Loading [MathJax]/jax/output/SVG/jax.js
Research article

Compactness for iterated commutators of general bilinear fractional integral operators on Morrey spaces with non-doubling measures

  • Received: 15 May 2022 Revised: 06 September 2022 Accepted: 13 September 2022 Published: 23 September 2022
  • MSC : 42B20, 47B07, 42B35

  • In the present article, we obtain the compactness of iterated commutators generated by general bilinear fractional operator with RVMO functions on Morrey spaces with non-doubling measures.

    Citation: Zhiyu Lin, Xiangxing Tao, Taotao Zheng. Compactness for iterated commutators of general bilinear fractional integral operators on Morrey spaces with non-doubling measures[J]. AIMS Mathematics, 2022, 7(12): 20645-20659. doi: 10.3934/math.20221132

    Related Papers:

    [1] Heng Yang, Jiang Zhou . Compactness of commutators of fractional integral operators on ball Banach function spaces. AIMS Mathematics, 2024, 9(2): 3126-3149. doi: 10.3934/math.2024152
    [2] Jing Liu, Kui Li . Compactness for commutators of Calderón-Zygmund singular integral on weighted Morrey spaces. AIMS Mathematics, 2024, 9(2): 3483-3504. doi: 10.3934/math.2024171
    [3] Bo Xu . Bilinear θ-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces. AIMS Mathematics, 2022, 7(7): 12123-12143. doi: 10.3934/math.2022674
    [4] Muhammad Asim, Ghada AlNemer . Results for fractional bilinear Hardy operators in central varying exponent Morrey space. AIMS Mathematics, 2024, 9(11): 29689-29706. doi: 10.3934/math.20241438
    [5] Muhammad Asim, Ghada AlNemer . Analytical findings on bilinear fractional Hardy operators in weighted central Morrey spaces with variable exponents. AIMS Mathematics, 2025, 10(5): 10431-10451. doi: 10.3934/math.2025475
    [6] Yanlong Shi, Xiangxing Tao . Rough fractional integral and its multilinear commutators on p-adic generalized Morrey spaces. AIMS Mathematics, 2023, 8(7): 17012-17026. doi: 10.3934/math.2023868
    [7] Suixin He, Shuangping Tao . Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces. AIMS Mathematics, 2022, 7(1): 1000-1014. doi: 10.3934/math.2022060
    [8] Lian Hu, Rong Yang, Songxiao Li . Embedding and Volterra integral operators on a class of Dirichlet-Morrey spaces. AIMS Mathematics, 2021, 6(7): 7782-7797. doi: 10.3934/math.2021453
    [9] Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139
    [10] Chenchen Niu, Hongbin Wang . N-dimensional fractional Hardy operators with rough kernels on central Morrey spaces with variable exponents. AIMS Mathematics, 2023, 8(5): 10379-10394. doi: 10.3934/math.2023525
  • In the present article, we obtain the compactness of iterated commutators generated by general bilinear fractional operator with RVMO functions on Morrey spaces with non-doubling measures.



    For 0<α<n, the fractional integral operator,

    Iαf(x)=Rdf(y)|xy|nαdμ(y),

    has many applications in harmonic analysis, PDEs and the theory of Sobolev embeddings (see [2,15]). For the boundedness of the fractional integral operator on function spaces, Adams [1] first obtained the boundedness of Iα on Morrey space. Recently it has been shown that many results of the classical singular integral theory also hold without assuming the doubling property, considerable attention has been paid to the study of when the underlying measures only satisfy the polynomial growth condition, namely, there exists a positive constant C0>0 and n(0,d] such that

    μ(B(x,l))C0ln, (1.1)

    for every xRd and l>0, B(x,l) being the Euclidean ball with center x and radius l. In 2005, Sawano and Tanaka [19] introduced the definition of Morrey spaces under non-doubling measure conditions, and considered the boundedness of some classic operators including fractional integral Iα on Morrey spaces. Let us recall the definition of Morrey spaces Mpq(μ), where μ satisfies the growth condition (1.1). Let κ>1 and 1qp<. We define the Morrey spaces Mpq(κ,μ) as

    Mpq(κ,μ):={fLqloc(μ):fMpq(κ,μ)<},

    where the norm fMpq(κ,μ) is given by

    fMpq(κ,μ):=supQQ(μ)μ(κQ)1p1q(Q|f|qdμ)1q. (1.2)

    Applying Hölder's inequality, it is easy to see that

    Lp(μ)=Mpp(κ,μ)Mpt(κ,μ)Mps(κ,μ),

    for 1stp<. Moreover, the definition of Morrey spaces is independent of the constant κ>1, and the norms for different choice of κ>1 are equivalent, see [17,19,20] for details. So we will denote Mpq(2,μ) by Mpq(μ). One can see from the definition of Morrey spaces that, if fiMpisi(μ), 1sipi<,i=1,2, and 1p=1p1+1p2,1s=1s1+1s2, we have f1f2Mps(μ)f1Mp1s1(μ)f2Mp2s2(μ).

    In recent decades, there have been many works [3,12,14,24] about the properties of commutators. Chanillo [5] obtained the boundedness of the commutator [b,Iα] on the classical Lebesgue space, the operator [b,Iα] given by

    [b,Iα]f=bIαfIα(bf),bBMO.

