Processing math: 100%
Research article

Robust dissipativity and passivity of stochastic Markovian switching CVNNs with partly unknown transition rates and probabilistic time-varying delay

  • This article addresses the robust dissipativity and passivity problems for a class of Markovian switching complex-valued neural networks with probabilistic time-varying delay and parameter uncertainties. The main objective of this article is to study the proposed problem from a new perspective, in which the relevant transition rate information is partially unknown and the considered delay is characterized by a series of random variables obeying bernoulli distribution. Moreover, the involved parameter uncertainties are considered to be mode-dependent and norm-bounded. Utilizing the generalized Itˆo's formula under the complex version, the stochastic analysis techniques and the robust analysis approach, the (M,N,W)-dissipativity and passivity are ensured by means of complex matrix inequalities, which are mode-delay-dependent. Finally, two simulation examples are provided to verify the effectiveness of the proposed results.

    Citation: Qiang Li, Weiqiang Gong, Linzhong Zhang, Kai Wang. Robust dissipativity and passivity of stochastic Markovian switching CVNNs with partly unknown transition rates and probabilistic time-varying delay[J]. AIMS Mathematics, 2022, 7(10): 19458-19480. doi: 10.3934/math.20221068

    Related Papers:

    [1] Nader Al-Rashidi . Innovative approaches to fractional modeling: Aboodh transform for the Keller-Segel equation. AIMS Mathematics, 2024, 9(6): 14949-14981. doi: 10.3934/math.2024724
    [2] Humaira Yasmin, Aljawhara H. Almuqrin . Analytical study of time-fractional heat, diffusion, and Burger's equations using Aboodh residual power series and transform iterative methodologies. AIMS Mathematics, 2024, 9(6): 16721-16752. doi: 10.3934/math.2024811
    [3] Muhammad Imran Liaqat, Sina Etemad, Shahram Rezapour, Choonkil Park . A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients. AIMS Mathematics, 2022, 7(9): 16917-16948. doi: 10.3934/math.2022929
    [4] Yousef Jawarneh, Humaira Yasmin, Abdul Hamid Ganie, M. Mossa Al-Sawalha, Amjid Ali . Unification of Adomian decomposition method and ZZ transformation for exploring the dynamics of fractional Kersten-Krasil'shchik coupled KdV-mKdV systems. AIMS Mathematics, 2024, 9(1): 371-390. doi: 10.3934/math.2024021
    [5] Mariam Sultana, Muhammad Waqar, Ali Hasan Ali, Alina Alb Lupaş, F. Ghanim, Zaid Ameen Abduljabbar . Numerical investigation of systems of fractional partial differential equations by new transform iterative technique. AIMS Mathematics, 2024, 9(10): 26649-26670. doi: 10.3934/math.20241296
    [6] Humaira Yasmin, Aljawhara H. Almuqrin . Efficient solutions for time fractional Sawada-Kotera, Ito, and Kaup-Kupershmidt equations using an analytical technique. AIMS Mathematics, 2024, 9(8): 20441-20466. doi: 10.3934/math.2024994
    [7] Aslı Alkan, Halil Anaç . The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237
    [8] M. Mossa Al-Sawalha, Khalil Hadi Hakami, Mohammad Alqudah, Qasem M. Tawhari, Hussain Gissy . Novel Laplace-integrated least square methods for solving the fractional nonlinear damped Burgers' equation. AIMS Mathematics, 2025, 10(3): 7099-7126. doi: 10.3934/math.2025324
    [9] Asif Khan, Tayyaba Akram, Arshad Khan, Shabir Ahmad, Kamsing Nonlaopon . Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with nonsingular kernels. AIMS Mathematics, 2023, 8(1): 1251-1268. doi: 10.3934/math.2023063
    [10] Hayman Thabet, Subhash Kendre, James Peters . Travelling wave solutions for fractional Korteweg-de Vries equations via an approximate-analytical method. AIMS Mathematics, 2019, 4(4): 1203-1222. doi: 10.3934/math.2019.4.1203
  • This article addresses the robust dissipativity and passivity problems for a class of Markovian switching complex-valued neural networks with probabilistic time-varying delay and parameter uncertainties. The main objective of this article is to study the proposed problem from a new perspective, in which the relevant transition rate information is partially unknown and the considered delay is characterized by a series of random variables obeying bernoulli distribution. Moreover, the involved parameter uncertainties are considered to be mode-dependent and norm-bounded. Utilizing the generalized Itˆo's formula under the complex version, the stochastic analysis techniques and the robust analysis approach, the (M,N,W)-dissipativity and passivity are ensured by means of complex matrix inequalities, which are mode-delay-dependent. Finally, two simulation examples are provided to verify the effectiveness of the proposed results.



    Many complicated structures' memory and natural features may be realized using fractional calculus (FC), which studies integrals and derivatives of fractional orders [1,2]. Many recent FC applications have included analyzing the dynamics of large-scale physical events by converting derivatives and integrals from classical to non-integer order. Many branches of engineering and the physical sciences use it, including electric circuits, mathematical biology, control theory, robotics, viscoelasticity, flow models, relaxation, and signal processing [3,4]. Numerous mysterious ideas have been refined via the study of fractional calculus, for example, logistic regression, Malthusian growth, and blood alcohol concentration, all of which have shown that fractional operators outperform integer-order operators [5,6].

    Derivatives of fractional order such as Riemann-Liouville, Atangana Baleanu, Caputo, Hilfer, Grunwald-Letnikov, Caputo Fabrizio, and Riemann-Liouville are among the numerous that have recently been proposed [7,8]. Since all fractional derivatives may be reduced in Caputo's meaning with minor parametric adjustments, the fractional derivative of Caputo is the essential principle of FC to investigate fractional differential equations (FDEs). Caputo's operator, which has numerous applications to model various physical models, possesses a power-law kernel. To address this difficulty, the alternative fractional differential operator [9] was developed, which consists of a Mittag-Leffler kernel and an exponentially decaying kernel. Caputo-Fabrizio (CF) and Atangana-Baleanu are operators characterized by their non-singular kernels. These operators have been widely applied in analyzing diverse problem classes, including but not limited to biology, economics, geophysics, and bioengineering [10].

    Korteweg and de Vries introduced the KdV equation in 1895 to formulate a model for Russell's soliton phenomenon, encompassing water waves of long and small amplitude. Solitons are classified as stable solitary waves, signifying their particle-like nature [11]. Various applied disciplines, including plasma physics, fluid dynamics, quantum mechanics, and optics, implement the KdV equations [12]. Particle physics has employed the fifth-order KdV equations to analyze many nonlinear phenomena [13]. Its function in the propagation of waves is crucial [14]. The authors find third-order and fifth-order dispersive terms in the KdV form equation pertinent to the magneto-acoustic wave problem. Furthermore, these dispersive terms manifest themselves in the vicinity of critical angle propagation [15]. An electrically conducting fluid, plasma is also dynamic and quasi-neutral. Ions, electrons, and neutral particles comprise it. Due to the electrical conductivity exhibited by plasma, it includes both electric and magnetic regions. The variety of particles and regions supports diverse types of plasma waves. A magnetic lock is a less longitudinal ion dispersion. In the low magnetic field range, the magneto-acoustic wave exhibits characteristics of an ion acoustic wave [16,17]. However, at low temperatures, it transforms into an Alfven wave.

    Equivalent to the general model for the investigation of magnetic characteristics of acoustic waves with surface tension is the fifth order of KdV. According to a recent investigation [18,19], the solutions to the equation above concerning traveling waves persist beyond infinity. The following are two widely recognized types of fifth-order KdV equations [20,21]:

    DpΩη(ϵ,Ω)5η(ϵ,Ω)ϵ5+η(ϵ,Ω)3η(ϵ,Ω)ϵ3+η(ϵ,Ω)η(ϵ,Ω)ϵ=0,  0<p1. (1.1)
    DpΩη(ϵ,Ω)+5η(ϵ,Ω)ϵ5η(ϵ,Ω)3η(ϵ,Ω)ϵ3+η(ϵ,Ω)η(ϵ,Ω)ϵ=0,  0<p1. (1.2)

    Here, Eqs (1.1) and (1.2) are called the Kawahara and KdV equation of fifth-order, respectively. The extreme nonlinearity of these mathematical models makes it difficult to find suitable analytical methods. Researchers have developed and implemented several techniques for solving nonlinear and linear equations of KdV in the past ten years. These techniques include the variational iteration method [21], the multi-symplectic method [22], He's homotopy perturbation method [23], and the Exp-function method [24].

