = 2}^{n}\frac{k\left({\tau }_{j}, {I}^{j}\right)-2k\left({\tau }_{j-1}, {I}^{j-1}\right)+k\left({\tau }_{j-2}, {I}^{j-2}\right)}{{2\left(\Delta \tau \right)}^{2}}\underset{{\tau }_{j}}{\overset{{\tau }_{j+1}}{\int }}\left(t-{\tau }_{j-2}\right)(t\\ -{\tau }_{j-1}){\left({\tau }_{n+1}-t\right)}^{{\alpha }_{1}-1}dt, |
{V}^{n+1} = {V}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\rm{C}\left({\alpha }_{1}\right)}k\left({\tau }_{n}, V\left({\tau }_{n}\right)\right)\\ +\frac{{\alpha }_{1}}{\rm{C}\left({\alpha }_{1}\right){\rm{\Gamma }}\left({\alpha }_{1}\right)}\sum \limits_{j = 2}^{n}k\left({t}_{j-2}, {V}^{j-2}\right)\underset{{\tau }_{j}}{\overset{{\tau }_{j+1}}{\int }}{\left({\tau }_{n+1}-t\right)}^{{\alpha }_{1}-1}dt\\ +\frac{{\rho }_{1}}{\rm{C}\left({\rho }_{1}\right){\rm{\Gamma }}\left({\rho }_{1}\right)}\sum\limits _{j = 2}^{n}\frac{k\left({\tau }_{j-1}, {V}^{j-1}\right)-k\left({\tau }_{j-2}, {V}^{j-2}\right)}{\Delta \tau }\underset{{\tau }_{j}}{\overset{{\tau }_{j+1}}{\int }}\left(t-{\tau }_{j-2}\right){\left({\tau }_{n+1}-t\right)}^{{\alpha }_{1}-1}dt\\ +\frac{{\rho }_{1}}{\rm{C}\left({\rho }_{1}\right){\rm{\Gamma }}\left({\rho }_{1}\right)}\sum\limits _{j = 2}^{n}\frac{k\left({\tau }_{j}, {V}^{j}\right)-2k\left({\tau }_{j-1}, {V}^{j-1}\right)+k\left({\tau }_{j-2}, {V}^{j-2}\right)}{{2\left(\Delta \tau \right)}^{2}}\underset{{\tau }_{j}}{\overset{{\tau }_{j+1}}{\int }}\left(t-{\tau }_{j-2}\right)(t\\ -{\tau }_{j-1}){\left({\tau }_{n+1}-t\right)}^{{\alpha }_{1}-1}dt. |
Now, calculating the integrals in above system, we get
\underset{{\tau }_{j}}{\overset{{\tau }_{j+1}}{\int }}{\left({\tau }_{n+1}-t\right)}^{{\alpha }_{1}-1}dt = \frac{{\left(\Delta \tau \right)}^{{\alpha }_{1}}}{{\alpha }_{1}}\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right], |
\underset{{\tau }_{j}}{\overset{{\tau }_{j+1}}{\int }}\left(t-{\tau }_{j-2}\right){\left({\tau }_{n+1}-t\right)}^{{\alpha }_{1}-1}dt \\= \frac{{\left(\Delta \tau \right)}^{{\alpha }_{1}+1}}{{\alpha }_{1}\left({\alpha }_{1}+1\right)}\left[{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)-{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+3{\alpha }_{1}\right)\right], |
\underset{{\tau }_{j}}{\overset{{\tau }_{j+1}}{\int }}\left(t-{\tau }_{j-2}\right)\left(t-{\tau }_{j-1}\right){\left({\tau }_{n+1}-t\right)}^{{\alpha }_{1}-1}dt \\= \frac{{\left(\Delta \tau \right)}^{{\alpha }_{1}+2}}{{\alpha }_{1}\left({\alpha }_{1}+1\right)\left({\alpha }_{1}+2\right)}\left[{\left(n-j+1\right)}^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}\\+9{\alpha }_{1}+12\right\}-{\left(n-j\right)}^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\left(5{\alpha }_{1}+10\right)\left(n-j\right)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\right\}\right]. |
Inserting them into a system (31), we get
{S}^{n+1} = {S}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\rm{C}\left({\alpha }_{1}\right)}k\left({\tau }_{n}, S\left({\tau }_{n}\right)\right)\\+\frac{{\alpha }_{1}{\left(\Delta \tau \right)}^{{\alpha }_{1}}}{\rm{C}\left({\alpha }_{1}\right){\rm{\Gamma }}\left({\alpha }_{1}+1\right)}\sum \limits_{j = 2}^{n}k\left({\tau }_{j-2}, {S}^{j-2}\right)\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right]\\+\frac{{\alpha }_{1}{\left(\Delta \tau \right)}^{{\alpha }_{1}}}{\rm{C}\left({\alpha }_{1}\right){\rm{\Gamma }}\left({\alpha }_{1}+2\right)}\sum \limits_{j = 2}^{n}\left[k\left({\tau }_{j-1}, {S}^{j-1}\right)-k\left({\tau }_{j-2}, {S}^{j-2}\right)\right]\left[{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)\\-{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+3{\alpha }_{1}\right)\right]\\ +\frac{{\alpha }_{1}{\left(\Delta \tau \right)}^{{\alpha }_{1}}}{\rm{C}\left({\alpha }_{1}\right){\rm{\Gamma }}\left({\alpha }_{1}+3\right)}\sum \limits_{j = 2}^{n}\left[k\left({\tau }_{j}, {S}^{j}\right)-2k\left({\tau }_{j-1}, {S}^{j-1}\right)\\+k\left({\tau }_{j-2}, {S}^{j-2}\right)\right]\left[{\left(n-j+1\right)}^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\right\}\\-{\left(n-j\right)}^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\left(5{\alpha }_{1}+10\right)\left(n-j\right)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\right\}\right], |
{I}^{n+1} = {I}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\rm{C}\left({\alpha }_{1}\right)}k\left({\tau }_{n}, I\left({\tau }_{n}\right)\right)\\ +\frac{\alpha_{1}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+2\right)} \sum\limits_{j=2}^{n}\left[k\left(\tau_{j-1}, I^{j-1}\right)\right. \\ \left.-k\left(\tau_{j-2}, I^{j-2}\right)\right]\left[(n-j+1)^{\alpha_{1}}\left(n-j+3+2 \alpha_{1}\right)\right. \\ \left.-(n-j+1)^{\alpha_{1}}\left(n-j+3+3 \alpha_{1}\right)\right] \\ +\frac{\alpha_{1}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+3\right)} \sum\limits_{j=2}^{n}\left[k\left(\tau_{j}, I^{j}\right)-2 k\left(\tau_{j-1}, I^{j-1}\right)\right. \\ \left.+k\left(\tau_{j-2}, I^{j-2}\right)\right]\left[(n-j+1)^{\alpha_{1}}\left\{2(n-j)^{2}+\left(3 \alpha_{1}+10\right)(n-j)+2 \alpha_{1}^{2}+9 \alpha_{1}+12\right\}\right. \\ \left.-(n-j)^{\alpha_{1}}\left\{2(n-j)^{2}+\left(5 \alpha_{1}+10\right)(n-j)+6 \alpha_{1}^{2}+18 \alpha_{1}+12\right\}\right] | (32) |
{V^{n+1}=V^{0}+\frac{\left(1-\alpha_{1}\right)}{\mathrm{C}}\left(\alpha_{1}\right)} k\left(\tau_{n}, V\left(\tau_{n}\right)\right) +\frac{\alpha_{1}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+1\right)} \sum\limits_{i=2}^{n} k\left(\tau_{j-2}, V^{j-2}\right)\left[(n-j+1)^{\alpha_{1}}-(n-j)^{\alpha_{1}}\right] \\ +\frac{\alpha_{1}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+2\right)} \sum\limits_{j=2}^{n}\left[k\left(\tau_{j-1}, V^{j-1}\right)-k\left(\tau_{j-2}, V^{j-2}\right)\right]\left[(n-j+1)^{\alpha_{1}}\left(n-j+3+2 \alpha_{1}\right)\right.\\ \left.-(n-j+1)^{\alpha_{1}}\left(n-j+3+3 \alpha_{1}\right)\right] \\ +\frac{\alpha_{1}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+3\right)} \sum\limits_{j=2}^{n}\left[k\left(\tau_{j}, V^{j}\right)-2 k\left(\tau_{j-1}, V^{j-1}\right)\right.\\ \left.+k\left(\tau_{i-2}, V^{j-2}\right)\right]\left[(n-j+1)^{\alpha_{1}}\left\{2(n-j)^{2}+\left(3 \alpha_{1}+10\right)(n-j)+2 \alpha_{1}^{2}+9 \alpha_{1}+12\right\}\right.\\ \left.-(n-j)^{\alpha_{1}}\left\{2(n-j)^{2}+\left(5 \alpha_{1}+10\right)(n-j)+6 \alpha_{1}^{2}+18 \alpha_{1}+12\right\}\right] . |
Finally, we have the following approximation:
{S^{n+1}=S^{0}+\frac{\left(1-\alpha_{1}\right)}{\mathrm{C}}\left(\alpha_{1}\right)} \alpha_{2} \tau^{\alpha_{2}-1}\left\{\alpha-\beta S\left(\tau_{n}\right) V\left(\tau_{n}\right)-\delta S\left(\tau_{n}\right)\right\} \\ +\frac{\alpha_{1} \alpha_{2}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+1\right)} \sum\limits_{j=2}^{n} \tau^{\alpha_{2}-1}\left\{\alpha-\beta S^{j-2} V^{j-2}-\delta S^{j-2}\right\}\left[(n-j+1)^{\alpha_{1}}-(n-j)^{\alpha_{1}}\right] \\ +\frac{\alpha_{1} \alpha_{2}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+2\right)} \sum\limits_{j=2}^{n}\left[\tau^{\alpha_{2}-1}\left\{\alpha-\beta S^{j-1} V^{j-1}-\delta S^{j-1}\right\}\right.\\ \left.-\tau^{\alpha_{2}-1}\left\{\alpha-\beta S^{j-2} V^{j-2}-\delta S^{j-2}\right\}\right]\left[(n-j+1)^{\alpha_{1}}\left(n-j+3+2 \alpha_{1}\right)\right.\\ \left.-(n-j+1)^{\alpha_{1}}\left(n-j+3+3 \alpha_{1}\right)\right] \\ +\frac{\alpha_{1} \alpha_{2}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+3\right)} \sum\limits_{i=2}^{n}\left[\tau^{\alpha_{2}-1}\left\{\alpha-\beta S^{j} V^{j}-\delta S^{j}\right\}-2 \tau^{\alpha_{2}-1}\left\{\alpha-\beta S^{j-1} V^{j-1}-\delta S^{j-1}\right\}\right.\\ \left.+\tau^{\alpha_{2}-1}\left\{\alpha-\beta S^{j-2} V^{j-2}-\delta S^{j-2}\right\}\right]\left[( n - j + 1 ) ^ { \alpha _ { 1 } } \left\{2(n-j)^{2}+\left(3 \alpha_{1}+10\right)(n-j)+2 \alpha_{1}^{2}\right.\right.\\ \left.\left.+9 \alpha_{1}+12\right\}-(n-j)^{\alpha_{1}}\left\{2(n-j)^{2}+\left(5 \alpha_{1}+10\right)(n-j)+6 \alpha_{1}^{2}+18 \alpha_{1}+12\right\}\right], |
I^{n+1}=I^{0}+ \frac{\left(1-\alpha_{1}\right)}{\mathrm{C}}\left(\alpha_{1}\right) \alpha_{2} \tau^{\alpha_{2}-1}\left\{\beta S\left(\tau_{n}\right) V\left(\tau_{n}\right)-\sigma I\left(\tau_{n}\right)\right\} \\ +\frac{\alpha_{1} \alpha_{2}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+1\right)} \sum\limits_{j=2}^{n} \tau^{\alpha_{2}-1}\left\{\beta S^{j-2} V^{j-2}-\sigma I^{j-2}\right\}\left[(n-j+1)^{\alpha_{1}}-(n-j)^{\alpha_{1}}\right] \\ +\frac{\alpha_{1} \alpha_{2}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+2\right)} \sum\limits_{j=2}^{n}\left[\tau^{\alpha_{2}-1}\left\{\beta S^{j-1} V^{j-1}-\sigma I^{j-1}\right\}\right.\\ \left.-\tau^{\alpha_{2}-1}\left\{\beta S^{j-2} V^{j-2}-\sigma I^{j-2}\right\}\right]\left[(n-j+1)^{\alpha_{1}}\left(n-j+3+2 \alpha_{1}\right)\right.\\ \left.-(n-j+1)^{\alpha_{1}}\left(n-j+3+3 \alpha_{1}\right)\right] \\ +\frac{\alpha_{1} \alpha_{2}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+3\right)} \sum\limits_{j=2}^{n}\left[\tau^{\alpha_{2}-1}\left\{\beta S^{j} V^{j}-\sigma I^{j}\right\}-2 \tau^{\alpha_{2}-1}\left\{\beta S^{j-1} V^{j-1}-\sigma I^{j-1}\right\}\right.\\ \left.+\tau^{\alpha_{2}-1}\left\{\beta S^{j-2} V^{j-2}-\sigma I^{j-2}\right\}\right]\left[( n - j + 1 ) ^ { \alpha _ { 1 } } \left\{2(n-j)^{2}+\left(3 \alpha_{1}+10\right)(n-j)\right.\right.\\ \left.+2 \alpha_{1}^{2}+9 \alpha_{1}+12\right\} \\ \left.-(n-j)^{\alpha_{1}}\left\{2(n-j)^{2}+\left(5 \alpha_{1}+10\right)(n-j)+6 \alpha_{1}^{2}+18 \alpha_{1}+12\right\}\right] | (33) |
V^{n+1}=V^{0}+ \frac{\left(1-\alpha_{1}\right)}{\mathrm{C}\left(\alpha_{1}\right)} \alpha_{2} \tau^{\alpha_{2}-1}\left\{\mu_{n} I\left(\tau_{n}\right)-\left(p_{1}+p_{2}\right) V\left(\tau_{n}\right)-\beta S\left(\tau_{n}\right) V\left(\tau_{n}\right)\right\} \\ +\frac{\alpha_{1} \alpha_{2}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+1\right)} \sum\limits_{j=2}^{n} \tau^{\alpha_{2}-1}\left\{\mu_{n} I^{j-2}-\left(p_{1}+p_{2}\right) V^{j-2}-\beta S^{j-2} V^{j-2}\right\}\left[(n-j+1)^{\alpha_{1}}\right.\\ \left.-(n-j)^{\alpha_{1}}\right] \\ +\frac{\alpha_{1} \alpha_{2}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+2\right)} \sum\limits_{j=2}^{n}\left[\tau^{\alpha_{2}-1}\left\{\mu_{n} I^{j-1}-\left(p_{1}+p_{2}\right) V^{j-1}-\beta S^{j-1} V^{j-1}\right\}\right.\\ \left.-\tau^{\alpha_{2}-1}\left\{\mu_{n} I^{j-2}-\left(p_{1}+p_{2}\right) V^{j-2}-\beta S^{j-2} V^{j-2}\right\}\right]\left[(n-j+1)^{\alpha_{1}}\left(n-j+3+2 \alpha_{1}\right)\right.\\ \left.-(n-j+1)^{\alpha_{1}}\left(n-j+3+3 \alpha_{1}\right)\right] \\ +\frac{\alpha_{1} \alpha_{2}(\Delta \tau)^{\alpha_{1}}}{\mathrm{C}\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+3\right)} \sum\limits_{j=2}^{n}\left[\tau^{\alpha_{2}-1}\left\{\mu_{n} I^{j}-\left(p_{1}+p_{2}\right) V^{j}-\beta S^{j} V^{j}\right\}\right.\\ -2 \tau^{\alpha_{2}-1}\left\{\mu_{n} I^{j-1}-\left(p_{1}+p_{2}\right) V^{j-1}-\beta S^{j-1} V^{j-1}\right\} \\ \left.+\tau^{\alpha_{2}-1}\left\{\mu_{n} I^{j-2}-\left(p_{1}+p_{2}\right) V^{j-2}-\beta S^{j-2} V^{j-2}\right\}\right]\left[( n - j + 1 ) ^ { \alpha _ { 1 } } \left\{2(n-j)^{2}\right.\right.\\ \left.+\left(3 \alpha_{1}+10\right)(n-j)+2 \alpha_{1}^{2}+9 \alpha_{1}+12\right\} \\ \left.-(n-j)^{\alpha_{1}}\left\{2(n-j)^{2}+\left(5 \alpha_{1}+10\right)(n-j)+6 \alpha_{1}^{2}+18 \alpha_{1}+12\right\}\right] . |
To identify the potential effectiveness of the dengue transmission in the Community, the dengue fractional-order model is presented to analyze its effect in society. That's why; we have used ABC with ST, advanced AT scheme, and fractal fractional derivative techniques for fractional-order dengue model. The various numerical methods identify the mechanical features of the fractional-order model with the time-fractional parameters. The results of the nonlinear system memory were also detected with the help of fractional values.
In this manuscript, we have investigated a non-integer order dengue internal transmission model with the help of the Picard successive approximation technique and Banach contraction theorem. The arbitrary derivative of fractional order \gamma ~~{\rm{and}}~~\alpha has been taken ABC with MLK. The concerned results have been handled by coupling ST with mentioned iterative techniques. Also, an algorithm was developed with AT and fractal fractional techniques for numerical results. Existence theory and uniqueness for the equilibrium solution are provided via nonlinear functional analysis and fixed point theory. Global stability of the system was also proved by using the Lyapunov function. The arbitrary derivative of fractional order has been taken in the ABC and fractal fractional Atangana-Baleanu with Mittag-Leffler kernel. Non-linear fractional differential equations were raised from the derivative with the help of a non-singular and non-local kernel within the fractional derivative framework. This kind of study is helpful for a physician for planning and decision-making for the treatment of the disease.
Authors has no conflicts of interest.
[1] | C. S. Chou, A. Friedman, Introduction, In: Introduction to mathematical biology, Springer Undergraduate Texts in Mathematics and Technology, Springer, 2016. |
[2] | International Travel and Health, World Health Organization (WHO), 2013. Available from: https://www.who.int/publications/i/item/9789241580472. |
[3] |
J. G. Rigau-Perez, G. G. Clark, D. J. Gubler, P. Reiter, E. J. Sanders, A. V. Vorndam, Dengue and dengue hemorrhagic fever, Lancet, 352 (1998), 971-977. https://doi.org/10.1016/S0140-6736(97)12483-7 doi: 10.1016/S0140-6736(97)12483-7
![]() |
[4] |
C. X. T. Phuong, N. T. Ngo, B. Wills, R. Kneen, N. T. T. Ha, T. T. T. Mai, et al., Evaluation of the World Health Organization standard tourniquet test and a modified tourniquet test in the diagnosis of dengue infection in Viet Nam, Trop. Med. Int. Health, 7 (2002), 125-132. https://doi.org/10.1046/j.1365-3156.2002.00841.x doi: 10.1046/j.1365-3156.2002.00841.x
![]() |
[5] | D. J. Gubler, Dengue, urbanization and globalization: The unholy trinity of the 21st century, Trop. Med. Health, 39 (2011), 3-11. |
[6] | T. P. Endy, K. B. Anderson, A. Nisalak, I. K. Yoon, S. Green, A. L. Rothman, et al., Determinants of in apparent and symptomatic dengue infection in a prospective study of primary school children in Kamphaeng Phet, Thailand, PLoS Neglect. Trop. Dis., 5 (2011), e975. |
[7] |
A. Wilder-Smith, E. E. Ooi, S. G. Vasudevan, D. J. Gubler, Update on dengue: Epidemiology, virus evolution, antiviral drugs, and vaccine development, Curr. Infect. Dis. Rep., 12 (2010), 157-164. https://doi.org/10.1007/s11908-010-0102-7 doi: 10.1007/s11908-010-0102-7
![]() |
[8] |
A. Wilder-Smith, W. Foo, A. Earnest S. Sremulanathan, N. I. Paton, Sero epidemiology of dengue in the adult population of Singapore, Trop. Med. Int. Health, 9 (2004), 305-308. https://doi.org/10.1046/j.1365-3156.2003.01177.x doi: 10.1046/j.1365-3156.2003.01177.x
![]() |
[9] |
D. J. Gubler, The economic burden of dengue, Am. J. Trop. Med. Hyg., 86 (2012), 743-744. https://doi.org/10.4269/ajtmh.2012.12-0157 doi: 10.4269/ajtmh.2012.12-0157
![]() |
[10] |
E. A. Thomas, M. John, A. Bhatia, Cutaneous manifestations of dengue viral infection in Punjab (north India), Int. J. Dermatol., 46 (2007), 715-719. https://doi.org/10.1111/j.1365-4632.2007.03298.x doi: 10.1111/j.1365-4632.2007.03298.x
![]() |
[11] |
J. Whitehorn, C. P. Simmons, The pathogenesis of dengue, Vaccine, 29 (2011), 7221-7228. https://doi.org/10.1016/j.vaccine.2011.07.022 doi: 10.1016/j.vaccine.2011.07.022
![]() |
[12] |
J. Whitehorn, J. Farrar, Dengue, Brit. Med. Bull., 95 (2010), 161-173. https://doi.org/10.1093/bmb/ldq019 doi: 10.1093/bmb/ldq019
![]() |
[13] | Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control, 2009. Available from: https://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf?ua=1. |
[14] | L. H. Chen, M. E. Wilson, Dengue and chikungunya infections in travelers, Curr. Opin. Infect. Dis., 23 (2010), 438-444. |
[15] | F. U. Ahmed, C. B. Mahmood, J. D. Sharma, S. M. Hoque, R. Zaman, M. S. Hasan, Dengue and dengue haemorrhagic fever in chidren during the 2000 outbreak in Chittatong, Bangladesh, Dengue Bull., 25 (2001), 33-39. |
[16] |
A. Sampath, R. Padmanabhan, Molecular targets for flavivirus drug discovery, Antivir. Res., 81 (2009), 6-15. https://doi.org/10.1016/j.antiviral.2008.08.004 doi: 10.1016/j.antiviral.2008.08.004
![]() |
[17] |
C. G. Noble, Y. L. Chen, H. Dong, F. Gu, S. P. Lim, W. Schul, et al., Strategies for development of dengue virus inhibitors, Antivir. Res., 85 (2010), 450-462. https://doi.org/10.1016/j.antiviral.2009.12.011 doi: 10.1016/j.antiviral.2009.12.011
![]() |
[18] |
M. Amin, M. Farman, A. Akgul, R. T. Alqahtani, Effect of vaccination to control COVID-19 with fractal fractional operator, Alex. Eng. J., 61 (2022), 3551-3557. https://doi.org/10.1016/j.aej.2021.09.006 doi: 10.1016/j.aej.2021.09.006
![]() |
[19] |
M. Farman, A. Akgul, T. Abdeljawad, P. A. Naik, N. Bukhari, A. Ahmad, Modeling and analysis of fractional order Ebola virus model with Mittag-Lefler kernel, Alex. Eng. J., 61 (2022), 2062-2073. https://doi.org/10.1016/j.aej.2021.07.040 doi: 10.1016/j.aej.2021.07.040
![]() |
[20] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-13. |
[21] | K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Berlin: Springer, 2010 |
[22] |
A. Atangana, Blind in a commutative world: Simple illustrations with functions and chaotic attractors, Chaos Solitons Fract., 114 (2018), 347-363. https://doi.org/10.1016/j.chaos.2018.07.022 doi: 10.1016/j.chaos.2018.07.022
![]() |
[23] |
M. Farman, M. Aslam, A. Akgul, A. Ahmad, Modeling of fractional order COVID-19 epidemic model with quarantine and social distancing, Math. Methods Appl. Sci., 44 (2021), 9334-9350. https://doi.org/10.1002/mma.7360 doi: 10.1002/mma.7360
![]() |
[24] |
B. Ghanbari, J. F. Gómez-Aguilar, Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives, Chaos, Solitons Fract., 116 (2018), 114-120. https://doi.org/10.1016/j.chaos.2018.09.026 doi: 10.1016/j.chaos.2018.09.026
![]() |
[25] |
J. F. Gómez-Aguilar, K. A. Abro, O. Kolebaje, A. Yildirim, Chaos in a calcium oscillation model via Atangana-Baleanu operator with strong memory, Eur. Phys. J. Plus, 134 (2019) 140. https://doi.org/10.1140/epjp/i2019-12550-1 doi: 10.1140/epjp/i2019-12550-1
![]() |
[26] |
J. F. Gómez-Aguilar, Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Phys. A: Stat. Mech. Appl., 494 (2018), 52-75. https://doi.org/10.1016/j.physa.2017.12.007 doi: 10.1016/j.physa.2017.12.007
![]() |
[27] |
J. F. Gómez-Aguilar, M. G. López-López, V. M. Alvarado-Martínez, D. Baleanu, H. Khan, Chaos in a cancer model via fractional derivatives with exponential decay and Mittag-Leffler law, Entropy, 19 (2017), 681. https://doi.org/10.3390/e19120681 doi: 10.3390/e19120681
![]() |
[28] |
M. A. Khan, S. W. Shah, S. Ullah, J. F. Gómez-Aguilar, A dynamical model of asymptomatic carrier zika virus with optimal control strategies, Nonlinear Anal.: Real World Appl., 50 (2019), 144-170. https://doi.org/10.1016/j.nonrwa.2019.04.006 doi: 10.1016/j.nonrwa.2019.04.006
![]() |
[29] |
Z. U. A. Zafar, M. Mushtaq, K. Rehan, A non-integer order dengue internal transmission model, Adv. Differ. Equ., 2018 (2018) 23. https://doi.org/10.1186/s13662-018-1472-7 doi: 10.1186/s13662-018-1472-7
![]() |
[30] |
A. Atangana, E. Bonyah, A. A. Elsadany, A fractional order optimal 4D chaotic financial model with Mittag-Leffler law, Chinese J. Phys., 65 (2020), 38-53. https://doi.org/10.1016/j.cjph.2020.02.003 doi: 10.1016/j.cjph.2020.02.003
![]() |
1. | Shoukry El‐Ganaini, Hitender Kumar, A variety of new soliton structures and various dynamical behaviors of a discrete electrical lattice with nonlinear dispersion via variety of analytical architectures, 2023, 46, 0170-4214, 2746, 10.1002/mma.8673 | |
2. | M.A. Attar, M. Roshani, Kh. Hosseinzadeh, D.D. Ganji, Analytical solution of fractional differential equations by Akbari–Ganji’s method, 2022, 6, 26668181, 100450, 10.1016/j.padiff.2022.100450 | |
3. | THILAGARAJAH MATHANARANJAN, DAYALINI VIJAYAKUMAR, NEW SOLITON SOLUTIONS IN NANO-FIBERS WITH SPACE-TIME FRACTIONAL DERIVATIVES, 2022, 30, 0218-348X, 10.1142/S0218348X22501419 | |
4. | Muhammad Imran Asjad, Naeem Ullah, Asma Taskeen, Fahd Jarad, Study of power law non-linearity in solitonic solutions using extended hyperbolic function method, 2022, 7, 2473-6988, 18603, 10.3934/math.20221023 | |
5. | HIMAYAT ULLAH JAN, HAKEEM ULLAH, MEHREEN FIZA, ILYAS KHAN, ABDULLAH MOHAMED, ABD ALLAH A. MOUSA, MODIFICATION OF OPTIMAL HOMOTOPY ASYMPTOTIC METHOD FOR MULTI-DIMENSIONAL TIME-FRACTIONAL MODEL OF NAVIER–STOKES EQUATION, 2023, 31, 0218-348X, 10.1142/S0218348X23400212 | |
6. | Ajay Kumar, Sunil Kumar, Shaher Momani, Samir Hadid, A chaos study of fractal–fractional predator–prey model of mathematical ecology, 2024, 225, 03784754, 857, 10.1016/j.matcom.2023.09.010 | |
7. | AZIZ KHAN, HAFSA NAZ, MUHAMMAD SARWAR, KAMAL SHAH, MANAR A. ALQUDAH, THABET ABDELJAWAD, NUMERICAL ANALYSIS OF SOME FRACTIONAL ORDER DIFFERENTIAL EQUATIONS VIA LEGENDRE SPECTRAL METHOD, 2023, 31, 0218-348X, 10.1142/S0218348X23400364 | |
8. | Saba Jamil, Abdul Bariq, Muhammad Farman, Kottakkaran Sooppy Nisar, Ali Akgül, Muhammad Umer Saleem, Qualitative analysis and chaotic behavior of respiratory syncytial virus infection in human with fractional operator, 2024, 14, 2045-2322, 10.1038/s41598-023-51121-0 | |
9. | Thilagarajah Mathanaranjan, 2024, 9780443154041, 155, 10.1016/B978-0-44-315404-1.00015-1 | |
10. | Muhammad Azeem, Muhammad Farman, Aamir Shehzad, Kottakkaran Sooppy Nisar, Hybrid fractional derivative for modeling and analysis of cancer treatment with virotherapy, 2024, 0736-2994, 1, 10.1080/07362994.2024.2411349 | |
11. | Kottakkaran Sooppy Nisar, Muhammad Farman, Mahmoud Abdel-Aty, Jinde Cao, A review on epidemic models in sight of fractional calculus, 2023, 75, 11100168, 81, 10.1016/j.aej.2023.05.071 | |
12. | Saba Jamil, Muhammad Farman, Ali Akgül, Qualitative and quantitative analysis of a fractal fractional HIV/AIDS model, 2023, 76, 11100168, 167, 10.1016/j.aej.2023.06.021 | |
13. | Huda Alsaud, Muhammad Owais Kulachi, Aqeel Ahmad, Mustafa Inc, Muhammad Taimoor, Investigation of SEIR model with vaccinated effects using sustainable fractional approach for low immune individuals, 2024, 9, 2473-6988, 10208, 10.3934/math.2024499 | |
14. | ZULQURNAIN SABIR, DUMITRU BALEANU, MUHAMMAD ASIF ZAHOOR RAJA, ALI S. ALSHOMRANI, EVREN HINCAL, MEYER WAVELET NEURAL NETWORKS PROCEDURES TO INVESTIGATE THE NUMERICAL PERFORMANCES OF THE COMPUTER VIRUS SPREAD WITH KILL SIGNALS, 2023, 31, 0218-348X, 10.1142/S0218348X2340025X | |
15. | Muhammad Farman, Cicik Alfiniyah, Aamir Shehzad, Modelling and analysis tuberculosis (TB) model with hybrid fractional operator, 2023, 72, 11100168, 463, 10.1016/j.aej.2023.04.017 | |
16. | Muhammad Farman, Cicik Alfiniyah, A constant proportional caputo operator for modeling childhood disease epidemics, 2024, 10, 27726622, 100393, 10.1016/j.dajour.2023.100393 | |
17. | Jiraporn Lamwong, Puntani Pongsumpun, A fractional derivative model of the dynamic of dengue transmission based on seasonal factors in Thailand, 2025, 457, 03770427, 116256, 10.1016/j.cam.2024.116256 | |
18. | Changjin Xu, Muhammad Farman, Aamir Shehzad, Analysis and chaotic behavior of a fish farming model with singular and non-singular kernel, 2025, 18, 1793-5245, 10.1142/S179352452350105X |
Parameters | DFE | EE | Unit |
\alpha | 0.56 | 0.56 | {Day}^{-1} |
\beta | 0.001 | 0.1 | {Day}^{-1} |
\delta | 0.1313 | 0.0041 | {Day}^{-1} |
\sigma | 0.5 | 0.32 | {Day}^{-1} |
{\mu }_{n} | 156 | 175 | {Day}^{-1} |
{P}_{1} | 4 | 4 | {Day}^{-1} |
{P}_{2} | 25 | 25 | {Day}^{-1} |