    Subsequently, Di Fazio and Ragusa [9] studied the boundedness of the commutator [b,Iα] on the classical Morrey space. These conclusions can be extended to the case of non-doubling measures. Tolsa [23] introduced the concept of BMO space with non-double measures and called it as RBMO. In order to describe RBMO, we use the follow notations. Here and below we mean by a "cube" a compact cube with the sides parallel to the coordinate axis. Q(x,l(Q)) will be the cube centered at x with side length l(Q). Next, we define the set of doubling cubes:

    Q(μ):={Q:Qisacubewithμ(Q)>0},
    Q(μ,2):={QQ(μ):0<μ(2Q)c1μ(Q)},

    where c1 is a constant independent of QQ(μ). Q(μ,2) denotes the set of doubling cubes. For QQ(μ) be a cube which is not always doubling, one can find N large enough such that NQ is a doubling cube. Let j0 be the smallest integer such that 2jQ is doubling, we denote this cube by Q.

    Let 0γ<n. Denote by cQ the center of QQ(μ). Then we define

    K(γ)Q,R:=1+l(R)l(Q)(μ(B(cQ,l))ln)1γndll,

    and KQ,R:=K(0)Q,R for Q,RQ(μ,2) with QR. The coefficient KQ,R was introduced by Tolsa in [23] and the modified coefficient K(γ)Q,R was defined later by Chen and Sawyer [7]. For QQ(μ,2) we denote by mQb the average of the L1loc(μ)functionb, namely, mQb=1μ(Q)Qb(x)dμ. Let η>1 be a fixed constant, we say that bL1loc(μ) is in RBMO(μ) if there exists a constant A such that

    1μ(ηQ)Q|b(y)mQb|dμ(y)A,

    for any cube Q, and

    |mQbmRb|AKQ,R,

    for any two doubling cubes QR. The minimal constant A is the RBMO(μ) norm of b, and it will be denoted by b.

    By using an uniform boundedness property for Iα associated with non-doubling measures in Rd, Betancor and Fari˜na [4] obtained the compactness of the commutator [b,Iα] when bRVMO(μ), where RVMO(μ) denotes the closure of the space Cc(Rd) of the smooth and compact supported functions on Rd, in RBMO(μ).

    In 2004, Garcia-Cuerva and Gatto [13] generalized the classic Hardy-Littlewood-Sobolev theorem, for 1<p<nα, IαfLq(μ)CfLp(μ), where 1q=1pαn. They also introduced a general class of fractional integrals operators Kα for the purpose of obtaining boundedness of the operators from Lp(μ) to Lip(αnp), nα<p, which defined as follows

    Kα(f)(x)=RdKα(x,y)f(y)dμ(y), (1.3)

    the kernel function Kα:Rd×RdC is said to be a general fractional kernel of order α and regularity δ(0<δ1) if it satisfies the following two conditions:

    |Kα(x,y)|C|xy|nαforallxy, (1.4)

    and

    |Kα(x,y)Kα(x,y)|C|xx|δ|xy|nα+δ, (1.5)

    for |xy|2|xx|. We can see that Iα is a fractional integral operator with a kernel having regularity 1. In 2008, Sawano and Shirai [18] proved that if operator Kα with the kernel Kα which satisfying the conditions (1.4) and (1.5), then the commutator [b,Kα] with bRVMO(μ) is a compact operator on the Morrey spaces with non-doubling measures. For the multilinear fractional integral Iα, we can also see [6,8,11,16]. Tao and Zheng in [22] discussed the Morrey spaces boundedness of the iterated commutators [b1,b2,Iα] under the setting with non-doubling measures for some indexes, which is defined by

    [b1,b2,Iα](f1,f2)(x)=RnRn(b1(x)b1(y1))(b2(x)b2(y2))f1(y1)f2(y2)(|xy1|+|xy2|)2nαdμ(y1)dμ(y2), (1.6)

    where b1,b2RBMO(μ), and

    Iα(f1,f2)(x)=RnRnf1(y1)f2(y2)(|xy1|+|xy2|)2nαdμ(y1)dμ(y2).

    For bVMO, the BMO-closure of Cc, Ding and Mei [10] established the compactness of the bilinear fractional integrals commutators [Iα,b]i(i=1,2) on Morrey spaces, the commutators of Iα are defined by

    [Iα,b]1(f,g)(x)=RnRnb(y)b(x)(|xy|+|xz|)2nαf(y)g(z)dydz,
    [Iα,b]2(f,g)(x)=RnRnb(z)b(x)(|xy|+|xz|)2nαf(y)g(z)dydz.

    In this paper, we consider a general bilinear factional integral operator Kα based on (1.3), which is given by

    Kα(f1,f2)(x)=RdRdkα(x,y1,y2)f1(y1)f2(y2)dμ(y1)dμ(y2), (1.7)

    where 0<α<2n and 0<δ1. A function kα:Rd×Rd×RdC is said to be a general bilinear fractional kernel of order α and regularity δ if it satisfies the following two conditions:

    |kα(x,y1,y2)|C(|xy1|+|xy2|)2nαforallxyi,i=1,2, (1.8)
    |kα(x,y1,y2)kα(x,y1,y2)|C|xx|δ(|xy1|+|xy2|)2nα+δ, (1.9)

    for maxi=1,2|xyi|2|xx|>0.

    In this paper, under non-doubling measure conditions we will study the Lp-boundedness and Morrey-boundedness of the general bilinear factional integral operator Kα, and the Morrey-boundedness and compactness of Kα associated commutators. Firstly, we give the boundedness of Kα on Lebesgue spaces:

    Lemma 1.1. Let 0<α<2n, fiLpi(μ) with 1<pi<αn, i=1,2. If 1p=1p1+1p2αn>0, then there exists a constant C>0 independent of f1,f2 such that

    Kα(f1,f2)Lp(μ)Cf1Lp1(μ)f2Lp2(μ).

    Proof. By a simple inequality (a+b)cac/2bc/2,a,b,c>0, we have

    |Kα(f1,f2)(x)|RdRd|kα(x,y1,y2)||f1(y1)||f2(y2)|dμ(y1)dμ(y2)CRdRd|f1(y1)||f2(y2)|(|xy1|+|xy2|)2nαdμ(y1)dμ(y2)CRdRd|f1(y1)||xy1|nα2|f2(y2)||xy2|nα2dμ(y1)dμ(y2)CIα2(|f1|)(x)Iα2(|f2|)(x).

    Applying Hölder's inequality with 1t1=1p1α2n, 1t2=1p2α2n and Iα2fLti(μ)CfLpi(μ), i=1,2 (see[13]HY__HY, Corollary3]), we get

    Kα(f1,f2)Lp(μ)CIα2(|f1|)Lt1(μ)Iα2(|f2|)Lt2(μ)Cf1Lp1(μ)f2Lp2(μ).

    Next we will illustrate the boundedness properties of the general bilinear fractional integrals on Morrey spaces with non-doubling measures. For the convenience of the following, the modified fractional maximal operator is defined by

    Mγ,98f(x):=supxQQ(μ)1μ(98Q)1γnQ|f(y)|dμ(y),0γ<n,

    and Mf(x):=M0,98f(x).

    Lemma 1.2. [19,20] Suppose that the parameters p,q,s,t and γ satisfy 1<qp<, 1<ts<, 0γ<n, 1s=1pγn and qp=ts. Then there exists a constant C>0 such that, for all fMpq(μ),

    Mγ,98fMst(μ)CfMpq(μ).

    Lemma 1.3. [19] Let 1<qp<, 1<ts<, 0<α<n and qp=ts, 1s=1pαn. Then there exists a constant C>0 such that, for every fMpq(μ),

    KαfMst(μ)CfMpq(μ).

    Lemma 1.4. Support 0<α<2n, 1<qipi<, 1p=1p1+1p2αn>0 and 1q=1q1+1q2αn>0, i=1,2. Then, the operators Kα are bounded from Mp1q1(μ)×Mp2q2(μ) to Mpq(μ), that is to say,

    Kα(f1,f2)Mpq(μ)Cf1Mp1q1(μ)f2Mp2q2(μ),

    where C>0 is the constant independent of f1,f2.

    Proof. For all yRd,yx, an elementary calculation yields

    C|xy|nα=|xy|lαn1dl=C0χ|xy|<l(y)lnlα1dl. (1.10)

    Thus, by (1.10) and Fubini's theorem, we get

    |Kα(f1,f2)(x)|RdRd|kα(x,y1,y2)||f1(y1)||f2(y2)|dμ(y1)dμ(y2)CRdRd|f1(y1)||f2(y2)|(|xy1|+|xy2|)2nαdμ(y1)dμ(y2)CRdRd(|xy1|+|xy2|lα2n1dl)|f1(y1)||f2(y2)|dμ(y1)dμ(y2)=C0(1ln|xy1|<l|f1(y1)|dμ(y1))(1ln|xy2|<l|f2(y2)|dμ(y2))lα1dl=Cϵ0(1ln|xy1|<l|f1(y1)|dμ(y1))(1ln|xy2|<l|f2(y2)|dμ(y2))lα1dl+Cϵ(1ln|xy1|<l|f1(y1)|dμ(y1))(1ln|xy2|<l|f2(y2)|dμ(y2))lα1dl:=E1+E2.

    Applying the Hölder inequality and the growth condition (1.1), and letting cube Q=Q(x,2l), we get

    1ln|xyi|<l|fi(yi)|dμ(yi)Cμ(98Q)Q|fi(yi)|dμ(yi)Mfi(x),i=1,2 (1.11)

    and

    1ln|xyi|<l|fi(yi)|dμ(yi)ClnQ|fi(yi)|dμ(yi)Cln(Q|fi(yi)|qidμ(yi))1qiμ(Q)11qiClnpifiMpiqi(μ),i=1,2. (1.12)

    Then, by (1.11), we have

    E1CϵαMf1(x)Mf2(x).

    And by (1.12), we get

    E2Cϵ(lnp1f1Mp1q1(μ))(lnp1f2Mp2q2(μ))lα1dlCϵnpf1Mp1q1(μ)f2Mp2q2(μ).

    By choosing ϵ=(f1Mp1q1(μ)f2Mp2q2(μ)Mf1(x)Mf2(x))nh, where 1h=1p1+1p2, we can get

    |Kα(f1,f2)(x)|C(f1Mp1q1(μ)f2Mp2q2(μ))1hp(Mf1(x)Mf2(x))hp. (1.13)

    For 1h=1p1+1p2, 1r=1q1+1q2, applying the Hölder inequality and Lemma 1.2, we obtain that

    |μ(2Q)|1p1q{Q|Mf1(y)Mf2(y)|qhpdμ(y)}1qC|μ(2Q)|1phpr{Q|Mf1(y)Mf2(y)|rdμ(y)}hprC{|μ(2Q)|1h1r{Q|Mf1(y)Mf2(y)|rdμ(y)}1r}hpC{|μ(2Q)|1h1r(Q|Mf1(y)|q1dμ(y))1q1(Q|Mf2(y)|q2dμ(y))1q2}hpC(Mf1Mp1q1(μ)Mf2Mp2q2(μ))hpC(f1Mp1q1(μ)f2Mp2q2(μ))hp. (1.14)

    Thus, by (1.13) and (1.14), we get

    Kα(f1,f2)Mpq(μ)Cf1Mp1q1(μ)f2Mp2q2(μ).

    Now let b1,b2RBMO(μ), then the iterated commutators of general bilinear fractional integral operator [b1,b2,Kα] is formally defined as

    [b1,b2,Kα](f1,f2)(x)=RdRd(b1(x)b1(y1))(b2(x)b2(y2))kα(x,y1,y2)f1(y1)f2(y2)dμ(y1)dμ(y2). (1.15)

    Obviously, (1.15) is the form of (1.6) when kα(x,y1,y2)=1/(|xy1|+|xy2|)2nα. Inspired by [18] and [10,22], we find that the boundedness and compactness of the iterated commutators of general bilinear fractional integral operators [b1,b2,Kα] on the Morrey space with non-doubling measures have not been established. Our main results can be stated as follows.

    Theorem 1.5. Let 0<α<2n, 1<qipi<, 1p=1p1+1p2αn>0 and 1q=1q1+1q2αn>0, i=1,2. Suppose μ= and b1,b2RBMO(μ). Then, the commutators [b1,b2,Kα] are bounded from Mp1q1(μ)×Mp2q2(μ) to Mpq(μ), moreover,

    [b1,b2,Kα](f1,f2)Mpq(μ)Cb1b2f1Mp1q1(μ)f2Mp2q2(μ),

    where C>0 is the constant independent of f1,f2,b1,b2.

    By using the similar methods in [22]HY__HY, Theorem 1.4], we can obtain the proof of Theorem 1.5. Hence, we omit the details.

    On the basis of Theorem 1.5, we will pay our attention to the compactness of [b1,b2,Kα] on Morrey space with non-doubling measures. We have the following theorem.

    Theorem 1.6. Let 0<α<2n, 1<qipi<, 1p=1p1+1p2αn>0 and 1q=1q1+1q2αn>0, i=1,2. Suppose μ= and b1,b2RVMO(μ). Then, the commutator [b1,b2,Kα] is a compact operator from Mp1q1(μ)×Mp2q2(μ) to Mpq(μ).

    In order to prove Theorem 1.6, we also need a compactness criterion on spaces of Mp1q1(μ)×Mp2q2(μ).

    Lemma 2.1. [18,21] Let 1<qp<, 1<qipi<, i=1,2. Suppose T is a bilinear integral operator defined as follows

    T(f1,f2)(x):=RdRdk(x,y1,y2)f1(y1)f2(y2)dμ(y1)dμ(y2), (2.1)

    where the kernel function kLc(μμμ). Then T is a compact operator from Mp1q1(μ)×Mp2q2(μ) to Mpq(μ).

    Lemma 2.2. Let xsupp(μ), 0α<n, and let ϱ>0 and r>0. Then there exist constants C1,C2>0 such that

    |xy|r|f(y)||xy|nαϱdμ(y)C1rϱMαf(x), (2.2)
    |xy|>r|f(y)||xy|nα+ϱdμ(y)C2rϱMαf(x). (2.3)

    Proof. We will use the same procedure as in the proof of ([13], Lemmas 2.1 and 2.2). If nαϱ, (2.2) follows immediately from (1.1). If ϱ<nα, we write

    |xy|r|f(y)||xy|nαϱdμ(y)=j=02j1r|xy|<2jr|f(y)||xy|nαϱdμ(y)j=01(2j1r)nαϱ|xy|<2jr|f(y)|dμ(y)=C1rϱMαf(x).

    On the other hand, with the similar ways as above we have

    |xy|>r|f(y)||xy|nα+ϱdμ(y)=j=02jr|xy|<2j+1r|f(y)||xy|nα+ϱdμ(y)j=01(2jr)nα+ϱ|xy|2j+1r|f(y)|dμ(y)=C2rϱMαf(x).

    Recall the function space RVMO(μ), bRVMO(μ) if and only if there exists a sequence of compactly supported smooth functions {bj}j=1 such that limjbbj=0. In order to obtain the compactness in Theorem 1.6, we will establish some function approximations for the iterated commutator. Assume a function ψ(t)C0(Rd) satisfying suppψ[1,)andψ(t)=1,t2. For ε1, we consider the truncation of Kα,

    Kεα(f1,f2)(x):=RdRdψ(|xy1|ε)ψ(|xy2|ε)kα(x,y1,y2)f1(y1)f2(y2)dμ(y1)dμ(y2). (2.4)

    Lemma 2.3. Let b1,b2Cc(Rd), the kernel function kα satisfies (1.8) and (1.9). For f1Mp1q1(μ), f2Mp2q2(μ) with 1<qipi<, i=1,2, and let 1p=1p1+1p2αn>0, 1q=1q1+1q2αn>0, then the iterated commutators [b1,b2,Kεα] tends to [b1,b2,Kα] uniformly in Mqp(μ) as ε0.

    Proof. One can see that

    [b1,b2,Kα](f1,f2)(x)[b1,b2,Kεα](f1,f2)(x)=limρ0RdRd[ψ(|xy1|ε)ψ(|xy2|ε)ψ(|xy1|ρ)ψ(|xy2|ρ)]×(b1(x)b1(y1))(b2(x)b2(y2))kα(x,y1,y2)f(y1)f(y2)dμ(y1)dμ(y2). (2.5)

    In view of the size condition of the kernel kα, the property of ψ, using Lebesgue's convergence theorem and Lemma 2.2, we obtain

    |[b1,b2,Kα](f1,f2)(x)[b1,b2,Kεα](f1,f2)(x)|Climρ0RdRd|ψ(|xy1|ε)ψ(|xy2|ε)ψ(|xy1|ρ)ψ(|xy2|ρ)|×|xy1||xy2||f1(y1)||f2(y2)|(|xy1|+|xy2|)2nαdμ(y1)dμ(y2)C|xy1|2ε|f1(y1)||xy1|n1α1dμ(y1)|xy2|2ε|f2(y2)||xy2|n1α2dμ(y2)+C|xy1|2ε|f1(y1)||xy1|n2δα1dμ(y1)|xy2|>2ε|f2(y2)||xy2|n+δα2dμ(y2)+C|xy1|>2ε|f1(y1)||xy1|n+δα1dμ(y1)|xy2|2ε|f2(y2)||xy2|n2δα2dμ(y2)Cε2Mα1f1(x)Mα2f2(x),

    where we have chosen δ>0 and α1+α2=α such that 1si=1piαin>0, i=1,2. We note that MαifiMsiti(μ)CfiMpiqi(μ) with siti=piqi. Thus, we have that

    ([b1,b2,Kα][b1,b2,Kεα])(f1,f2)Mpq(μ)Cε2f1Mp1q1(μ)f2Mp2q2(μ).

    Therefore, Lemma 2.3 holds.

    Lemma 2.4. Under the same conditions and notations, let Kεα be the truncation operator defined by (2.4). Kε,Rα be the truncation of Kεα,

    Kε,Rα(f1,f2)(x):=|xy1|R|xy2|Rψ(|xy1|ε)ψ(|xy2|ε)kα(x,y1,y2)f(y1)f(y2)dμ(y1)dμ(y2).

    Then, for f1Mp1p1(μ), f2Mp2p2(μ) with 1<qipi<, i=1,2, the iterated commutator [b1,b2,Kε,Rα] tends to [b1,b2,Kεα] uniformly in Mpq(μ) as R. Moreover, there exist δ>0 such that

    ([b1,b2,Kε,Rα][b1,b2,Kεα])(f1,f2)Mpq(μ)CεRδf1Mp1q1(μ)f2Mp2q2(μ).

    Proof. Note 0<α<2n, 1<qp<, 1<qipi<, i=1,2, 1h=1p1+1p2, 1r=1q1+1q2, 1p=1hαn>0, 1q=1rαn>0 and b1,b2Cc(Rd). Taking f1Mp1q1(μ), f2Mp2q2(μ), we obtain

    [b1,b2,Kεα](f1,f2)(x)[b1,b2,Kε,Rα](f1,f2)(x)=(RdRd|xy1|R|xy2|R)ψ(|xy1|ε)ψ(|xy2|ε)×(b1(x)b1(y1))(b2(x)b2(y2))kα(x,y1,y2)f(y1)f(y2)dμ(y1)dμ(y2).

    Next we introduce the following two indices:

    α1=1p1(1p1+1p2)1α=hp1αandα2=1p2(1p1+1p2)1α=hp2α.

    Then α1 and α2 satisfy

    α=α1+α2,0<α1<np1,0<α2<np2.

    In fact,

    αinpi=n(hpiαn1pi)<n(hpi1h1pi)=0,i=1,2.

    Now, since p1,p2>1, we see that n>max(α1,α2). In particular, this yields

    (|xy1|+|xy2|)2nα=(|xy1|+|xy2|)(nα1)+(nα2)|xy1|nα1|xy2|nα2.

    For b1,b2Cc(Rd), there exist Q1suppb1 and Q2suppb2. We can see that the kernel satisfies

    |ψ(|xy1|ε)||ψ(|xy2|ε)||(b1(x)b1(y1))||(b2(x)b2(y2))||kα(x,y1,y2)|CχRdB(x,ε)(y1)(χQ1(x)+χQ1(y1))χRdB(x,ε)(y2)(χQ2(x)+χQ2(y2))|xy1|nα1|xy2|nα2,

    that is

    |[b1,b2,Kεα](f1,f2)(x)[b1,b2,Kε,Rα](f1,f2)(x)|C(|xy1|R|xy2|R+|xy1|Rε|xy2|<R+ε|xy1|<R|xy2|R)×(χQ1(x)+χQ1(y1))(χQ2(x)+χQ2(y2))|f1(y1)||f2(y2)||xy1|nα1|xy2|nα2dμ(y1)dμ(y2):=D1+D2+D3.

    To estimate D1, applying (1.10), the Fubini theorem and (1.12), we get

    D1=C|xy1|R(χQ1(x)+χQ1(y1))|f1(y1)||xy1|nα1dμ(y1)×|xy2|R(χQ2(x)+χQ2(y2))|f2(y2)||xy2|nα2dμ(y2)=C|xy1|R(χQ1(x)+χQ1(y1))(0χ|xy1|<l1(y1)ln1lα111dl1)|f1(y1)|dμ(y1)×|xy2|R(χQ2(x)+χQ2(y2))(0χ|xy2|<l2(y2)ln2lα212dl2)|f2(y2)|dμ(y2)=CR(1ln1|xy1|<l1(χQ1(x)+χQ1(y1))|f1(y1)|dμ(y1))lα111dl1×R(1ln2|xy2|<l2(χQ2(x)+χQ2(y2))|f2(y2)|dμ(y2))lα212dl2C[χQ1(x)Rlnp1+α111dl1f1Mp1q1(μ)+R(|xy1|<l1χQ1(y1)|f1(y1)|dμ(y1))ln+α111dl1]×[χQ2(x)Rlnp2+α212dl2f2Mp2q2(μ)+R(|xy1|<l2χQ2(y2)|f2(y2)|dμ(y2))ln+α212dl2]C[χQ1(x)Rnp1+α1f1Mp1q1(μ)R(Q1χ|xy1|<l1(y1)|f1(y1)|dμ(y1))ln+α111dl1]×[χQ2(x)Rnp2+α2f2Mp2q2(μ)R(Q2χ|xy1|<l2(y2)|f2(y2)|dμ(y2))ln+α212dl2].

    Furthermore, using the Minkowski inequality, we can deduce that

    D1Mpq(μ)CRnp1+α1np2+α2χQ1(x)χQ2(x)Mpq(μ)f1Mp1q1(μ)f2Mp2q2(μ)+CRnp1+α1f1Mp1q1(μ)χQ1(x)R(Q2χ|xy1|<l2(y2)|f2(y2)|dμ(y2))ln+α212dl2Mpq(μ)+CRnp2+α2f2Mp2q2(μ)χQ2(x)R(Q1χ|xy1|<l1(y1)|f1(y1)|dμ(y1))ln+α111dl1Mpq(μ)+CR(Q1χ|xy1|<l1(y1)|f1(y1)|dμ(y1))ln+α111dl1×R(Q2χ|xy1|<l2(y2)|f2(y2)|dμ(y2))ln+α212dl2Mpq(μ):=D11+D12+D13+D14.

    It is easy to get that

    D11CRnpf1Mp1q1(μ)f2Mp2q2(μ),

    since

    χQ1(x)χQ2(x)Mpq(μ)=supQQ(μ)μ(2Q)1p1q(Q|χQ1χQ2|qdμ)1q=supQQ(μ)μ(QQ1Q2)1qμ(2Q)1q1pCμ(Q1Q2)1p<C.

    For D12, using the generalized Minkowski inequality, Mqp(μ)Lp(μ) and the growth condition (1.1), we have the follow estimate

    D12=CRnp1+α1f1Mp1q1(μ)R(Q2χQ1(x)χ|xy1|<l2(y2)|f2(y2)|dμ(y2))ln+α212dl2Mpq(μ)CRnp1+α1f1Mp1q1(μ)R(Q2χQ1()χ|y1|<l2(y2)Mpq(μ)|f2(y2)|dμ(y2))ln+α212dl2CRnp1+α1Rsupy2RdχB(,l2)(y2)Lp(μ)ln+α212dl2f1Mp1q1(μ)f2Mp21(μ)CRnp1+α1Rlnpn+α212dl2f1Mp1q1(μ)f2Mp21(μ)CRnp2nf1Mp1q1(μ)f2Mp21(μ).

    Similarly, we have

    D13CRnp1nf1Mp11(μ)f2Mp2q2(μ).

    Applying the Hölder inequality, we obtain

    D14CRRQ1Q2χB(,l1)(y1)χB(,l2)(y2)Mpq(μ)|f2(y2)|dμ(y2)|f1(y1)|dμ(y1)ln+α212dl2ln+α111dl1CRRχB(,l1)(y1)χB(,l2)(y2)LpQ1Q2|f2(y2)|dμ(y2)|f1(y1)|dμ(y1)ln+α212dl2ln+α111dl1CRsupy1RdχB(,l1)(y1)Lw1ln+α111dl1Rsupy2RdχB(,l2)(y2)Lw2ln+α212dl2f1Mp11(μ)f2Mp21(μ)CRnw1n+α1+nw2n+α2f1Mp11(μ)f2Mp21(μ)CRnp2n+αf1Mp11(μ)f2Mp21(μ),

    where w1,w2,andp satisfy 1w1=1p1α1n, 1w2=1p2α2n and 1p=1w1+1w2.

    Therefore, recalling that Mpi1Mpiqi, we obtain the norm estimate of D1,

    D1MpqC(Rnp+Rnp2n+Rnp1n+Rnp2n+α)f1Mp1q1(μ)f2Mp2q2(μ).

    We now estimate D2. Similarly, using (1.10), the Fubini theorem and (1.12), we get

    D2=C|xy1|R(χQ1(x)+χQ1(y1))|f1(y1)||xy1|nα1dμ(y1)ε|xy2|<R(χQ2(x)+χQ2(y2))|f2(y2)||xy2|nα2dμ(y2)=C|xy1|R(χQ1(x)+χQ1(y1))(0χ|xy1|<l1(y1)ln1lα111dl1)|f1(y1)|dμ(y1)×ε|xy2|<R(χQ2(x)+χQ2(y2))(0χ|xy2|<l2(y2)ln2lα21dl2)|f2(y2)|dμ(y2)=CR(1ln1|xy1|<l1(χQ1(x)+χQ1(y1))|f1(y1)|dμ(y1))lα111dl1×(R(1ln2|xy2|<R(χQ2(x)+χQ2(y2))|f2(y2)|dμ(y2))lα212dl2+Rε(1ln2|xy2|<l2(χQ2(x)+χQ2(y2))|f2(y2)|dμ(y2))lα212dl2)=CR(1ln1|xy1|<l1(χQ1(x)+χQ1(y1))|f1(y1)|dμ(y1))lα111dl1×ε(1ln2|xy2|<l2(χQ2(x)+χQ2(y2))|f2(y2)|dμ(y2))lα212dl2C[χQ1(x)Rnp1+α1f1Mp1q1(μ)+R(Q1χ|xy1|<l1(y1)|f1(y1)|dμ(y1))ln+α111dl1]×[χQ2(x)εnp2+α2f2Mp2q2(μ)+ε(Q2χ|xy1|<l2(y2)|f2(y2)|dμ(y2))ln+α212dl2].

    Thus, we get the norm estimate of D2,

    D2Mpq(μ)C(Rnp1+α1εnp2+α2+Rnp1+α1εnpn+α2+εnp2+α2Rnpn+α1+Rnw1n+α1εnw2n+α2)f1Mp1q1(μ)f2Mp2q2(μ),

    where w1,w2,p satisfy 1w1=1p1α1n, 1w2=1p2α2n and 1p=1w1+1w2.

    The same estimate holds for D3 by above argument with the role of y1 and y2 inter changed,

    D3Mpq(μ)C(εnp1+α1Rnp2+α2+εnp1+α1Rnpn+α2+Rnp2+α2εnpn+α1+εnw1n+α1Rnw2n+α2)f1Mp1q1(μ)f2Mp2q2(μ),

    where w1,w2,p satisfy 1w1=1p1α1n, 1w2=1p2α2n and 1p=1w1+1w2.

    Thus, we obtain that

    ([b1,b2,Kε,Rα][b1,b2,Kεα])(f1,f2)Mpq(μ)CεRδf1Mp1q1(μ)f2Mp2q2(μ),

    for some constants δ>0, and the constant Cε independent of R.

    Proof of Theorem 1.6. Lemmas 2.3 and 2.4 reduce the proof of Theorem 1.6 to proving the compactness for [b1,b2,Kε,Rα] if b1,b2Cc(Rd) on product Morrey spaces. We can also get the compactness for the operator [b1,b2,Kε,Rα] by using Lemma 2.1.

    In this paper, we mainly obtain the Morrey-boundedness and compactness of the iterated commutators of general bilinear fractional integral operators Kα under the non-doubling measure conditions. Instead of establishing of the compactness of the iterated commutators directly we proved it by means of two truncation.

    We would like to thank the editors and reviewers for their helpful suggestions. This research was supported by the National Natural Science Foundation of China under grant No.11771399, No.11626213 and No.11961056.

    All authors declare no conflicts of interest in this paper.



    [1] D. R. Adams, A note on Riesz potentials, Duke Math. J., 42 (1975), 765–778. http://projecteuclid.org/euclid.dmj/1077311348
    [2] D. R. Adams, L. I. Hedberg, Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 1996. https://doi.org/10.1007/978-3-662-03282-4
    [3] Á. Bényi, W. Damián, K. Moen, R. H. Torres, Compactness properties of commutators of bilinear fractional integrals, Math. Z., 280 (2015), 569–582. https://doi.org/10.1007/s00209-015-1437-4 doi: 10.1007/s00209-015-1437-4
    [4] J. J. Betancor, J. C. Fariña, A note on compactness of commutators for fractional integrals associated with nondoubling measures, Z. Anal. Anwend., 26 (2007), 331–339. https://doi.org/10.4171/ZAA/1327 doi: 10.4171/ZAA/1327
    [5] S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31 (1982), 7–16. https://doi.org/10.1512/iumj.1982.31.31002 doi: 10.1512/iumj.1982.31.31002
    [6] J. Chen, D. Fan, Rough bilinear fractional integrals with variable kernels, Front. Math. China, 5 (2010), 369–378. https://doi.org/10.1007/s11464-010-0061-1 doi: 10.1007/s11464-010-0061-1
    [7] W. Chen, E. Sawyer, A note on commutators of fractional integrals with RBMO(µ) functions, Illinois J. Math., 46 (2002), 1287–1298. http://projecteuclid.org/euclid.ijm/1258138480
    [8] W. Chen, Y. Han, C. Miao, Bi-commutators of fractional integrals on product spaces, Math. Nachr., 281 (2008), 1108–1118. https://doi.org/10.1002/mana.200510663 doi: 10.1002/mana.200510663
    [9] G. Di Fazio, M. A. Ragusa, Commutators and Morrey spaces, Boll. Un. Mat. Ital. A(7), 5 (1991), 323–332. Available from: https://www.researchgate.net/publication/265456355_Commutators_and_Morrey_spaces.
    [10] Y. Ding, T. Mei, Boundedness and compactness for the commutators of bilinear operators on Morrey spaces, Potential Anal., 42 (2015), 717–748. https://doi.org/10.1007/s11118-014-9455-0 doi: 10.1007/s11118-014-9455-0
    [11] Y. Fan, G. Gao, Some estimates of rough bilinear fractional integral, J. Funct. Spaces Appl., 2012, 406540. https://doi.org/10.1155/2012/406540 doi: 10.1155/2012/406540
    [12] X. Fu, D. Yang, Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces, Taiwanese J. Math., 18 (2014), 509–557. https://doi.org/10.11650/tjm.18.2014.3651 doi: 10.11650/tjm.18.2014.3651
    [13] J. García-Cuerva, A. E. Gatto, Boundedness properties of fractional integral operators associated to non-doubling measures, Stud. Math., 162 (2004), 245–261. https://doi.org/10.4064/sm162-3-5 doi: 10.4064/sm162-3-5
    [14] Q. Guo, J. Zhou, Boundedness and compactness of commutators for bilinear fractional integral operators on Morrey spaces, Anal. Math., 47 (2021), 81–103. https://doi.org/10.1007/s10476-021-0067-9 doi: 10.1007/s10476-021-0067-9
    [15] V. G. Maz'ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer Berlin, Heidelberg, 1985. https://doi.org/10.1007/978-3-662-09922-3
    [16] G. Hu, Y. Meng, D. Yang, Multilinear commutators for fractional integrals in non-homogeneous spaces, Publ. Mat., 48 (2004), 335–367. Available from: https://doi.org/10.5565/PUBLMAT_48204_03.
    [17] Y. Sawano, Generalized Morrey spaces for non-doubling measures, NoDEA-Nonlinear Diff., 15 (2008), 413–425. https://doi.org/10.1007/s00030-008-6032-5 doi: 10.1007/s00030-008-6032-5
    [18] Y. Sawano, S. Shirai, Compact commutators on Morrey spaces with non-doubling measures, Georgian Math. J., 15 (2008), 353–376. https://doi.org/10.1515/GMJ.2008.353 doi: 10.1515/GMJ.2008.353
    [19] Y. Sawano, H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.), 21 (2005), 1535–1544. https://doi.org/10.1007/s10114-005-0660-z doi: 10.1007/s10114-005-0660-z
    [20] Y. Sawano, H. Tanaka, Sharp maximal inequalities and commutators on Morrey spaces with non-doubling measures, Taiwanese J. Math., 11 (2007), 1091–1112. https://doi.org/10.11650/twjm/1500404805 doi: 10.11650/twjm/1500404805
    [21] X. Tao, J. Wang, Compactness for iterated commutators of multilinear singular integrals on morrey spaces with non-doubling measures, Math. Inequal. Appl., in press.
    [22] X. Tao, T. Zheng, Multilinear commutators of fractional integrals over Morrey spaces with non-doubling measures, NoDEA-Nonlinear Diff., 18 (2011), 287–308. https://doi.org/10.1007/s00030-010-0096-8 doi: 10.1007/s00030-010-0096-8
    [23] X. Tolsa, BMO, H1, and Calderón-Zygmund operators for non doubling measures, Math. Ann., 319 (2001), 89–149. https://doi.org/10.1007/PL00004432 doi: 10.1007/PL00004432
    [24] H. Zhao, Z. Liu, Weighted central BMO spaces and their applications, J. Funct. Space., 2021, 5285962. https://doi.org/10.1155/2021/5285962 doi: 10.1155/2021/5285962
  • This article has been cited by:

    1. Guanghui Lu, Miaomiao Wang, Shuangping Tao, Estimates for bilinear θ-type generalized fractional integral and its commutator on new non-homogeneous generalized Morrey spaces, 2023, 11, 2299-3274, 10.1515/agms-2023-0101
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1890) PDF downloads(82) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog