In the present article, we obtain the compactness of iterated commutators generated by general bilinear fractional operator with RVMO functions on Morrey spaces with non-doubling measures.
Citation: Zhiyu Lin, Xiangxing Tao, Taotao Zheng. Compactness for iterated commutators of general bilinear fractional integral operators on Morrey spaces with non-doubling measures[J]. AIMS Mathematics, 2022, 7(12): 20645-20659. doi: 10.3934/math.20221132
[1] | Heng Yang, Jiang Zhou . Compactness of commutators of fractional integral operators on ball Banach function spaces. AIMS Mathematics, 2024, 9(2): 3126-3149. doi: 10.3934/math.2024152 |
[2] | Jing Liu, Kui Li . Compactness for commutators of Calderón-Zygmund singular integral on weighted Morrey spaces. AIMS Mathematics, 2024, 9(2): 3483-3504. doi: 10.3934/math.2024171 |
[3] | Bo Xu . Bilinear θ-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces. AIMS Mathematics, 2022, 7(7): 12123-12143. doi: 10.3934/math.2022674 |
[4] | Muhammad Asim, Ghada AlNemer . Results for fractional bilinear Hardy operators in central varying exponent Morrey space. AIMS Mathematics, 2024, 9(11): 29689-29706. doi: 10.3934/math.20241438 |
[5] | Muhammad Asim, Ghada AlNemer . Analytical findings on bilinear fractional Hardy operators in weighted central Morrey spaces with variable exponents. AIMS Mathematics, 2025, 10(5): 10431-10451. doi: 10.3934/math.2025475 |
[6] | Yanlong Shi, Xiangxing Tao . Rough fractional integral and its multilinear commutators on p-adic generalized Morrey spaces. AIMS Mathematics, 2023, 8(7): 17012-17026. doi: 10.3934/math.2023868 |
[7] | Suixin He, Shuangping Tao . Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces. AIMS Mathematics, 2022, 7(1): 1000-1014. doi: 10.3934/math.2022060 |
[8] | Lian Hu, Rong Yang, Songxiao Li . Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces. AIMS Mathematics, 2021, 6(7): 7782-7797. doi: 10.3934/math.2021453 |
[9] | Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139 |
[10] | Chenchen Niu, Hongbin Wang . N-dimensional fractional Hardy operators with rough kernels on central Morrey spaces with variable exponents. AIMS Mathematics, 2023, 8(5): 10379-10394. doi: 10.3934/math.2023525 |
In the present article, we obtain the compactness of iterated commutators generated by general bilinear fractional operator with RVMO functions on Morrey spaces with non-doubling measures.
For 0<α<n, the fractional integral operator,
Iαf(x)=∫Rdf(y)|x−y|n−αdμ(y), |
has many applications in harmonic analysis, PDEs and the theory of Sobolev embeddings (see [2,15]). For the boundedness of the fractional integral operator on function spaces, Adams [1] first obtained the boundedness of Iα on Morrey space. Recently it has been shown that many results of the classical singular integral theory also hold without assuming the doubling property, considerable attention has been paid to the study of when the underlying measures only satisfy the polynomial growth condition, namely, there exists a positive constant C0>0 and n∈(0,d] such that
μ(B(x,l))≤C0ln, | (1.1) |
for every x∈Rd and l>0, B(x,l) being the Euclidean ball with center x and radius l. In 2005, Sawano and Tanaka [19] introduced the definition of Morrey spaces under non-doubling measure conditions, and considered the boundedness of some classic operators including fractional integral Iα on Morrey spaces. Let us recall the definition of Morrey spaces Mpq(μ), where μ satisfies the growth condition (1.1). Let κ>1 and 1≤q≤p<∞. We define the Morrey spaces Mpq(κ,μ) as
Mpq(κ,μ):={f∈Lqloc(μ):‖f‖Mpq(κ,μ)<∞}, |
where the norm ‖f‖Mpq(κ,μ) is given by
‖f‖Mpq(κ,μ):=supQ∈Q(μ)μ(κQ)1p−1q(∫Q|f|qdμ)1q. | (1.2) |
Applying Hölder's inequality, it is easy to see that
Lp(μ)=Mpp(κ,μ)⊂Mpt(κ,μ)⊂Mps(κ,μ), |
for 1≤s≤t≤p<∞. Moreover, the definition of Morrey spaces is independent of the constant κ>1, and the norms for different choice of κ>1 are equivalent, see [17,19,20] for details. So we will denote Mpq(2,μ) by Mpq(μ). One can see from the definition of Morrey spaces that, if fi∈Mpisi(μ), 1≤si≤pi<∞,i=1,2, and 1p=1p1+1p2,1s=1s1+1s2, we have ‖f1f2‖Mps(μ)≤‖f1‖Mp1s1(μ)‖f2‖Mp2s2(μ).
In recent decades, there have been many works [3,12,14,24] about the properties of commutators. Chanillo [5] obtained the boundedness of the commutator [b,Iα] on the classical Lebesgue space, the operator [b,Iα] given by
[b,Iα]f=bIαf−Iα(bf),b∈BMO. |
Subsequently, Di Fazio and Ragusa [9] studied the boundedness of the commutator [b,Iα] on the classical Morrey space. These conclusions can be extended to the case of non-doubling measures. Tolsa [23] introduced the concept of BMO space with non-double measures and called it as RBMO. In order to describe RBMO, we use the follow notations. Here and below we mean by a "cube" a compact cube with the sides parallel to the coordinate axis. Q(x,l(Q)) will be the cube centered at x with side length l(Q). Next, we define the set of doubling cubes:
Q(μ):={Q:Qisacubewithμ(Q)>0}, |
Q(μ,2):={Q∈Q(μ):0<μ(2Q)≤c1μ(Q)}, |
where c1 is a constant independent of Q∈Q(μ). Q(μ,2) denotes the set of doubling cubes. For Q∈Q(μ) be a cube which is not always doubling, one can find N large enough such that NQ is a doubling cube. Let j≥0 be the smallest integer such that 2jQ is doubling, we denote this cube by Q∗.
Let 0≤γ<n. Denote by cQ the center of Q∈Q(μ). Then we define
K(γ)Q,R:=1+∫l(R)l(Q)(μ(B(cQ,l))ln)1−γndll, |
and KQ,R:=K(0)Q,R for Q,R∈Q(μ,2) with Q⊂R. The coefficient KQ,R was introduced by Tolsa in [23] and the modified coefficient K(γ)Q,R was defined later by Chen and Sawyer [7]. For Q∈Q(μ,2) we denote by mQb the average of the L1loc(μ)−functionb, namely, mQb=1μ(Q)∫Qb(x)dμ. Let η>1 be a fixed constant, we say that b∈L1loc(μ) is in RBMO(μ) if there exists a constant A such that
1μ(ηQ)∫Q|b(y)−mQ∗b|dμ(y)≤A, |
for any cube Q, and
|mQb−mRb|≤AKQ,R, |
for any two doubling cubes Q⊂R. The minimal constant A is the RBMO(μ) norm of b, and it will be denoted by ‖b‖∗.
By using an uniform boundedness property for Iα associated with non-doubling measures in Rd, Betancor and Fari˜na [4] obtained the compactness of the commutator [b,Iα] when b∈RVMO(μ), where RVMO(μ) denotes the closure of the space C∞c(Rd) of the smooth and compact supported functions on Rd, in RBMO(μ).
In 2004, Garcia-Cuerva and Gatto [13] generalized the classic Hardy-Littlewood-Sobolev theorem, for 1<p<nα, ‖Iαf‖Lq(μ)≤C‖f‖Lp(μ), where 1q=1p−αn. They also introduced a general class of fractional integrals operators Kα for the purpose of obtaining boundedness of the operators from Lp(μ) to Lip(α−np), nα<p≤∞, which defined as follows
Kα(f)(x)=∫RdKα(x,y)f(y)dμ(y), | (1.3) |
the kernel function Kα:Rd×Rd→C is said to be a general fractional kernel of order α and regularity δ(0<δ≤1) if it satisfies the following two conditions:
|Kα(x,y)|≤C|x−y|n−αforallx≠y, | (1.4) |
and
|Kα(x,y)−Kα(x′,y)|≤C|x−x′|δ|x−y|n−α+δ, | (1.5) |
for |x−y|≥2|x−x′|. We can see that Iα is a fractional integral operator with a kernel having regularity 1. In 2008, Sawano and Shirai [18] proved that if operator Kα with the kernel Kα which satisfying the conditions (1.4) and (1.5), then the commutator [b,Kα] with b∈RVMO(μ) is a compact operator on the Morrey spaces with non-doubling measures. For the multilinear fractional integral Iα, we can also see [6,8,11,16]. Tao and Zheng in [22] discussed the Morrey spaces boundedness of the iterated commutators [b1,b2,Iα] under the setting with non-doubling measures for some indexes, which is defined by
[b1,b2,Iα](f1,f2)(x)=∫Rn∫Rn(b1(x)−b1(y1))(b2(x)−b2(y2))f1(y1)f2(y2)(|x−y1|+|x−y2|)2n−αdμ(y1)dμ(y2), | (1.6) |
where b1,b2∈RBMO(μ), and
Iα(f1,f2)(x)=∫Rn∫Rnf1(y1)f2(y2)(|x−y1|+|x−y2|)2n−αdμ(y1)dμ(y2). |
For b∈VMO, the BMO-closure of C∞c, Ding and Mei [10] established the compactness of the bilinear fractional integrals commutators [Iα,b]i(i=1,2) on Morrey spaces, the commutators of Iα are defined by
[Iα,b]1(f,g)(x)=∫Rn∫Rnb(y)−b(x)(|x−y|+|x−z|)2n−αf(y)g(z)dydz, |
[Iα,b]2(f,g)(x)=∫Rn∫Rnb(z)−b(x)(|x−y|+|x−z|)2n−αf(y)g(z)dydz. |
In this paper, we consider a general bilinear factional integral operator Kα based on (1.3), which is given by
Kα(f1,f2)(x)=∫Rd∫Rdkα(x,y1,y2)f1(y1)f2(y2)dμ(y1)dμ(y2), | (1.7) |
where 0<α<2n and 0<δ≤1. A function kα:Rd×Rd×Rd→C is said to be a general bilinear fractional kernel of order α and regularity δ if it satisfies the following two conditions:
|kα(x,y1,y2)|≤C(|x−y1|+|x−y2|)2n−αforallx≠yi,i=1,2, | (1.8) |
|kα(x,y1,y2)−kα(x′,y1,y2)|≤C|x−x′|δ(|x−y1|+|x−y2|)2n−α+δ, | (1.9) |
for maxi=1,2|x−yi|≥2|x−x′|>0.
In this paper, under non-doubling measure conditions we will study the Lp-boundedness and Morrey-boundedness of the general bilinear factional integral operator Kα, and the Morrey-boundedness and compactness of Kα associated commutators. Firstly, we give the boundedness of Kα on Lebesgue spaces:
Lemma 1.1. Let 0<α<2n, fi∈Lpi(μ) with 1<pi<αn, i=1,2. If 1p=1p1+1p2−αn>0, then there exists a constant C>0 independent of f1,f2 such that
‖Kα(f1,f2)‖Lp(μ)≤C‖f1‖Lp1(μ)‖f2‖Lp2(μ). |
Proof. By a simple inequality (a+b)c≥ac/2bc/2,a,b,c>0, we have
|Kα(f1,f2)(x)|≤∫Rd∫Rd|kα(x,y1,y2)||f1(y1)||f2(y2)|dμ(y1)dμ(y2)≤C∫Rd∫Rd|f1(y1)||f2(y2)|(|x−y1|+|x−y2|)2n−αdμ(y1)dμ(y2)≤C∫Rd∫Rd|f1(y1)||x−y1|n−α2|f2(y2)||x−y2|n−α2dμ(y1)dμ(y2)≤CIα2(|f1|)(x)Iα2(|f2|)(x). |
Applying Hölder's inequality with 1t1=1p1−α2n, 1t2=1p2−α2n and ‖Iα2f‖Lti(μ)≤C‖f‖Lpi(μ), i=1,2 (see[13]HY__HY, Corollary3]), we get
‖Kα(f1,f2)‖Lp(μ)≤C‖Iα2(|f1|)‖Lt1(μ)‖Iα2(|f2|)‖Lt2(μ)≤C‖f1‖Lp1(μ)‖f2‖Lp2(μ). |
Next we will illustrate the boundedness properties of the general bilinear fractional integrals on Morrey spaces with non-doubling measures. For the convenience of the following, the modified fractional maximal operator is defined by
Mγ,98f(x):=supx∈Q∈Q(μ)1μ(98Q)1−γn∫Q|f(y)|dμ(y),0≤γ<n, |
and Mf(x):=M0,98f(x).
Lemma 1.2. [19,20] Suppose that the parameters p,q,s,t and γ satisfy 1<q≤p<∞, 1<t≤s<∞, 0≤γ<n, 1s=1p−γn and qp=ts. Then there exists a constant C>0 such that, for all f∈Mpq(μ),
‖Mγ,98f‖Mst(μ)≤C‖f‖Mpq(μ). |
Lemma 1.3. [19] Let 1<q≤p<∞, 1<t≤s<∞, 0<α<n and qp=ts, 1s=1p−αn. Then there exists a constant C>0 such that, for every f∈Mpq(μ),
‖Kαf‖Mst(μ)≤C‖f‖Mpq(μ). |
Lemma 1.4. Support 0<α<2n, 1<qi≤pi<∞, 1p=1p1+1p2−αn>0 and 1q=1q1+1q2−αn>0, i=1,2. Then, the operators Kα are bounded from Mp1q1(μ)×Mp2q2(μ) to Mpq(μ), that is to say,
‖Kα(f1,f2)‖Mpq(μ)≤C‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ), |
where C>0 is the constant independent of f1,f2.
Proof. For all y∈Rd,y≠x, an elementary calculation yields
C|x−y|n−α=∫∞|x−y|lα−n−1dl=C∫∞0χ|x−y|<l(y)lnlα−1dl. | (1.10) |
Thus, by (1.10) and Fubini's theorem, we get
|Kα(f1,f2)(x)|≤∫Rd∫Rd|kα(x,y1,y2)||f1(y1)||f2(y2)|dμ(y1)dμ(y2)≤C∫Rd∫Rd|f1(y1)||f2(y2)|(|x−y1|+|x−y2|)2n−αdμ(y1)dμ(y2)≤C∫Rd∫Rd(∫∞|x−y1|+|x−y2|lα−2n−1dl)|f1(y1)||f2(y2)|dμ(y1)dμ(y2)=C∫∞0(1ln∫|x−y1|<l|f1(y1)|dμ(y1))(1ln∫|x−y2|<l|f2(y2)|dμ(y2))lα−1dl=C∫ϵ0(1ln∫|x−y1|<l|f1(y1)|dμ(y1))(1ln∫|x−y2|<l|f2(y2)|dμ(y2))lα−1dl+C∫∞ϵ(1ln∫|x−y1|<l|f1(y1)|dμ(y1))(1ln∫|x−y2|<l|f2(y2)|dμ(y2))lα−1dl:=E1+E2. |
Applying the Hölder inequality and the growth condition (1.1), and letting cube Q=Q(x,2l), we get
1ln∫|x−yi|<l|fi(yi)|dμ(yi)≤Cμ(98Q)∫Q|fi(yi)|dμ(yi)≤Mfi(x),i=1,2 | (1.11) |
and
1ln∫|x−yi|<l|fi(yi)|dμ(yi)≤Cln∫Q|fi(yi)|dμ(yi)≤Cln(∫Q|fi(yi)|qidμ(yi))1qiμ(Q)1−1qi≤Cl−npi‖fi‖Mpiqi(μ),i=1,2. | (1.12) |
Then, by (1.11), we have
E1≤CϵαMf1(x)Mf2(x). |
And by (1.12), we get
E2≤C∫∞ϵ(l−np1‖f1‖Mp1q1(μ))(l−np1‖f2‖Mp2q2(μ))lα−1dl≤Cϵ−np‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ). |
By choosing ϵ=(‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ)Mf1(x)Mf2(x))nh, where 1h=1p1+1p2, we can get
|Kα(f1,f2)(x)|≤C(‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ))1−hp(Mf1(x)Mf2(x))hp. | (1.13) |
For 1h=1p1+1p2, 1r=1q1+1q2, applying the Hölder inequality and Lemma 1.2, we obtain that
|μ(2Q)|1p−1q{∫Q|Mf1(y)Mf2(y)|qhpdμ(y)}1q≤C|μ(2Q)|1p−hpr{∫Q|Mf1(y)Mf2(y)|rdμ(y)}hpr≤C{|μ(2Q)|1h−1r{∫Q|Mf1(y)Mf2(y)|rdμ(y)}1r}hp≤C{|μ(2Q)|1h−1r(∫Q|Mf1(y)|q1dμ(y))1q1(∫Q|Mf2(y)|q2dμ(y))1q2}hp≤C(‖Mf1‖Mp1q1(μ)‖Mf2‖Mp2q2(μ))hp≤C(‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ))hp. | (1.14) |
Thus, by (1.13) and (1.14), we get
‖Kα(f1,f2)‖Mpq(μ)≤C‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ). |
Now let b1,b2∈RBMO(μ), then the iterated commutators of general bilinear fractional integral operator [b1,b2,Kα] is formally defined as
[b1,b2,Kα](f1,f2)(x)=∫Rd∫Rd(b1(x)−b1(y1))(b2(x)−b2(y2))kα(x,y1,y2)f1(y1)f2(y2)dμ(y1)dμ(y2). | (1.15) |
Obviously, (1.15) is the form of (1.6) when kα(x,y1,y2)=1/(|x−y1|+|x−y2|)2n−α. Inspired by [18] and [10,22], we find that the boundedness and compactness of the iterated commutators of general bilinear fractional integral operators [b1,b2,Kα] on the Morrey space with non-doubling measures have not been established. Our main results can be stated as follows.
Theorem 1.5. Let 0<α<2n, 1<qi≤pi<∞, 1p=1p1+1p2−αn>0 and 1q=1q1+1q2−αn>0, i=1,2. Suppose ‖μ‖=∞ and b1,b2∈RBMO(μ). Then, the commutators [b1,b2,Kα] are bounded from Mp1q1(μ)×Mp2q2(μ) to Mpq(μ), moreover,
‖[b1,b2,Kα](f1,f2)‖Mpq(μ)≤C‖b1‖∗‖b2‖∗‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ), |
where C>0 is the constant independent of f1,f2,b1,b2.
By using the similar methods in [22]HY__HY, Theorem 1.4], we can obtain the proof of Theorem 1.5. Hence, we omit the details.
On the basis of Theorem 1.5, we will pay our attention to the compactness of [b1,b2,Kα] on Morrey space with non-doubling measures. We have the following theorem.
Theorem 1.6. Let 0<α<2n, 1<qi≤pi<∞, 1p=1p1+1p2−αn>0 and 1q=1q1+1q2−αn>0, i=1,2. Suppose ‖μ‖=∞ and b1,b2∈RVMO(μ). Then, the commutator [b1,b2,Kα] is a compact operator from Mp1q1(μ)×Mp2q2(μ) to Mpq(μ).
In order to prove Theorem 1.6, we also need a compactness criterion on spaces of Mp1q1(μ)×Mp2q2(μ).
Lemma 2.1. [18,21] Let 1<q≤p<∞, 1<qi≤pi<∞, i=1,2. Suppose T is a bilinear integral operator defined as follows
T(f1,f2)(x):=∫Rd∫Rdk(x,y1,y2)f1(y1)f2(y2)dμ(y1)dμ(y2), | (2.1) |
where the kernel function k∈L∞c(μ⊗μ⊗μ). Then T is a compact operator from Mp1q1(μ)×Mp2q2(μ) to Mpq(μ).
Lemma 2.2. Let x∈supp(μ), 0≤α<n, and let ϱ>0 and r>0. Then there exist constants C1,C2>0 such that
∫|x−y|≤r|f(y)||x−y|n−α−ϱdμ(y)≤C1rϱMαf(x), | (2.2) |
∫|x−y|>r|f(y)||x−y|n−α+ϱdμ(y)≤C2r−ϱMαf(x). | (2.3) |
Proof. We will use the same procedure as in the proof of ([13], Lemmas 2.1 and 2.2). If n−α≤ϱ, (2.2) follows immediately from (1.1). If ϱ<n−α, we write
∫|x−y|≤r|f(y)||x−y|n−α−ϱdμ(y)=∞∑j=0∫2−j−1r≤|x−y|<2−jr|f(y)||x−y|n−α−ϱdμ(y)≤∞∑j=01(2−j−1r)n−α−ϱ∫|x−y|<2−jr|f(y)|dμ(y)=C1rϱMαf(x). |
On the other hand, with the similar ways as above we have
∫|x−y|>r|f(y)||x−y|n−α+ϱdμ(y)=∞∑j=0∫2jr≤|x−y|<2j+1r|f(y)||x−y|n−α+ϱdμ(y)≤∞∑j=01(2jr)n−α+ϱ∫|x−y|≤2j+1r|f(y)|dμ(y)=C2r−ϱMαf(x). |
Recall the function space RVMO(μ), b∈RVMO(μ) if and only if there exists a sequence of compactly supported smooth functions {bj}∞j=1 such that limj→∞‖b−bj‖∗=0. In order to obtain the compactness in Theorem 1.6, we will establish some function approximations for the iterated commutator. Assume a function ψ(t)∈C∞0(Rd) satisfying suppψ⊂[1,∞)andψ(t)=1,t≥2. For ε≤1, we consider the truncation of Kα,
Kεα(f1,f2)(x):=∫Rd∫Rdψ(|x−y1|ε)ψ(|x−y2|ε)kα(x,y1,y2)f1(y1)f2(y2)dμ(y1)dμ(y2). | (2.4) |
Lemma 2.3. Let b1,b2∈C∞c(Rd), the kernel function kα satisfies (1.8) and (1.9). For f1∈Mp1q1(μ), f2∈Mp2q2(μ) with 1<qi≤pi<∞, i=1,2, and let 1p=1p1+1p2−αn>0, 1q=1q1+1q2−αn>0, then the iterated commutators [b1,b2,Kεα] tends to [b1,b2,Kα] uniformly in Mqp(μ) as ε→0.
Proof. One can see that
[b1,b2,Kα](f1,f2)(x)−[b1,b2,Kεα](f1,f2)(x)=limρ→0∫Rd∫Rd[ψ(|x−y1|ε)ψ(|x−y2|ε)−ψ(|x−y1|ρ)ψ(|x−y2|ρ)]×(b1(x)−b1(y1))(b2(x)−b2(y2))kα(x,y1,y2)f(y1)f(y2)dμ(y1)dμ(y2). | (2.5) |
In view of the size condition of the kernel kα, the property of ψ, using Lebesgue's convergence theorem and Lemma 2.2, we obtain
|[b1,b2,Kα](f1,f2)(x)−[b1,b2,Kεα](f1,f2)(x)|≤Climρ→0∫Rd∫Rd|ψ(|x−y1|ε)ψ(|x−y2|ε)−ψ(|x−y1|ρ)ψ(|x−y2|ρ)|×|x−y1||x−y2||f1(y1)||f2(y2)|(|x−y1|+|x−y2|)2n−αdμ(y1)dμ(y2)≤C∫|x−y1|≤2ε|f1(y1)||x−y1|n−1−α1dμ(y1)∫|x−y2|≤2ε|f2(y2)||x−y2|n−1−α2dμ(y2)+C∫|x−y1|≤2ε|f1(y1)||x−y1|n−2−δ−α1dμ(y1)∫|x−y2|>2ε|f2(y2)||x−y2|n+δ−α2dμ(y2)+C∫|x−y1|>2ε|f1(y1)||x−y1|n+δ−α1dμ(y1)∫|x−y2|≤2ε|f2(y2)||x−y2|n−2−δ−α2dμ(y2)≤Cε2Mα1f1(x)Mα2f2(x), |
where we have chosen δ>0 and α1+α2=α such that 1si=1pi−αin>0, i=1,2. We note that ‖Mαifi‖Msiti(μ)≤C‖fi‖Mpiqi(μ) with siti=piqi. Thus, we have that
‖([b1,b2,Kα]−[b1,b2,Kεα])(f1,f2)‖Mpq(μ)≤Cε2‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ). |
Therefore, Lemma 2.3 holds.
Lemma 2.4. Under the same conditions and notations, let Kεα be the truncation operator defined by (2.4). Kε,Rα be the truncation of Kεα,
Kε,Rα(f1,f2)(x):=∫|x−y1|≤R∫|x−y2|≤Rψ(|x−y1|ε)ψ(|x−y2|ε)kα(x,y1,y2)f(y1)f(y2)dμ(y1)dμ(y2). |
Then, for f1∈Mp1p1(μ), f2∈Mp2p2(μ) with 1<qi≤pi<∞, i=1,2, the iterated commutator [b1,b2,Kε,Rα] tends to [b1,b2,Kεα] uniformly in Mpq(μ) as R→∞. Moreover, there exist δ>0 such that
‖([b1,b2,Kε,Rα]−[b1,b2,Kεα])(f1,f2)‖Mpq(μ)≤CεR−δ‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ). |
Proof. Note 0<α<2n, 1<q≤p<∞, 1<qi≤pi<∞, i=1,2, 1h=1p1+1p2, 1r=1q1+1q2, 1p=1h−αn>0, 1q=1r−αn>0 and b1,b2∈C∞c(Rd). Taking f1∈Mp1q1(μ), f2∈Mp2q2(μ), we obtain
[b1,b2,Kεα](f1,f2)(x)−[b1,b2,Kε,Rα](f1,f2)(x)=(∫Rd∫Rd−∫|x−y1|≤R∫|x−y2|≤R)ψ(|x−y1|ε)ψ(|x−y2|ε)×(b1(x)−b1(y1))(b2(x)−b2(y2))kα(x,y1,y2)f(y1)f(y2)dμ(y1)dμ(y2). |
Next we introduce the following two indices:
α1=1p1(1p1+1p2)−1α=hp1αandα2=1p2(1p1+1p2)−1α=hp2α. |
Then α1 and α2 satisfy
α=α1+α2,0<α1<np1,0<α2<np2. |
In fact,
αi−npi=n(hpiαn−1pi)<n(hpi1h−1pi)=0,i=1,2. |
Now, since p1,p2>1, we see that n>max(α1,α2). In particular, this yields
(|x−y1|+|x−y2|)2n−α=(|x−y1|+|x−y2|)(n−α1)+(n−α2)≥|x−y1|n−α1|x−y2|n−α2. |
For b1,b2∈C∞c(Rd), there exist Q1⊃suppb1 and Q2⊃suppb2. We can see that the kernel satisfies
|ψ(|x−y1|ε)||ψ(|x−y2|ε)||(b1(x)−b1(y1))||(b2(x)−b2(y2))||kα(x,y1,y2)|≤CχRd∖B(x,ε)(y1)(χQ1(x)+χQ1(y1))χRd∖B(x,ε)(y2)(χQ2(x)+χQ2(y2))|x−y1|n−α1|x−y2|n−α2, |
that is
|[b1,b2,Kεα](f1,f2)(x)−[b1,b2,Kε,Rα](f1,f2)(x)|≤C(∫|x−y1|≥R∫|x−y2|≥R+∫|x−y1|≥R∫ε≤|x−y2|<R+∫ε≤|x−y1|<R∫|x−y2|≥R)×(χQ1(x)+χQ1(y1))(χQ2(x)+χQ2(y2))|f1(y1)||f2(y2)||x−y1|n−α1|x−y2|n−α2dμ(y1)dμ(y2):=D1+D2+D3. |
To estimate D1, applying (1.10), the Fubini theorem and (1.12), we get
D1=C∫|x−y1|≥R(χQ1(x)+χQ1(y1))|f1(y1)||x−y1|n−α1dμ(y1)×∫|x−y2|≥R(χQ2(x)+χQ2(y2))|f2(y2)||x−y2|n−α2dμ(y2)=C∫|x−y1|≥R(χQ1(x)+χQ1(y1))(∫∞0χ|x−y1|<l1(y1)ln1lα1−11dl1)|f1(y1)|dμ(y1)×∫|x−y2|≥R(χQ2(x)+χQ2(y2))(∫∞0χ|x−y2|<l2(y2)ln2lα2−12dl2)|f2(y2)|dμ(y2)=C∫∞R(1ln1∫|x−y1|<l1(χQ1(x)+χQ1(y1))|f1(y1)|dμ(y1))lα1−11dl1×∫∞R(1ln2∫|x−y2|<l2(χQ2(x)+χQ2(y2))|f2(y2)|dμ(y2))lα2−12dl2≤C[χQ1(x)∫∞Rl−np1+α1−11dl1‖f1‖Mp1q1(μ)+∫∞R(∫|x−y1|<l1χQ1(y1)|f1(y1)|dμ(y1))l−n+α1−11dl1]×[χQ2(x)∫∞Rl−np2+α2−12dl2‖f2‖Mp2q2(μ)+∫∞R(∫|x−y1|<l2χQ2(y2)|f2(y2)|dμ(y2))l−n+α2−12dl2]≤C[χQ1(x)R−np1+α1‖f1‖Mp1q1(μ)∫∞R(∫Q1χ|x−y1|<l1(y1)|f1(y1)|dμ(y1))l−n+α1−11dl1]×[χQ2(x)R−np2+α2‖f2‖Mp2q2(μ)∫∞R(∫Q2χ|x−y1|<l2(y2)|f2(y2)|dμ(y2))l−n+α2−12dl2]. |
Furthermore, using the Minkowski inequality, we can deduce that
‖D1‖Mpq(μ)≤CR−np1+α1−np2+α2‖χQ1(x)χQ2(x)‖Mpq(μ)‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ)+CR−np1+α1‖f1‖Mp1q1(μ)‖χQ1(x)∫∞R(∫Q2χ|x−y1|<l2(y2)|f2(y2)|dμ(y2))l−n+α2−12dl2‖Mpq(μ)+CR−np2+α2‖f2‖Mp2q2(μ)‖χQ2(x)∫∞R(∫Q1χ|x−y1|<l1(y1)|f1(y1)|dμ(y1))l−n+α1−11dl1‖Mpq(μ)+C‖∫∞R(∫Q1χ|x−y1|<l1(y1)|f1(y1)|dμ(y1))l−n+α1−11dl1×∫∞R(∫Q2χ|x−y1|<l2(y2)|f2(y2)|dμ(y2))l−n+α2−12dl2‖Mpq(μ):=D11+D12+D13+D14. |
It is easy to get that
D11≤CR−np‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ), |
since
‖χQ1(x)χQ2(x)‖Mpq(μ)=supQ∈Q(μ)μ(2Q)1p−1q(∫Q|χQ1χQ2|qdμ)1q=supQ∈Q(μ)μ(Q∩Q1∩Q2)1qμ(2Q)1q−1p≤Cμ(Q1∩Q2)1p<C. |
For D12, using the generalized Minkowski inequality, Mqp(μ)⊃Lp(μ) and the growth condition (1.1), we have the follow estimate
D12=CR−np1+α1‖f1‖Mp1q1(μ)‖∫∞R(∫Q2χQ1(x)χ|x−y1|<l2(y2)|f2(y2)|dμ(y2))l−n+α2−12dl2‖Mpq(μ)≤CR−np1+α1‖f1‖Mp1q1(μ)∫∞R(∫Q2‖χQ1(⋅)χ|⋅−y1|<l2(y2)‖Mpq(μ)|f2(y2)|dμ(y2))l−n+α2−12dl2≤CR−np1+α1∫∞Rsupy2∈Rd‖χB(⋅,l2)(y2)‖Lp(μ)l−n+α2−12dl2‖f1‖Mp1q1(μ)‖f2‖Mp21(μ)≤CR−np1+α1∫∞Rlnp−n+α2−12dl2‖f1‖Mp1q1(μ)‖f2‖Mp21(μ)≤CRnp2−n‖f1‖Mp1q1(μ)‖f2‖Mp21(μ). |
Similarly, we have
D13≤CRnp1−n‖f1‖Mp11(μ)‖f2‖Mp2q2(μ). |
Applying the Hölder inequality, we obtain
D14≤C∫∞R∫∞R∫Q1∫Q2‖χB(⋅,l1)(y1)χB(⋅,l2)(y2)‖Mpq(μ)|f2(y2)|dμ(y2)|f1(y1)|dμ(y1)l−n+α2−12dl2l−n+α1−11dl1≤C∫∞R∫∞R‖χB(⋅,l1)(y1)χB(⋅,l2)(y2)‖Lp∫Q1∫Q2|f2(y2)|dμ(y2)|f1(y1)|dμ(y1)l−n+α2−12dl2l−n+α1−11dl1≤C∫∞Rsupy1∈Rd‖χB(⋅,l1)(y1)‖Lw1l−n+α1−11dl1∫∞Rsupy2∈Rd‖χB(⋅,l2)(y2)‖Lw2l−n+α2−12dl2‖f1‖Mp11(μ)‖f2‖Mp21(μ)≤CRnw1−n+α1+nw2−n+α2‖f1‖Mp11(μ)‖f2‖Mp21(μ)≤CRnp−2n+α‖f1‖Mp11(μ)‖f2‖Mp21(μ), |
where w1,w2,andp satisfy 1w1=1p1−α1n, 1w2=1p2−α2n and 1p=1w1+1w2.
Therefore, recalling that Mpi1⊃Mpiqi, we obtain the norm estimate of D1,
‖D1‖Mpq≤C(R−np+R−np2−n+R−np1−n+R−np−2n+α)‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ). |
We now estimate D2. Similarly, using (1.10), the Fubini theorem and (1.12), we get
D2=C∫|x−y1|≥R(χQ1(x)+χQ1(y1))|f1(y1)||x−y1|n−α1dμ(y1)∫ε≤|x−y2|<R(χQ2(x)+χQ2(y2))|f2(y2)||x−y2|n−α2dμ(y2)=C∫|x−y1|≥R(χQ1(x)+χQ1(y1))(∫∞0χ|x−y1|<l1(y1)ln1lα1−11dl1)|f1(y1)|dμ(y1)×∫ε≤|x−y2|<R(χQ2(x)+χQ2(y2))(∫∞0χ|x−y2|<l2(y2)ln2lα2−1dl2)|f2(y2)|dμ(y2)=C∫∞R(1ln1∫|x−y1|<l1(χQ1(x)+χQ1(y1))|f1(y1)|dμ(y1))lα1−11dl1×(∫∞R(1ln2∫|x−y2|<R(χQ2(x)+χQ2(y2))|f2(y2)|dμ(y2))lα2−12dl2+∫Rε(1ln2∫|x−y2|<l2(χQ2(x)+χQ2(y2))|f2(y2)|dμ(y2))lα2−12dl2)=C∫∞R(1ln1∫|x−y1|<l1(χQ1(x)+χQ1(y1))|f1(y1)|dμ(y1))lα1−11dl1×∫∞ε(1ln2∫|x−y2|<l2(χQ2(x)+χQ2(y2))|f2(y2)|dμ(y2))lα2−12dl2≤C[χQ1(x)R−np1+α1‖f1‖Mp1q1(μ)+∫∞R(∫Q1χ|x−y1|<l1(y1)|f1(y1)|dμ(y1))l−n+α1−11dl1]×[χQ2(x)ε−np2+α2‖f2‖Mp2q2(μ)+∫∞ε(∫Q2χ|x−y1|<l2(y2)|f2(y2)|dμ(y2))l−n+α2−12dl2]. |
Thus, we get the norm estimate of D2,
‖D2‖Mpq(μ)≤C(R−np1+α1ε−np2+α2+R−np1+α1εnp−n+α2+ε−np2+α2Rnp−n+α1+Rnw1−n+α1εnw2−n+α2)‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ), |
where w1,w2,p satisfy 1w1=1p1−α1n, 1w2=1p2−α2n and 1p=1w1+1w2.
The same estimate holds for D3 by above argument with the role of y1 and y2 inter changed,
‖D3‖Mpq(μ)≤C(ε−np1+α1R−np2+α2+ε−np1+α1Rnp−n+α2+R−np2+α2εnp−n+α1+εnw1−n+α1Rnw2−n+α2)‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ), |
where w1,w2,p satisfy 1w1=1p1−α1n, 1w2=1p2−α2n and 1p=1w1+1w2.
Thus, we obtain that
‖([b1,b2,Kε,Rα]−[b1,b2,Kεα])(f1,f2)‖Mpq(μ)≤CεR−δ‖f1‖Mp1q1(μ)‖f2‖Mp2q2(μ), |
for some constants δ>0, and the constant Cε independent of R.
Proof of Theorem 1.6. Lemmas 2.3 and 2.4 reduce the proof of Theorem 1.6 to proving the compactness for [b1,b2,Kε,Rα] if b1,b2∈C∞c(Rd) on product Morrey spaces. We can also get the compactness for the operator [b1,b2,Kε,Rα] by using Lemma 2.1.
In this paper, we mainly obtain the Morrey-boundedness and compactness of the iterated commutators of general bilinear fractional integral operators Kα under the non-doubling measure conditions. Instead of establishing of the compactness of the iterated commutators directly we proved it by means of two truncation.
We would like to thank the editors and reviewers for their helpful suggestions. This research was supported by the National Natural Science Foundation of China under grant No.11771399, No.11626213 and No.11961056.
All authors declare no conflicts of interest in this paper.
[1] | D. R. Adams, A note on Riesz potentials, Duke Math. J., 42 (1975), 765–778. http://projecteuclid.org/euclid.dmj/1077311348 |
[2] | D. R. Adams, L. I. Hedberg, Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 1996. https://doi.org/10.1007/978-3-662-03282-4 |
[3] |
Á. Bényi, W. Damián, K. Moen, R. H. Torres, Compactness properties of commutators of bilinear fractional integrals, Math. Z., 280 (2015), 569–582. https://doi.org/10.1007/s00209-015-1437-4 doi: 10.1007/s00209-015-1437-4
![]() |
[4] |
J. J. Betancor, J. C. Fariña, A note on compactness of commutators for fractional integrals associated with nondoubling measures, Z. Anal. Anwend., 26 (2007), 331–339. https://doi.org/10.4171/ZAA/1327 doi: 10.4171/ZAA/1327
![]() |
[5] |
S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31 (1982), 7–16. https://doi.org/10.1512/iumj.1982.31.31002 doi: 10.1512/iumj.1982.31.31002
![]() |
[6] |
J. Chen, D. Fan, Rough bilinear fractional integrals with variable kernels, Front. Math. China, 5 (2010), 369–378. https://doi.org/10.1007/s11464-010-0061-1 doi: 10.1007/s11464-010-0061-1
![]() |
[7] | W. Chen, E. Sawyer, A note on commutators of fractional integrals with RBMO(µ) functions, Illinois J. Math., 46 (2002), 1287–1298. http://projecteuclid.org/euclid.ijm/1258138480 |
[8] |
W. Chen, Y. Han, C. Miao, Bi-commutators of fractional integrals on product spaces, Math. Nachr., 281 (2008), 1108–1118. https://doi.org/10.1002/mana.200510663 doi: 10.1002/mana.200510663
![]() |
[9] | G. Di Fazio, M. A. Ragusa, Commutators and Morrey spaces, Boll. Un. Mat. Ital. A(7), 5 (1991), 323–332. Available from: https://www.researchgate.net/publication/265456355_Commutators_and_Morrey_spaces. |
[10] |
Y. Ding, T. Mei, Boundedness and compactness for the commutators of bilinear operators on Morrey spaces, Potential Anal., 42 (2015), 717–748. https://doi.org/10.1007/s11118-014-9455-0 doi: 10.1007/s11118-014-9455-0
![]() |
[11] |
Y. Fan, G. Gao, Some estimates of rough bilinear fractional integral, J. Funct. Spaces Appl., 2012, 406540. https://doi.org/10.1155/2012/406540 doi: 10.1155/2012/406540
![]() |
[12] |
X. Fu, D. Yang, Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces, Taiwanese J. Math., 18 (2014), 509–557. https://doi.org/10.11650/tjm.18.2014.3651 doi: 10.11650/tjm.18.2014.3651
![]() |
[13] |
J. García-Cuerva, A. E. Gatto, Boundedness properties of fractional integral operators associated to non-doubling measures, Stud. Math., 162 (2004), 245–261. https://doi.org/10.4064/sm162-3-5 doi: 10.4064/sm162-3-5
![]() |
[14] |
Q. Guo, J. Zhou, Boundedness and compactness of commutators for bilinear fractional integral operators on Morrey spaces, Anal. Math., 47 (2021), 81–103. https://doi.org/10.1007/s10476-021-0067-9 doi: 10.1007/s10476-021-0067-9
![]() |
[15] | V. G. Maz'ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer Berlin, Heidelberg, 1985. https://doi.org/10.1007/978-3-662-09922-3 |
[16] | G. Hu, Y. Meng, D. Yang, Multilinear commutators for fractional integrals in non-homogeneous spaces, Publ. Mat., 48 (2004), 335–367. Available from: https://doi.org/10.5565/PUBLMAT_48204_03. |
[17] |
Y. Sawano, Generalized Morrey spaces for non-doubling measures, NoDEA-Nonlinear Diff., 15 (2008), 413–425. https://doi.org/10.1007/s00030-008-6032-5 doi: 10.1007/s00030-008-6032-5
![]() |
[18] |
Y. Sawano, S. Shirai, Compact commutators on Morrey spaces with non-doubling measures, Georgian Math. J., 15 (2008), 353–376. https://doi.org/10.1515/GMJ.2008.353 doi: 10.1515/GMJ.2008.353
![]() |
[19] |
Y. Sawano, H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.), 21 (2005), 1535–1544. https://doi.org/10.1007/s10114-005-0660-z doi: 10.1007/s10114-005-0660-z
![]() |
[20] |
Y. Sawano, H. Tanaka, Sharp maximal inequalities and commutators on Morrey spaces with non-doubling measures, Taiwanese J. Math., 11 (2007), 1091–1112. https://doi.org/10.11650/twjm/1500404805 doi: 10.11650/twjm/1500404805
![]() |
[21] | X. Tao, J. Wang, Compactness for iterated commutators of multilinear singular integrals on morrey spaces with non-doubling measures, Math. Inequal. Appl., in press. |
[22] |
X. Tao, T. Zheng, Multilinear commutators of fractional integrals over Morrey spaces with non-doubling measures, NoDEA-Nonlinear Diff., 18 (2011), 287–308. https://doi.org/10.1007/s00030-010-0096-8 doi: 10.1007/s00030-010-0096-8
![]() |
[23] |
X. Tolsa, BMO, H1, and Calderón-Zygmund operators for non doubling measures, Math. Ann., 319 (2001), 89–149. https://doi.org/10.1007/PL00004432 doi: 10.1007/PL00004432
![]() |
[24] |
H. Zhao, Z. Liu, Weighted central BMO spaces and their applications, J. Funct. Space., 2021, 5285962. https://doi.org/10.1155/2021/5285962 doi: 10.1155/2021/5285962
![]() |
1. | Guanghui Lu, Miaomiao Wang, Shuangping Tao, Estimates for bilinear θ-type generalized fractional integral and its commutator on new non-homogeneous generalized Morrey spaces, 2023, 11, 2299-3274, 10.1515/agms-2023-0101 |