    Omar Abu Arqub established residual power series method (RPSM) in 2013 [25]. It is created by merging the residual error function with the Taylor series. According to [26], an infinite convergence series solves differential equations (DEs). The development of novel RPSM algorithms has been prompted by several DEs, including KdV Burger's equation, fuzzy DEs, Boussinesq DEs, and numerous others [27,28]. The goal of these algorithms is to provide efficient and accurate estimates.

    A novel strategy for solving FDEs was established by integrating two effective methods. Some approaches that fall into these categories include those that use the natural transform [29], the Laplace transform with RPSM [30], and the homotopy perturbation method [31]. In this work, we used a novel combination method known as the Abdooh residual power series method (ARPSM) to discover approximation and precise solutions for time-fractional nonlinear partial differential equations (PDEs). This innovative method is significant because it combines the Aboodh transform technique with the RPSM [32,33].

    The computing effort and complexity needed are significant issues with the previously mentioned approaches. Our suggested Aboodh transform iterative method (ATIM) [34] is this work's unique aspect that solves the Kawahara and KdV equations of fractional order. By integrating the Aboodh transform with the new iterative technique, this strategy significantly reduces the computing effort and complexity required. According to [35,36], the suggested approach yields a convergent series solution.

    The ARPSM and the ATIM are the two most straightforward approaches to solving fractional DEs. These methods fully and immediately explain the symbolic terms used in analytical solutions and offer numerical solutions to PDEs. This paper assesses ATIM and ARPSM's efficacy in solving the fifth-order KdV and Kawahara equations.

    The fifth-order KdV and Kawahara equations are solved using ARPSM and ATIM. These methods provide more precise numerical answers when compared with other numerical techniques. Additionally, a comparison analysis is performed on the numerical findings. The suggested approaches' findings are consistent with one another, which is a strong indicator of their efficacy and reliability. For various values of fractional-order derivatives, there is additional graphical importance. Therefore, the methods are accurate, easy to implement, not affected by computational error phases, and quick. This study lays the groundwork for researchers to quickly solve various PDEs.

    Definition 2.1. [37] Assume that η(ϵ,Ω) is an exponential order continuous function. The definition of the Aboodh transform (AT), assuming σ0 for η(ϵ,Ω), is as follows:

    A[η(ϵ,Ω)]=Ψ(ϵ,ξ)=1ξ0η(ϵ,Ω)eΩξdΩ,  r1ξr2.

    The Aboodh inverse transform (AIT) is given as:

    A1[Ψ(ϵ,ξ)]=η(ϵ,Ω)=12πiu+iuiΨ(ϵ,Ω)ξeΩξdΩ,

    where ϵ=(ϵ1,ϵ2,,ϵp)Rp and pN.

    Lemma 2.1. [38,39] It is assumed that there exist two exponentially ordered, piecewise continuous functions η1(ϵ,Ω) and η2(ϵ,Ω) on [0,]. Let A[η1(ϵ,Ω)]=Ψ1(ϵ,Ω),A[η2(ϵ,Ω)]=Ψ2(ϵ,Ω), and χ1,χ2 be arbitrary constants. These characteristics are thus true:

    (1) A[χ1η1(ϵ,Ω)+χ2η2(ϵ,Ω)]=χ1Ψ1(ϵ,ξ)+χ2Ψ2(ϵ,Ω),

    (2) A1[χ1Ψ1(ϵ,Ω)+χ2Ψ2(ϵ,Ω)]=χ1η1(ϵ,ξ)+χ2η2(ϵ,Ω),

    (3) A[JpΩη(ϵ,Ω)]=Ψ(ϵ,ξ)ξp,

    (4) A[DpΩη(ϵ,Ω)]=ξpΨ(ϵ,ξ)r1K=0ηK(ϵ,0)ξKp+2,r1<pr, rN.

    Definition 2.2. [40] In terms of order p, the function η(ϵ,Ω) has derivative of fractional order as stated by Caputo.

    DpΩη(ϵ,Ω)=JmpΩη(m)(ϵ,Ω), m1<pm, r0,

    where ϵ=(ϵ1,ϵ2,,ϵp)Rp and p,mR,JmpΩ is the integral of the Riemann-Liouville of η(ϵ,Ω).

    Definition 2.3. [41] The representation of power series is composed of the following structure.

    r=0r(ϵ)(ΩΩ0)rp=1+1(ΩΩ0)p+2(ΩΩ0)2p+,

    where ϵ=(ϵ1,ϵ2,,ϵp)Rp and pN. This is known as the multiple fractional power series concerning Ω0, where Ω and r(ϵ)s are variable and series coefficients, respectively.

    Lemma 2.2. Consider the exponential order function is denoted as η(ϵ,Ω). A[η(ϵ,Ω)]=Ψ(ϵ,ξ) is the description of the AT in this case. Hence,

    A[DrpΩη(ϵ,Ω)]=ξrpΨ(ϵ,ξ)r1j=0ξp(rj)2DjpΩη(ϵ,0),0<p1, (2.1)

    where ϵ=(ϵ1,ϵ2,,ϵp)Rp and pN and DrpΩ=DpΩ.DpΩ..DpΩ(rtimes)

    Proof. By using the induction method, we have to prove Eq (2.1). In Eq (2.1), substitute r=1.

    A[DpΩη(ϵ,Ω)]=ξpΨ(ϵ,ξ)ξp2η(ϵ,0)ξp2DpΩη(ϵ,0).

    On the bases of Lemma 2.1, Eq (2.1) for r=1 holds true. Put r=2 in Eq (2.1).

    A[D2prη(ϵ,Ω)]=ξ2pΨ(ϵ,ξ)ξ2p2η(ϵ,0)ξp2DpΩη(ϵ,0). (2.2)

    From left-hand side (LHS) of Eq (2.2), we obtain:

    LHS=A[D2pΩη(ϵ,Ω)]. (2.3)

    The expressions for Eq (2.3) are as follows:

    LHS=A[DpΩη(ϵ,Ω)]. (2.4)

    Assume

    z(ϵ,Ω)=DpΩη(ϵ,Ω). (2.5)

    This makes Eq (2.4) as

    LHS=A[DpΩz(ϵ,Ω)]. (2.6)

    From the definition of the derivative of Caputo, we make changes in Eq (2.6).

    LHS=A[J1pz(ϵ,Ω)]. (2.7)

    By applying the Riemann-Liouville integral Eq (2.7), we obtain:

    LHS=A[z(ϵ,Ω)]ξ1p. (2.8)

    By using the AT feature of differentiability, Eq (2.8) is modified:

    LHS=ξpZ(ϵ,ξ)z(ϵ,0)ξ2p. (2.9)

    From Eq (2.5), we derive:

    Z(ϵ,ξ)=ξpΨ(ϵ,ξ)η(ϵ,0)ξ2p,

    where A[z(ϵ,Ω)]=Z(ϵ,ξ). Hence, Eq (2.9) becomes

    LHS=ξ2pΨ(ϵ,ξ)η(ϵ,0)ξ22pDpΩη(ϵ,0)ξ2p. (2.10)

    Let's suppose Eq (2.1) holds true for r=K. Substitute r=K in Eq (2.1):

    A[DKpΩη(ϵ,Ω)]=ξKpΨ(ϵ,ξ)K1j=0ξp(Kj)2DjpΩDjpΩη(ϵ,0), 0<p1. (2.11)

    Substituting r=K+1 in Eq (2.1):

    A[D(K+1)pΩη(ϵ,Ω)]=ξ(K+1)pΨ(ϵ,ξ)Kj=0ξp((K+1)j)2DjpΩη(ϵ,0). (2.12)

    After analyzing Eq (2.12)'s LHS, we deduce

    LHS=A[DKpΩ(DKpΩ)]. (2.13)

    Let

    DKpΩ=g(ϵ,Ω).

    By Eq (2.13), we drive

    LHS=A[DpΩg(ϵ,Ω)]. (2.14)

    By using the integral of the Riemann-Liouville and derivative of Caputo on Eq (2.14), the subsequent result can be obtained.

    LHS=ξpA[DKpΩη(ϵ,Ω)]g(ϵ,0)ξ2p. (2.15)

    To get Eq (2.15), use Eq (2.11).

    LHS=ξrpΨ(ϵ,ξ)r1j=0ξp(rj)2DjpΩη(ϵ,0). (2.16)

    In addition, Eq (2.16) produces the subsequent outcome.

    LHS=A[DrpΩη(ϵ,0)].

    Thus, for r=K+1, Eq (2.1) holds. For all positive integers, Eq (2.1) holds true according to the mathematical induction technique.

    A deeper understanding of the ARPSM and multiple fractional Taylor series (MFTS) are given as follow.

    Lemma 2.3. Consider the function η(ϵ,Ω) is an exponential order. A[η(ϵ,Ω)]=Ψ(ϵ,ξ) is the expression that signifies the AT of η(ϵ,Ω). AT is represented as follows in MFTS notation:

    Ψ(ϵ,ξ)=r=0r(ϵ)ξrp+2,ξ>0, (2.17)

    where, ϵ=(s1,ϵ2,,ϵp)Rp, pN.

    Proof. Consider the Taylor's series:

    η(ϵ,Ω)=0(ϵ)+1(ϵ)ΩpΓ[p+1]AA+2(ϵ)Ω2pΓ[2p+1]+. (2.18)

    The subsequent equality is produced when the AT is applied to Eq (2.18):

    A[η(ϵ,Ω)]=A[0(ϵ)]+A[1(ϵ)ΩpΓ[p+1]]+A[1(ϵ)Ω2pΓ[2p+1]]+.

    This is achieved by utilizing the AT's features.

    A[η(ϵ,Ω)]=0(ϵ)1ξ2+1(ϵ)1Γ[p+1]1ξp+2+2(ϵ)1Γ[2p+1]1ξ2p+2.

    Hence, by Eq (2.17), a new Taylor's series is obtained:

    Lemma 2.4. Let the multiple fractional power series (MFPS) be expressed in terms of Taylor's series new form Eq (2.17), A[η(ϵ,Ω)]=Ψ(ϵ,ξ).

    0(ϵ)=limξξ2Ψ(ϵ,ξ)=η(ϵ,0). (2.19)

    Proof. Let's suppose the Taylor's series:

    0(ϵ)=ξ2Ψ(ϵ,ξ)1(ϵ)ξp2(ϵ)ξ2p. (2.20)

    As denoted by Eq (2.20), the necessary solution can be obtained by employing limx in Eq (2.19) and performing a short calculation.

    Theorem 2.5. The following is an MFPS representation of the function A[η(ϵ,Ω)]=Ψ(ϵ,ξ):

    Ψ(ϵ,ξ)=0r(ϵ)ξrp+2, ξ>0,

    where ϵ=(ϵ1,ϵ2,,ϵp)Rp and pN. Then, we have

    r(ϵ)=Drprη(ϵ,0),

    where, DrpΩ=DpΩ.DpΩ..DpΩ(rtimes).

    Proof. Let's suppose the Taylor's series:

    1(ϵ)=ξp+2Ψ(ϵ,ξ)ξp0(ϵ)2(ϵ)ξp3(ϵ)ξ2p (2.21)

    limξ, is applied to Eq (2.21), and we get

    1(ϵ)=limξ(ξp+2Ψ(ϵ,ξ)ξp0(ϵ))limξ2(ϵ)ξplimξ3(ϵ)ξ2p.

    The equality that results from taking the limit is as follows:

    1(ϵ)=limξ(ξp+2Ψ(ϵ,ξ)ξp0(ϵ)). (2.22)

    Using Lemma 2.2, we obtain:

    1(ϵ)=limξ(ξ2A[DpΩη(ϵ,Ω)](ξ)). (2.23)

    Furthermore, the Eq (2.23) is modified using Lemma 2.3.

    1(ϵ)=DpΩη(ϵ,0).

    Using Taylor's series and applying limitξ again, we obtain:

    2(ϵ)=ξ2p+2Ψ(ϵ,ξ)ξ2p0(ϵ)ξp1(ϵ)3(ϵ)ξp.

    Lemma 2.3 gives us the result

    2(ϵ)=limξξ2(ξ2pΨ(ϵ,ξ)ξ2p20(ϵ)ξp21(ϵ)). (2.24)

    Equation (2.24) is transformed using Lemmas 2.2 and Eq (2.4).

    2(ϵ)=D2pΩη(ϵ,0).

    Apply the same procedure and Taylor series, and we obtain:

    3(ϵ)=limξξ2(A[D2pΩη(ϵ,p)](ξ)).

    Finally, we get:

    3(ϵ)=D3pΩη(ϵ,0).

    In general,

    r(ϵ)=DrpΩη(ϵ,0),

    is proved. The new Taylor series has the conditions for the convergence given in the subsequent theorem.

    Theorem 2.6. The expression for MFTS is given in Lemma 2.3 and can be expressed as: A[η(ϵ,Ω)]=Ψ(ϵ,ξ). When |ξaA[D(K+1)pΩη(ϵ,Ω)]|T, 0<p1, and 0<ξs, RK(ϵ,ξ) is the residual of the new MFTS satisfying:

    |RK(ϵ,ξ)|Tξ(K=1)p+2, 0<ξs.

    Proof. For r=0,1,2,,K+1, and 0<ξs, we consider to define A[DrpΩη(ϵ,Ω)](ξ). Utilize the Taylor series to derive the subsequent relation:

    RK(ϵ,ξ)=Ψ(ϵ,ξ)Kr=0r(ϵ)ξrp+2. (2.25)

    Apply Theorem 2.5 on Eq (2.25) to obtain:

    RK(ϵ,ξ)=Ψ(ϵ,ξ)Kr=0DrpΩη(ϵ,0)ξrp+2. (2.26)

    ξ(K+1)a+2 is to be multiplied with Eq (2.26) to obtain the following form.

    ξp(K+1)+2RK(ϵ,ξ)=ξ2(ξp(K+1)Ψ(ϵ,ξ)Kr=0ξp(K+1r)2DrpΩη(ϵ,0)). (2.27)

    Equation (2.27) is modified with Lemma 2.2:

    ξp(K+1)+2RK(ϵ,ξ)=ξ2A[Dp(K+1)Ωη(ϵ,Ω)]. (2.28)

    The absolute of Eq (2.28) gives us

    |ξp(K+1)+2RK(ϵ,ξ)|=|ξ2A[Dp(K+1)Ωη(ϵ,Ω)]|. (2.29)

    By applying the conditions listed in Eq (2.29), the subsequent result is achieved.

    Tξp(K+1)+2RK(ϵ,ξ)Tξp(K+1)+2. (2.30)

    Equation (2.30) yields the desired outcome.

    |RK(ϵ,ξ)|Tξp(K+1)+2.

    Therefore, new conditions for the series to converge are developed.

    In this paper, we explain how ARPSM rules formed the basis of our solution.

    Step 1: Assume the general PDE:

    DqpΩη(ϵ,Ω)+ϑ(ϵ)N(η)δ(ϵ,η)=0. (3.1)

    Step 2: Apply the AT on Eq (3.1):

    A[DqpΩη(ϵ,Ω)+ϑ(ϵ)N(η)δ(ϵ,η)]=0. (3.2)

    Utilizing Lemma 2.1 to modify Eq (3.2),

    Ψ(ϵ,s)=q1j=0DjΩη(ϵ,0)sqp+2ϑ(ϵ)Y(s)sqp+F(ϵ,s)sqp, (3.3)

    where A[δ(ϵ,η)]=F(ϵ,s),A[N(η)]=Y(s).

    Step 3: Equation (3.3) takes the following form:

    Ψ(ϵ,s)=r=0r(ϵ)srp+2, s>0.

    Step 4: Take the steps listed below:

    0(ϵ)=limss2Ψ(ϵ,s)=η(ϵ,0).

    Use Theorem 2.6 to obtain this form.

    1(ϵ)=DpΩη(ϵ,0),2(ϵ)=D2pΩη(ϵ,0),w(ϵ)=DwpΩη(ϵ,0).

    Step 5: The Kth truncated series Ψ(ϵ,s) can be obtained using the following expression:

    ΨK(ϵ,s)=Kr=0r(ϵ)srp+2, s>0,
    ΨK(ϵ,s)=0(ϵ)s2+1(ϵ)sp+2++w(ϵ)swp+2+Kr=w+1r(ϵ)srp+2.

    Step 6: Note that the residual Aboodh function (RAF) (3.3) and the Kth-truncated RAF must be considered independently to obtain:

    ARes(ϵ,s)=Ψ(ϵ,s)q1j=0DjΩη(ϵ,0)sjp+2+ϑ(ϵ)Y(s)sjpF(ϵ,s)sjp,

    and

    AResK(ϵ,s)=ΨK(ϵ,s)q1j=0DjΩη(ϵ,0)sjp+2+ϑ(ϵ)Y(s)sjpF(ϵ,s)sjp. (3.4)

    Step 7: Equation (3.4) may be substituted with ΨK(ϵ,s) in place of its expansion form.

    AResK(ϵ,s)=(0(ϵ)s2+1(ϵ)sp+2++w(ϵ)swp+2+Kr=w+1r(ϵ)srp+2)q1j=0DjΩη(ϵ,0)sjp+2+ϑ(ϵ)Y(s)sjpF(ϵ,s)sjp. (3.5)

    Step 8: Multifly sKp+2 on either side of the equation to get the solution to Eq (3.5).

    sKp+2AResK(ϵ,s)=sKp+2(0(ϵ)s2+1(ϵ)sp+2++w(ϵ)swp+2+Kr=w+1r(ϵ)srp+2q1j=0DjΩη(ϵ,0)sjp+2+ϑ(ϵ)Y(s)sjpF(ϵ,s)sjp). (3.6)

    Step 9: Take lims of Eq (3.6) to obtain:

    limssKp+2AResK(ϵ,s)=limssKp+2(0(ϵ)s2+1(ϵ)sp+2++w(ϵ)swp+2+Kr=w+1r(ϵ)srp+2q1j=0DjΩη(ϵ,0)sjp+2+ϑ(ϵ)Y(s)sjpF(ϵ,s)sjp).

    Step 10: K(ϵ) values can be obtained using the equation above.

    lims(sKp+2AResK(ϵ,s))=0,

    where K=1+w,2+w,.

    Step 11: Values of K(ϵ) are then substituted in Eq (3.3).

    Step 12: Taking the inverse AT we obtain the final solution ηK(ϵ,Ω).

    Let's consider the PDE as given below:

    DpΩη(ϵ,Ω)=Φ(η(ϵ,Ω),DΩϵη(ϵ,Ω),D2Ωϵη(ϵ,Ω),D3Ωϵη(ϵ,Ω)), 0<p,Ω1. (3.7)

    The initial condition is

    η()(ϵ,0)=h, =0,1,2,,m1. (3.8)

    The function to be determined is η(ϵ,Ω), while Φ(η(ϵ,Ω),DΩϵη(ϵ,Ω),D2Ωϵη(ϵ,Ω)D3Ωϵη(ϵ,Ω)) are operators of η(ϵ,Ω),DΩϵη(ϵ,Ω),D2Ωϵη(ϵ,Ω) and D3Ωϵη(ϵ,Ω). The AT is applied on Eq (3.7) to obtain:

    A[η(ϵ,Ω)]=1sp(m1=0η()(ϵ,0)s2p++A[Φ(η(ϵ,Ω),DΩϵη(ϵ,Ω),D2Ωϵη(ϵ,Ω),D3Ωϵη(ϵ,Ω))]). (3.9)

    The AIT yields the solution to this problem:

    η(ϵ,Ω)=A1[1sp(m1=0η()(ϵ,0)s2p++A[Φ(η(ϵ,Ω),DΩϵη(ϵ,Ω),D2Ωϵη(ϵ,Ω),D3Ωϵη(ϵ,Ω))])]. (3.10)

    An infinite series denotes the ATIM-derived solution.

    η(ϵ,Ω)=i=0ηi. (3.11)

    Φ(η,DΩϵη,D2Ωϵη,D3Ωϵη) can be decomposed as:

    Φ(η,DΩϵη,D2Ωϵη,D3Ωϵη)=Φ(η0,DΩϵη0,D2Ωϵη0,D3Ωϵη0)+i=0(Φ(i=0(η,DΩϵη,D2Ωϵη,D3Ωϵη))Φ(i1=1(η,DΩϵη,D2Ωϵη,D3Ωϵη))). (3.12)

    The subsequent equation is obtained by substituting the values of Eqs (3.11) and (3.12) for the initial equation (3.10).

    i=0ηi(ϵ,Ω)=A1[1sp(m1=0η()(ϵ,0)s2p++A[Φ(η0,DΩϵη0,D2Ωϵη0,D3Ωϵη0)])]+A1[1sp(A[i=0(Φi=0(η,DΩϵη,D2Ωϵη,D3Ωϵη))])]A1[1sp(A[(Φi1=1(η,DΩϵη,D2Ωϵη,D3Ωϵη))])] (3.13)
    η0(ϵ,Ω)=A1[1sp(m1=0η()(ϵ,0)s2p+)],η1(ϵ,Ω)=A1[1sp(A[Φ(η0,DΩϵη0,D2Ωϵη0,D3Ωϵη0)])],ηm+1(ϵ,Ω)=A1[1sp(A[i=0(Φi=0(η,DΩϵη,D2Ωϵη,D3Ωϵη))])]A1[1sp(A[(Φi1=1(η,DΩϵη,D2Ωϵη,D3Ωϵη))])], m=1,2,. (3.14)

    For the m-term of Eq (3.7), the analytically approximate solution may be obtained using the following expression:

    η(ϵ,Ω)=m1i=0ηi. (3.15)

    Consider Kawahara equation of fractional order as follows:

    DpΩη(ϵ,Ω)5η(ϵ,Ω)ϵ5+η(ϵ,Ω)3η(ϵ,Ω)ϵ3+η(ϵ,Ω)η(ϵ,Ω)ϵ=0,   where   0<p1, (4.1)

    with the initial condition:

    η(ϵ,0)=105169sech4(ϵ2213), (4.2)

    and exact solution

    η(ϵ,Ω)=105169sech4(36Ω169+ϵ2213).

    Equation (4.2) is used, and {AT} is applied to Eq (4.1) to get

    η(ϵ,s)105169sech4(ϵ2213)s21sp[5η(ϵ,s)ϵ5]+1spAΩ[A1Ωη(ϵ,s)×3A1Ωη(ϵ,s)ϵ3]+1spAΩ[A1Ωη(ϵ,s)×A1Ωη(ϵ,s)ϵ]=0. (4.3)

    Therefore, the series kth-truncated terms are:

    η(ϵ,s)=105169sech4(ϵ2213)s2+kr=1fr(ϵ,s)srp+1,  r=1,2,3,4. (4.4)

    Following is the RAF:

    AΩRes(ϵ,s)=η(ϵ,s)105169sech4(ϵ2213)s21sp[5η(ϵ,s)ϵ5]+1spAΩ[A1Ωη(ϵ,s)×3A1Ωη(ϵ,s)ϵ3]+1spAΩ[A1Ωη(ϵ,s)×A1Ωη(ϵ,s)ϵ]=0, (4.5)

    and the kth-RAFs is:

    AΩResk(ϵ,s)=ηk(ϵ,s)105169sech4(ϵ2213)s21sp[5ηk(ϵ,s)ϵ5]+1spAΩ[A1Ωηk(ϵ,s)×3A1Ωηk(ϵ,s)ϵ3]+1spAΩ[A1Ωηk(ϵ,s)×A1Ωηk(ϵ,s)ϵ]=0. (4.6)

    It takes some calculation to find fr(ϵ,s) for r=1,2,3,.... Using these procedures, we replace the rth-truncated series Eq (4.4) for the rth-RAF Eq (4.6), applying lims(srp+1) and solving AΩResη,r(ϵ,s))=0, for r=1,2,3,. Some terms that we obtain are given below:

    f1(ϵ,s)=105594068813(17290sinh(ϵ2213)10029sinh(3(ϵ2)213)2015sinh(5(ϵ2)213)+104sinh(7(ϵ2)213))sech11(ϵ2213)), (4.7)
    f2(ϵ,s)=10521718014715904(50957301372cosh(ϵ213)+12586770193cosh(2(ϵ2)13)12962735946cosh(3(ϵ2)13)+2020967026cosh(4(ϵ2)13)+68039374cosh(5(ϵ2)13)9200529cosh(6(ϵ2)13)+43264cosh(7(ϵ2)13)54264784626)sech18(ϵ2213), (4.8)

    and so on.

    For r=1,2,3,, replace fr(ϵ,s) in Eq (4.4):

    η(ϵ,s)=105169sech4(ϵ2213)s2(105594068813(17290sinh(ϵ2213)10029sinh(3(ϵ2)213)2015sinh(5(ϵ2)213)+104sinh(7(ϵ2)213))sech11(ϵ2213)))/(sp+1)+(10521718014715904(50957301372cosh(ϵ213)+12586770193cosh(2(ϵ2)13)12962735946cosh(3(ϵ2)13)+2020967026cosh(4(ϵ2)13)+68039374cosh(5(ϵ2)13)9200529cosh(6(ϵ2)13)+43264cosh(7(ϵ2)13)54264784626)sech18(ϵ2213))/(s2p+1)+. (4.9)

    Apply AIT to obtain:

    η(ϵ,Ω)=105169sech4(ϵ2213)Ωp(105594068813(17290sinh(ϵ2213)10029sinh(3(ϵ2)213)2015sinh(5(ϵ2)213)+104sinh(7(ϵ2)213))sech11(ϵ2213)))/(Γ(p+1))+Ω2p(10521718014715904(50957301372cosh(ϵ213)+12586770193cosh(2(ϵ2)13)12962735946cosh(3(ϵ2)13)+2020967026cosh(4(ϵ2)13)+68039374cosh(5(ϵ2)13)9200529cosh(6(ϵ2)13)+43264cosh(7(ϵ2)13)54264784626)sech18(ϵ2213))/(Γ(2p+1))+. (4.10)

    Table 1 presents the ARPSM solution comparison for different values of the parameter p for Ω=0.1, illustrating how the choice of p impacts the accuracy and behavior of the solutions. Figure 1 shows a comparison between the approximate solution obtained using ARPSM (a) and the exact solution (b) for Example 1, confirming the high accuracy of the ARPSM approach. Figure 2 visualizes the impact of varying fractional orders on the ARPSM solution for different p values (p=0.32,0.52,0.72), showcasing how changes in the fractional order influence the solution structure. Figure 3 extends the comparison in two dimensions, offering a 2D view of the fractional order solutions using ARPSM for the same values of p, further confirming the method's ability to capture the dynamics of fractional systems.

    Table 1.  ARPSM solution comparison for the values of p of Example 1 for Ω=0.1.
    ϵ ARPSMp=0.52 ARPSMp=0.72 ARPSMp=1.00 Exact Errorp=1.00
    1.0 0.597480 0.597823 0.597918 0.597923 4.746940×106
    1.1 0.601882 0.602193 0.602280 0.602284 4.296239×106
    1.2 0.605857 0.606136 0.606214 0.606217 3.837431×106
    1.3 0.609395 0.609642 0.609710 0.609713 3.371748×106
    1.4 0.612487 0.612700 0.612759 0.612762 2.900316×106
    1.5 0.615125 0.615304 0.615354 0.615356 2.424166×106
    1.6 0.617301 0.617446 0.617486 0.617488 1.944232×106
    1.7 0.619010 0.619121 0.619151 0.619152 1.461368×106
    1.8 0.620248 0.620324 0.620344 0.620345 9.763596×107
    1.9 0.621010 0.621051 0.621061 0.621062 4.899361×107
    2.0 0.621296 0.621301 0.621302 0.621302 2.792130×108

     | Show Table
    DownLoad: CSV
    Figure 1.  (a) ARPSM approximate solution, (b) exact solution.
    Figure 2.  Fractional order comparison using ARPSM for p=0.32,0.52,0.72.
    Figure 3.  Fractional order 2D comparison using ARPSM for p=0.32,0.52,0.72.

    Consider the Kawahara equation of fractional order:

    DpΩη(ϵ,Ω)=5η(ϵ,Ω)ϵ5η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ,   where   0<p1, (4.11)

    with the initial condition:

    η(ϵ,0)=105169sech4(ϵ2213), (4.12)

    and exact solution

    η(ϵ,Ω)=105169sech4(36Ω169+ϵ2213).

    Apply AT on both sides of Eq (4.11) to obtain:

    A[DpΩη(ϵ,Ω)]=1sp(m1k=0η(k)(ϵ,0)s2p+k+A[5η(ϵ,Ω)ϵ5η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ]). (4.13)

    Apply AIT on Eq (4.13) to obtain:

    η(ϵ,Ω)=A1[1sp(m1k=0η(k)(ϵ,0)s2p+k+A[5η(ϵ,Ω)ϵ5η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ])]. (4.14)

    Utilize AT iteratively to get:

    η0(ϵ,Ω)=A1[1sp(m1k=0η(k)(ϵ,0)s2p+k)]=A1[η(ϵ,0)s2]=105169sech4(ϵ2213).

    Applying the Riemann-Liouville integral on Eq (4.11),

    η(ϵ,Ω)=105169sech4(ϵ2213)A[5η(ϵ,Ω)ϵ5η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ]. (4.15)

    Using the ATIM technique, we provide the following terms:

    η0(ϵ,Ω)=105169sech4(ϵ2213),η1(ϵ,Ω)=105297034413Γ(p+1)Ωp(11940cosh(ϵ213)+1911cosh(2(ϵ2)13)104cosh(3(ϵ2)13)2675)tanh(ϵ2213)sech10(ϵ2213),η2(ϵ,Ω)=105Ω2psech18(ϵ2213)620288218300934144((3513π4pΩpΓ(p+12)(13(9385221sinh(1213(ϵ2))+120132725sinh(11(ϵ2)213)910000sinh(15(ϵ2)213)+14144sinh(17(ϵ2)213))+581521261600sinh(ϵ2213)374464577051sinh(3(ϵ2)213)+130226023125sinh(5(ϵ2)213)12004154204sinh(7(ϵ2)213)7059672300sinh(9(ϵ2)213))sech7(ϵ2213))/(p2Γ(p)Γ(3p))+28561Γ(2p+1)(50957301372cosh(ϵ213)+12586770193cosh(2(ϵ2)13)12962735946cosh(3(ϵ2)13)+13(155459002cosh(4(ϵ2)13)+5233798cosh(5(ϵ2)13)707733cosh(6(ϵ2)13)+3328cosh(7(ϵ2)13)4174214202))). (4.16)

    The final solution that is obtained via ATIM is given as:

    η(ϵ,Ω)=η0(ϵ,Ω)+η1(ϵ,Ω)+η2(ϵ,Ω)+. (4.17)
    η(ϵ,Ω)=105169sech4(ϵ2213)+105297034413Γ(p+1)Ωp(11940cosh(ϵ213)+1911cosh(2(ϵ2)13)104cosh(3(ϵ2)13)2675)tanh(ϵ2213)sech10(ϵ2213)+105Ω2psech18(ϵ2213)620288218300934144((3513π4pΩpΓ(p+12)(13(9385221sinh(1213(ϵ2))+120132725sinh(11(ϵ2)213)910000sinh(15(ϵ2)213)+14144sinh(17(ϵ2)213))+581521261600sinh(ϵ2213)374464577051sinh(3(ϵ2)213)+130226023125sinh(5(ϵ2)213)12004154204sinh(7(ϵ2)213)7059672300sinh(9(ϵ2)213))sech7(ϵ2213))/(p2Γ(p)Γ(3p))+28561Γ(2p+1)(50957301372cosh(ϵ213)+12586770193cosh(2(ϵ2)13)12962735946cosh(3(ϵ2)13)+13(155459002cosh(4(ϵ2)13)+5233798cosh(5(ϵ2)13)707733cosh(6(ϵ2)13)+3328cosh(7(ϵ2)13)4174214202)))+. (4.18)

    Table 2 compares ATIM solutions for the same set of parameters, with similar trends observed as in ARPSM, demonstrating the robustness of both methods. Figure 4 juxtaposes the ATIM approximate solution (a) with the exact solution (b), verifying the precision of the ATIM method. Figure 5 compares the fractional order solutions using ATIM for (p=0.32,0.52,0.72), and Figure 6 presents a 2D version of this comparison, highlighting the impact of the fractional order on the solution dynamics. Table 3 compares the absolute error for ARPSM and ATIM at Ω=0.1, demonstrating that both methods achieve highly accurate solutions with minimal error.

    Table 2.  ATIM solution comparison for the values of p of Example 1 for Ω=0.1.
    ϵ ATIMp=0.52 ATIMp=0.72 ATIMp=1.00 Exact Errorp=1.00
    1.0 0.597546 0.597850 0.597917 0.597923 6.195481×106
    1.1 0.601942 0.602218 0.602278 0.602284 5.609848×106
    1.2 0.605911 0.606158 0.606212 0.606217 5.012997×106
    1.3 0.609443 0.609661 0.609709 0.609713 4.406507×106
    1.4 0.612528 0.612717 0.612758 0.612762 3.791852×106
    1.5 0.615160 0.615318 0.615353 0.615356 3.170410×106
    1.6 0.617329 0.617458 0.617485 0.617488 2.543461×106
    1.7 0.619032 0.619130 0.619150 0.619152 1.912204×106
    1.8 0.620263 0.620329 0.620343 0.620345 1.277767×106
    1.9 0.621019 0.621054 0.621061 0.621062 6.412226×107
    2.0 0.621298 0.621302 0.621302 0.621302 3.606186×108

     | Show Table
    DownLoad: CSV
    Figure 4.  (a) ATIM approximate solution, (b) exact solution.
    Figure 5.  Fractional order comparison using ATIM for p=0.32,0.52,0.72.
    Figure 6.  Fractional order 2D comparison using ATIM for p=0.32,0.52,0.72.
    Table 3.  The comparison of absolute error of Example 1 for Ω=0.1.
    ϵ ARPSMp=1 ATIMp=1 Exact ErrorARPSM ErrorATIM
    1.0 0.597918 0.597917 0.597923 4.746940×106 6.195481×106
    1.1 0.602280 0.602278 0.602284 4.296239×106 5.609848×106
    1.2 0.606214 0.606212 0.606217 3.837431×106 5.012997×106
    1.3 0.609710 0.609709 0.609713 3.371748×106 4.406507×106
    1.4 0.612759 0.612758 0.612762 2.900316×106 3.791852×106
    1.5 0.615354 0.615353 0.615356 2.424166×106 3.170410×106
    1.6 0.617486 0.617485 0.617488 1.944232×106 2.543461×106
    1.7 0.619151 0.619150 0.619152 1.461368×106 1.912204×106
    1.8 0.620344 0.620343 0.620345 9.763596×107 1.277767×106
    1.9 0.621061 0.621061 0.621062 4.899361×107 6.412226×107
    2.0 0.621302 0.621302 0.621302 2.792130×108 3.606186×108

     | Show Table
    DownLoad: CSV

    Examine the famous fifth-order KdV equations as follows:

    DpΩη(ϵ,Ω)+5η(ϵ,Ω)ϵ5η(ϵ,Ω)3η(ϵ,Ω)ϵ3+η(ϵ,Ω)η(ϵ,Ω)ϵ=0,   where   0<p1, (4.19)

    with the initial condition:

    η(ϵ,0)=eϵ, (4.20)

    and exact solution

    η(ϵ,Ω)=eϵΩ.

    After applying AT to Eq (4.19), Eq (4.20) is used to obtain:

    η(ϵ,s)eϵs2+1sp[5η(ϵ,s)ϵ5]1spAΩ[A1Ωη(ϵ,s)×3A1Ωη(ϵ,s)ϵ3]+1spAΩ[A1Ωη(ϵ,s)×A1Ωη(ϵ,s)ϵ]=0. (4.21)

    Therefore, the kth-truncated term series is:

    η(ϵ,s)=eϵs2+kr=1fr(ϵ,s)srp+1,  r=1,2,3,4. (4.22)

    Following is the RAF:

    AΩRes(ϵ,s)=η(ϵ,s)eϵs2+1sp[5η(ϵ,s)ϵ5]1spAΩ[A1Ωη(ϵ,s)×3A1Ωη(ϵ,s)ϵ3]+1spAΩ[A1Ωη(ϵ,s)×A1Ωη(ϵ,s)ϵ]=0, (4.23)

    and the kth-RAFs is:

    AΩResk(ϵ,s)=ηk(ϵ,s)eϵs2+1sp[5ηk(ϵ,s)ϵ5]1spAΩ[A1Ωηk(ϵ,s)×3A1Ωηk(ϵ,s)ϵ3]+1spAΩ[A1Ωηk(ϵ,s)×A1Ωηk(ϵ,s)ϵ]=0. (4.24)

    It takes some calculation to find fr(ϵ,s) for r=1,2,3,.... Using these procedures, we replace the rth-truncated series Eq (4.22) for the rth-RAF Eq (4.24), applying lims(srp+1) and solving AΩResη,r(ϵ,s))=0, for r=1,2,3,.

    f1(ϵ,s)=eϵ, (4.25)
    f2(ϵ,s)=eϵ, (4.26)
    f2(ϵ,s)=eϵ, (4.27)

    and so on.

    For r=1,2,3,, replace fr(ϵ,s) in Eq (4.22):

    η(ϵ,s)=eϵseϵsp+1+eϵs2p+1eϵs3p+1+. (4.28)

    Apply AIT to obtain:

    η(ϵ,Ω)=eϵeϵΩpΓ(p+1)+eϵΩ2pΓ(2p+1)eϵΩ4pΓ(3p+1)+. (4.29)

    Figure 7 explores the fractional order comparison using ARPSM for an extended range of p values (p=0.33,0.55,0.77,1.00), providing a more comprehensive analysis of how different orders affect the solution. Figure 8 offers 2D and 3D graphs for ARPSM solutions, further highlighting the changes in solution behavior as the fractional order varies.

    Figure 7.  Fractional order comparison using ARPSM for p=0.33,0.55,0.77,1.00.
    Figure 8.  2D and 3D graphs for comparing ARPSM solution for p=0.33,0.55,0.77,1.00.

    Examine the famous fifth-order KdV equations as follows:

    DpΩη(ϵ,Ω)=5η(ϵ,Ω)ϵ5+η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ,   where   0<p1, (4.30)

    with the initial condition:

    η(ϵ,0)=eϵ, (4.31)

    and exact solution

    η(ϵ,Ω)=eϵΩ.

    Apply AT on either side of Eq (4.30) to obtain:

    A[DpΩη(ϵ,Ω)]=1sp(m1k=0η(k)(ϵ,0)s2p+k+A[5η(ϵ,Ω)ϵ5+η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ]). (4.32)

    Apply AIT on either side of Eq (4.32) to obtain:

    η(ϵ,Ω)=A1[1sp(m1k=0η(k)(ϵ,0)s2p+k+A[5η(ϵ,Ω)ϵ5+η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ])]. (4.33)

    Iteratively apply the AT to obtain:

    η0(ϵ,Ω)=A1[1sp(m1k=0η(k)(ϵ,0)s2p+k)]=A1[η(ϵ,0)s2]=eϵ.

    Applying Riemann-Liouville integral on Eq (4.19),

    η(ϵ,Ω)=eϵA[5η(ϵ,Ω)ϵ5+η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ]. (4.34)

    The use of the ATIM technique provides the following terms:

    η0(ϵ,Ω)=eϵ,η1(ϵ,Ω)=eϵΩpΓ(p+1),η2(ϵ,Ω)=eϵΩ2pΓ(2p+1),η3(ϵ,Ω)=eϵΩ3pΓ(3p+1). (4.35)

    The final solution that is obtained via ATIM is given as:

    η(ϵ,Ω)=η0(ϵ,Ω)+η1(ϵ,Ω)+η2(ϵ,Ω)+η3(ϵ,Ω)+. (4.36)
    η(ϵ,Ω)=eϵ(1ΩpΓ(p+1)+Ω2pΓ(2p+1)Ω4pΓ(3p+1)+). (4.37)

    Table 4 analyzes the effect of various fractional orders for ARPSM and ATIM, for Example 2, indicating the consistency and accuracy of both methods across different fractional orders. Figures 9 and 10 continue the analysis for ATIM, comparing fractional order solutions and offering 3D and 2D views further to elucidate the complex behavior of fractional wave systems as modeled by the Kawahara and KdV equations. These figures and tables collectively emphasize the efficacy of ARPSM and ATIM in providing accurate and insightful solutions for fractional nonlinear PDEs, especially in the context of nonlinear wave phenomena in applied mathematics and physics. The graphical representations and error comparisons showcase the reliability and precision of these methods in solving complex fractional models.

    Table 4.  Analysis of various fractional order of ARPSM and ATIM of Example 2 for Ω=0.1.
    ϵ ARPSM ATIM ARPSM ATIM ARPSM ATIM
    p=0.55 p=0.77 p=1.00 Exact Errorp=1.0
    1.0 2.49168 2.63507 2.69123 2.69123 4.473861×107
    1.1 2.75373 2.91220 2.97427 2.97427 4.944381×107
    1.2 3.04335 3.21848 3.28708 3.28708 5.464386×107
    1.3 3.36342 3.55697 3.63279 3.63279 6.039081×107
    1.4 3.71715 3.93106 4.01485 4.01485 6.674217×107
    1.5 4.10809 4.34449 4.43710 4.43710 7.376150×107
    1.6 4.54014 4.80141 4.90375 4.90375 8.151907×107
    1.7 5.01763 5.30638 5.41948 5.41948 9.009250×107
    1.8 5.54534 5.86445 5.98945 5.98945 9.956761×107
    1.9 6.12855 6.48122 6.61937 6.61937 1.100392×106
    2.0 6.77309 7.16286 7.31553 7.31553 1.216121×106

     | Show Table
    DownLoad: CSV
    Figure 9.  Fractional order comparison using ATIM for p=0.33,0.55,0.77,1.00.
    Figure 10.  Fractional order 3D and 2D comparison using ATIM for p=0.33,0.55,0.77,1.00.

    The study utilizes advanced analytical methods, precisely the ARPSM and the ATIM, to investigate the fractional Kawahara and fifth-order KdV equations. The discussion of figures and tables highlights the effectiveness of these methods in providing accurate approximate solutions, comparing their results with exact solutions, and examining the effects of fractional orders on the solutions.

    In conclusion, our analytical investigation into the fractional Kawahara equation and fifth-order KdV equations employing the ARPSM and ATIM has yielded significant insights and advancements in understanding nonlinear wave phenomena. Through rigorous analysis and computational simulations, we have demonstrated the effectiveness of these advanced analytical techniques in providing accurate and insightful solutions to these complex equations governed by fractional calculus under the Caputo operator framework. Our findings contribute to the theoretical understanding of nonlinear wave dynamics and offer practical analytical tools for addressing complex mathematical models in various scientific and engineering domains. Further research in this direction holds promise for exploring additional applications of the Aboodh methods and advancing our understanding of nonlinear wave phenomena in diverse real-world contexts. Future research can extend the ARPSM and ATIM methods to more complex nonlinear fractional PDEs, including those with higher-order fractional operators. Exploring their application to multidimensional systems could provide deeper insights into wave propagation in fields like quantum field theory. Investigating computational efficiency and convergence across different fractional orders may optimize these techniques for broader use. Applying these methods to real-world engineering problems could further validate their utility in practical settings.

    Conceptualization, M.Y.A.; Data curation, H.A.; Formal analysis, M.Y.A; Resources, H.A.; Investigation, M.Y.A.; Project administration, M.Y.A.; Validation, H.A.; Software, H.A.; Validation, M.Y.A.; Visualization, M.Y.A.; Validation, H.A.; Visualization, M.Y.A.; Resources, H.A.; Project administration, H.A.; Writing-review & editing, H.A.; Funding, M.Y.A. All authors have read and agreed to the published version of the manuscript.

    The authors gratefully acknowledge the funding of the Deanship of Graduate Studies and Scientific Research, Jazan University, Saudi Arabia, through project number: RG24-L02.

    The authors declare that they have no conflicts of interest.



    [1] M. Kobayashi, Symmetric complex-valued Hopfield neural networks, IEEE T. Neur. Net. Lear., 28 (2017), 1011–1015. http://doi.org/10.1109/TNNLS.2016.2518672 doi: 10.1109/TNNLS.2016.2518672
    [2] D. L. Lee, Relaxation of the stability condition of the complex-valued neural networks, IEEE T. Neural Networ., 12 (2001), 1260–1262. http://doi.org/10.1109/72.950156 doi: 10.1109/72.950156
    [3] M. K. Muezzinoglu, C. Guzelis, J. M. Zurada, A new design method for the complex-valued multistate Hopfield associative memory, IEEE T. Neural Networ., 14 (2003), 891–899. http://doi.org/10.1109/TNN.2003.813844 doi: 10.1109/TNN.2003.813844
    [4] S. Berhanu, Liouville's theorem and the maximum modulus principle for a system of complex vector fields, Commun. Part. Diff. Eq., 19 (1994), 1805–1827. http://doi.org/10.1080/03605309408821074 doi: 10.1080/03605309408821074
    [5] T. Nitta, Solving the XOR problem and the detection of symmetry using a single complex-valued neuron, Neural Networks, 16 (2013), 1101–1105. http://doi.org/10.1016/S0893-6080(03)00168-0 doi: 10.1016/S0893-6080(03)00168-0
    [6] A. Hirose, Recent progress in applications of complex-valued neural networks, In: International conference on artifical intelligence and soft computing, Berlin: Springer, 2010.
    [7] X. Liu, Z. Li, Finite time anti-synchronization of complex-valued neural networks with bounded asynchronous time-varying delays, Neurocomputing, 387 (2020), 129–138. http://doi.org/10.1016/j.neucom.2020.01.035 doi: 10.1016/j.neucom.2020.01.035
    [8] W. Gong, J. Liang, J. Cao, Matrix measure method for global exponential stability of complex-valued recurrent neural networks with time-varying delays, Neural Networks, 70 (2015), 81–89. http://doi.org/10.1016/j.neunet.2015.07.003 doi: 10.1016/j.neunet.2015.07.003
    [9] R. Samiduraia, R. Sriramana, S. Zhu, Leakage delay-dependent stability analysis for complex-valued neural networks with discrete and distributed time-varying delays, Neurocomputing, 338 (2019), 262–273. http://doi.org/10.1016/j.neucom.2019.02.027 doi: 10.1016/j.neucom.2019.02.027
    [10] X. Liu, T. Chen, Global exponential stability for complex-valued recurrent neural networks with asynchronous time delays, IEEE T. Neur. Net. Lear., 27 (2015), 593–606. http://doi.org/10.1109/TNNLS.2015.2415496 doi: 10.1109/TNNLS.2015.2415496
    [11] K. Guan, Global power-rate synchronization of chaotic neural networks with proportional delay via impulsive control, Neurocomputing, 283 (2018), 256–265. http://doi.org/10.1016/j.neucom.2018.01.027 doi: 10.1016/j.neucom.2018.01.027
    [12] J. C. Willems, Dissipative dynamical systems part Ⅰ: General theory, Arch. Rational Mech. Anal., 45 (1972), 321–351. http://doi.org/10.1007/bf00276493 doi: 10.1007/bf00276493
    [13] D. Hill, P. Moylan, The stability of nonlinear dissipative systems, IEEE T. Automat. Contr, 21 (1976), 708–711. http://doi.org/10.1109/TAC.1976.1101352 doi: 10.1109/TAC.1976.1101352
    [14] V. Belevitch, Classical network theory, Holden Day, 1968.
    [15] S. Ding, Z. Wang, H. Zhang, Dissipativity analysis for stochastic memristive neural networks with time-varying delays: a discrete-time case, IEEE T. Neur. Net. Lear., 29 (2018), 618–630. http://doi.org/10.1109/TNNLS.2016.2631624 doi: 10.1109/TNNLS.2016.2631624
    [16] G. Nagamani, T. Radhika, Dissipativity and passivity analysis of T-S fuzzy neural networks with probabilistic time-varying delays: a quadratic convex combination approach, Nonlinear Dyn., 82 (2015), 1325–1341. http://doi.org/10.1007/s11071-015-2241-8 doi: 10.1007/s11071-015-2241-8
    [17] S. Ramasamy, G. Nagamani, Dissipativity and passivity analysis for discrete-time complex-valued neural networks with leakage delay and probabilistic time-varying delays, Int. J. Adapt. Control, 31 (2017), 876–902. http://doi.org/10.1002/acs.2736 doi: 10.1002/acs.2736
    [18] P. Balasubramaniam, G. Nagamani, S. Ramasamy, Robust dissipativity and passivity analysis for discrete-time stochastic neural networks with time-varying delay, Complexity, 21 (2016), 47–58. http://doi.org/10.1002/cplx.21614 doi: 10.1002/cplx.21614
    [19] Q. Li, J. Liang, W. Gong, State estimation for semi-Markovian switching CVNNs with quantization effects and linear fractional uncertainties, J. Franklin I., 358 (2021), 6326–6347. http://doi.org/10.1016/j.jfranklin.2021.05.035 doi: 10.1016/j.jfranklin.2021.05.035
    [20] Z. Yan, Y. Song, J. H. Park, Quantitative mean square exponential stability and stabilization of stochastic systems with Markovian switching, J. Franklin I., 355 (2018), 3438–3454. http://doi.org/10.1016/j.jfranklin.2018.02.026 doi: 10.1016/j.jfranklin.2018.02.026
    [21] S. Senthilraj, R. Raja, J. Cao, H. M. Fardoun, Dissipativity analysis of stochastic fuzzy neural networks with randomly occurring uncertainties using delay dividing approach, Nonlinear Anal. Model. Control, 24 (2019), 561–581. http://doi.org/10.15388/NA.2019.4.5 doi: 10.15388/NA.2019.4.5
    [22] S. Sathananthan, I. Lyatuu, M. Knap, L. Keel, Robust passivity and synthesis of discrete-time stochastic systems with multiplicative noise under Markovian switching, Commun. Appl. Anal., 17 (2013), 451–469.
    [23] E. Tian, D. Yue, G. Wei, Robust control for Markovian jump systems with partially known transition probabilities and nonlinearities, J. Franklin I., 350 (2013), 2069–2083. http://doi.org/10.1016/j.jfranklin.2013.05.011 doi: 10.1016/j.jfranklin.2013.05.011
    [24] G. Zong, D. Yang, L. Hou, Q. Wang, Robust finite-time H control for Markovian jump systems with partially known transition probabilities, J. Franklin I., 350 (2013), 1562–1578. http://doi.org/10.1016/j.jfranklin.2013.04.003 doi: 10.1016/j.jfranklin.2013.04.003
    [25] R. Zhang, D. Zeng, X. Liu, S. Zhong, J. Cheng, New results on stability analysis for delayed Markovian generalized neural networks with partly unknown transition rates, IEEE T. Neur. Net. Lear., 30 (2019), 3384–3395. http://doi.org/10.1109/TNNLS.2019.2891552 doi: 10.1109/TNNLS.2019.2891552
    [26] Y. Liu, C. Zhang, Y. Kao, C. Hou, Exponential stability of Neutral-type impulsive Markovian jump neural networks with general incomplete transition rates, Neural Process. Lett., 47 (2018), 325–345. http://doi.org/10.1007/s11063-017-9650-2 doi: 10.1007/s11063-017-9650-2
    [27] J. Liang, W. Gong, T. Huang, Multistability of complex-valued neural networks with discontinuous activation functions, Neural Networks, 84 (2016), 125–142. http://doi.org/10.1016/j.neunet.2016.08.008 doi: 10.1016/j.neunet.2016.08.008
    [28] Q. Song, H. Yan, Z. Zhao, Y. Liu, Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects, Neural Networks, 79 (2016), 108–116. http://doi.org/10.1016/j.neunet.2016.03.007 doi: 10.1016/j.neunet.2016.03.007
    [29] J. Ubøe, Complex valued multiparameter stochastic integrals, J. Theor. Probab., 8 (1995), 601–624. http://doi.org/10.1007/bf02218046 doi: 10.1007/bf02218046
    [30] P. Wang, Y. Hong, H. Su, Stabilization of stochastic complex-valued coupled delayed systems with Markovian switching via periodically intermittent control, Nonlinear Anal. Hybri., 29 (2018), 395–413. http://doi.org/10.1016/j.nahs.2018.03.006 doi: 10.1016/j.nahs.2018.03.006
    [31] K. Kreutz-Delgado, The complex gradient operator and the CR-calculus, 2009, arXiv: 0906.4835.
    [32] X. Chen, Q. Song, Global stability of complex-valued neural networks with both leakage time delay and discrete time delay on time scales, Neurocomputing, 121 (2013), 254–264. http://doi.org/10.1016/j.neucom.2013.04.040 doi: 10.1016/j.neucom.2013.04.040
    [33] Q. Li, J. Liang, Dissipativity of the stochastic Markovian switching CVNNs with randomly occurring uncertainties and general uncertain transition rates, Int. J. Syst. Sci., 51 (2020), 1102–1118. http://doi.org/10.1080/00207721.2020.1752418 doi: 10.1080/00207721.2020.1752418
    [34] X. Chen, Q. Song, Y. Liu, Z. Zhao, Global μ-stability of impulsive complex-valued neural networks with leakage delay and mixed delays, Abstr. Appl. Anal., 2014 (2014), 397532. http://doi.org/10.1155/2014/397532 doi: 10.1155/2014/397532
    [35] U. Humphries, G. Rajchakit, R. Sriraman, P. Kaewmesri, P. Chanthorn, C. P. Lim, et al., An extended analysis on robust dissipativity of uncertain stochastic generalized neural networks with Markovian jumping parameters, Symmetry, 12 (2020), 1035. http://doi.org/10.3390/sym12061035 doi: 10.3390/sym12061035
    [36] P. Chanthorn, G. Rajchakit, J. Thipcha, C. Emharuethai, R. Sriraman, C. P. Lim, et al., Robust stability of complex-valued stochastic neural networks with time-varying delays and parameter uncertainties, Mathematics, 8 (2020), 742. http://doi.org/10.3390/math8050742 doi: 10.3390/math8050742
    [37] P. Chanthorn, G. Rajchakit, U. Humphries, P. Kaewmesri, R. Sriraman, C. P. Lim, A delay-dividing approach to robust stability of uncertain stochastic complex-valued Hopfield delayed neural networks, Symmetry, 12 (2020), 683. http://doi.org/10.3390/sym12050683 doi: 10.3390/sym12050683
    [38] M. Liu, X. Wang, Z. Zhang, Z. Wang, Dissipativity analysis of complex-valued stochastic neural networks with time-varying delays, IEEE Access, 7 (2019), 165076–165087. http://doi.org/10.1109/ACCESS.2019.2953244 doi: 10.1109/ACCESS.2019.2953244
    [39] P. Gahinet, A. Nemirovskii, A. J. Laub, M. Chilal, The LMI control toolbox, In: Proceedings of 1994 33rd IEEE conference on decision and control, 1994. http://doi.org/10.1109/CDC.1994.411440
    [40] Q. Li, J. Liang, W. Gong, Stability and synchronization for impulsive Markovian switching CVNNs: matrix measure approach, Commun. Nonlinear Sci., 77 (2019), 126–140. http://doi.org/10.1016/j.cnsns.2019.04.022 doi: 10.1016/j.cnsns.2019.04.022
    [41] J. Zhou, T. Cai, W. Zhou, D. Tong, Master-slave synchronization for coupled neural networks with Markovian switching topologies and stochastic perturbation, Int. J. Robust Nonlin., 28 (2018), 2249–2263. http://doi.org/10.1002/rnc.4013 doi: 10.1002/rnc.4013
    [42] K. Cui, J. Zhu, C. Li, Exponential stabilization of Markov jump systems with mode-dependent mixed time-varying delays and unknown transition rates, Circuits Syst. Signal Process., 38 (2019), 4526–4547. http://doi.org/10.1007/s00034-019-01085-2 doi: 10.1007/s00034-019-01085-2
    [43] R. Xu, Y. Kao, M. Gao, Finite-time synchronization of Markovian jump complex networks with generally uncertain transition rates, T. I. Meas. Control, 39 (2017), 52–60. http://doi.org/10.1177/0142331215600046 doi: 10.1177/0142331215600046
    [44] P. Chanthorn, G. Rajchakit, S. Ramalingam, C. P. Lim, R. Ramachandran, Robust dissipativity analysis of Hopfield-type complex-valued neural networks with time-varying delays and linear fractional uncertainties, Mathematics, 8 (2020), 595. http://doi.org/10.3390/math8040595 doi: 10.3390/math8040595
    [45] G. Rajchakit, R. Sriraman. Robust passivity and stability analysis of uncertain complex-valued impulsive neural networks with time-varying delays, Neural Process. Lett., 53 (2021), 581–606. http://doi.org/10.1007/s11063-020-10401-w doi: 10.1007/s11063-020-10401-w
  • This article has been cited by:

    1. Aljawhara H. Almuqrin, Sherif M. E. Ismaeel, C. G. L. Tiofack, A. Mohamadou, Badriah Albarzan, Weaam Alhejaili, Samir A. El-Tantawy, Solving fractional physical evolutionary wave equations using advanced techniques, 2025, 2037-4631, 10.1007/s12210-025-01320-w
    2. Samir A. El-Tantawy, Sahibzada I. H. Bacha, Muhammad Khalid, Weaam Alhejaili, Application of the Tantawy Technique for Modeling Fractional Ion-Acoustic Waves in Electronegative Plasmas having Cairns Distributed-Electrons, Part (I): Fractional KdV Solitary Waves, 2025, 55, 0103-9733, 10.1007/s13538-025-01741-w
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1938) PDF downloads(67) Cited by(3)

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog