Processing math: 100%
Research article Special Issues

On the character sums analogous to high dimensional Kloosterman sums

  • The main purpose of this paper is using the properties of the classical Gauss sums and the analytic methods to study the computational problem of one kind of character sums analogous to high dimensional Kloosterman sums, and give some interesting identities for it.

    Citation: Jianghua Li, Xi Zhang. On the character sums analogous to high dimensional Kloosterman sums[J]. AIMS Mathematics, 2022, 7(1): 294-305. doi: 10.3934/math.2022020

    Related Papers:

    [1] Junfeng Cui, Li Wang . The generalized Kloosterman's sums and its fourth power mean. AIMS Mathematics, 2023, 8(11): 26590-26599. doi: 10.3934/math.20231359
    [2] Xiaoxue Li, Wenpeng Zhang . A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums. AIMS Mathematics, 2022, 7(9): 16102-16111. doi: 10.3934/math.2022881
    [3] He Yanqin, Zhu Chaoxi, Chen Zhuoyu . A sum analogous to Kloosterman sum and its fourth power mean. AIMS Mathematics, 2020, 5(3): 2569-2576. doi: 10.3934/math.2020168
    [4] Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603
    [5] Wenjia Guo, Yuankui Ma, Tianping Zhang . New identities involving Hardy sums S3(h,k) and general Kloosterman sums. AIMS Mathematics, 2021, 6(2): 1596-1606. doi: 10.3934/math.2021095
    [6] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [7] Wenpeng Zhang, Xiaodan Yuan . On the classical Gauss sums and their some new identities. AIMS Mathematics, 2022, 7(4): 5860-5870. doi: 10.3934/math.2022325
    [8] Xi Liu . Some identities involving Gauss sums. AIMS Mathematics, 2022, 7(2): 3250-3257. doi: 10.3934/math.2022180
    [9] Wenjia Guo, Xiaoge Liu, Tianping Zhang . Dirichlet characters of the rational polynomials. AIMS Mathematics, 2022, 7(3): 3494-3508. doi: 10.3934/math.2022194
    [10] Hu Jiayuan, Chen Zhuoyu . On distribution properties of cubic residues. AIMS Mathematics, 2020, 5(6): 6051-6060. doi: 10.3934/math.2020388
  • The main purpose of this paper is using the properties of the classical Gauss sums and the analytic methods to study the computational problem of one kind of character sums analogous to high dimensional Kloosterman sums, and give some interesting identities for it.



    Let q>1 be an integer, h, ci and b are integers with h>1 and i=1, 2, ,h. The h-dimensional Kloosterman sums K(c1,c2,,ch,b;q) is defined as:

    K(c1,c2,,ch,b;q)=qa1=1qa2=1qah=1e(c1a1+c2a2++chah+b¯a1a2ahq),

    where as usual, e(y)=e2πiy, qa=1 denotes the summation over all 1aq such that (a,q)=1, and c¯c1modq.

    This sum occupies a very important position in the research of number theory, and many classical problems in analytic number theory are closely related to it. For these reasons, many scholars have studied the properties of K(c1,c2,,ch,b;q), and obtained a series of important results. For example, R. A. Smith [1] studied the properties of the n-dimensional Kloosterman sums, and obtained a sharp upper bound estimate for

    S(m,n;q)=qa1=1qan=1e(a1+a2++an+m¯a1¯a2¯anq).

    W. P. Zhang and D. Han [2] studied the fourth power mean of the 2-dimensional Kloostermann sums, and proved the identity

    p1m=1|p1a=1p1b=1e(ma+b+¯abp)|4={7p518p4(bp+6)p36p23pifp1mod6;7p522p4(bp14)p36p23pifp5mod6,

    where bp is an integer satisfying |bp|<2p32.

    W. P. Zhang and X. X. Li [3] obtained the identity

    χmodpp1m=1|p1a=1p1b=1χ(ab)e(a+b+m¯abp)|4=(p1)(2p57p4+2p3+8p2+4p+1).

    In this paper, we considered the character sums analogous to high dimensional Kloosterman sums as follows:

    S(m,h,χ;p)=p1a1=1p1a2=1p1ah=1χ(a1++ah+m¯a1ah), (1.1)

    where p is an odd prime, χ is any non-principal Dirichlet character modp, h is any fixed positive integer, and m is any integer.

    About summation (1.1), X. X. Lv and W. P. Zhang [4] studied the hybrid power mean involving S(m,2,χ;p) and two-term exponential sums, and proved the following results.

    Let p be an odd prime with 3(p1). Then for any non-principal character χ modulo p, one has the identities

    p1m=1|p1a=1p1b=1χ(a+b+m¯a¯b)|2|p1b=1e(mb+¯bp)|2=p1m=1|p1a=1p1b=1χ(a+b+m¯a¯b)|2|p1b=1e(mb3+bp)|2=p2(p2p1).

    If p is an odd prime with 3(p1). Then for any three-th character χmodp (i.e., there exists a character χ1modp such that χ=χ31), then one has the asymptotic formulae

    p1m=1|p1a=1p1b=1χ(a+b+m¯a¯b)|2|p1b=1e(mb+¯bp)|2=3p4+N(p),

    and

    p1m=1|p1a=1p1b=1χ(a+b+m¯a¯b)|2|p1b=1e(mb3+bp)|2=3p4+N1(p),

    where N(p) and N1(p) satisfy |N(p)|9p72 and |N1(p)|15p3 respectively.

    X. L. Xu, J. F. Zhang and W. P. Zhang [5] generalized the results in [4] to the high dimensional cases, and obtained the following conclusions:

    Theorem A. Let p be an odd prime, h1 is an integer with (h+1,p1)=1. Then for any non-principal character χmodp, one has the identity

      p1m=1|p1a1=1p1ah=1χ(a1++ah+m¯a1ah)|2|p1a=1e(mah+1+ap)|2
    =ph(p2p1).                                

    Theorem B. Let p be an odd prime, h is an integer with (h+1)(p1), χ is any non-principal character modp. If χ is a (h+1)-th character modp (That is, there exists a character χ1modp such that χ=χh+11), then one has

    p1m=1|p1a1=1p1ah=1χ(a1++ah+m¯a1ah)|2|p1a=1e(mah+1+ap)|2
    =(h+1)ph+2+O(h2ph+1).     

    In addition, some other results related to the Kloosterman sums can also be found in the references [6,7,8,9,10,11,12], we no longer list here.

    The main purpose of this paper is using the analytic methods and the properties of Gauss sums to study the computational problem of the fourth power mean of (1.1) with h=2, and give some interesting results. That is, we will prove the following:

    Theorem 1.1. Let p be an odd prime with p1mod3, χ be any 3-th non-principal character modulo p. Then we have the identity

    p1m=1|p1a=1p1b=1χ(a+b+m¯ab)|4=15p4(p1)+2(p1)¯τ3(χ)χ3(3)p2E9(χ)+2(p1)τ3(χ)¯χ3(3)p2¯E9(χ),

    where En(χ)=τn(χ1)+τn(χ1λ)+τn(χ1¯λ), ¯En(χ) denotes the complex conjugate of En(χ), and En(χ) satisfies the third-order linear recursion formula

    En+3(χ)=E1(χ)En+2(χ)τ(χ)¯χ(3)¯E1(χ)En+1(χ)+pτ(χ)¯χ(3)En(χ),

    the first three terms of En(χ) are

    E0(χ)=3;  E1(χ)=p1a=1χ(a)e(a3p);  E2(χ)=E21(χ)2τ(χ)¯χ(3)¯E1(χ), and

    τ(χ)=p1a=1χ(a)e(ap) denotes the classical Gauss sums, |τ(χ)|=p.

    Theorem 1.2. Let p be a prime with p1mod3, then we have

    1p1p1m=1|p1a=1p1b=1(a+b+m¯abp)|4=19p4+4p(d22p)(d44pd2+p2),

    where (p) denotes the Legendre symbol modulo p, d is uniquely determined by 4p=d2+27c2 and d1mod3.

    From our theorems we can also deduce the following:

    Corollary 1.1. Let p be an odd prime with p1mod3, g be any primitive root modulo p. Then we have the identity

    132i=0(p1a=1p1b=1(a+b+gi¯abp))2=3p2.

    Corollary 1.2. Let p be a prime, χ be any non-principal character modulo p. Then we have the estimate

    p1m=1|p1a=1p1b=1χ(a+b+m¯ab)|427p4(p1).

    Some notes: Let p be an odd prime, h1 is an integer with (h+1)(p1). If χ is not a (h+1)-th character modulo p, then it is easy to prove that

    |p1a1=1p1a2=1p1ah=1χ(a1+a2++ah+m¯a1ah)|=0.

    Let p be an odd prime, k1 be an integer with (k+1,p1)=1. Then for any integer m with (m,p)=1 and any non-principal character χmodp, we have

    |p1a1=1p1a2=1p1ak=1χ(a1+a2++ak+m¯a1ak)|=pk2.

    So in these cases, our conclusions are trivial.

    In some places of this paper, we need to use the definition and properties of the classical Gauss sums τ(χ) and character sums, these contents can be found in some analytic number theory books, such as [13], here we will not repeat the related contents. First we have the following:

    Lemma 2.1. Let p be an odd prime, k1 is an integer with (k+1)(p1), χ is any non-principal character modp, and m is an integer with (m,p)=1. If χ is not a (k+1)-th character modp, then we have the identity

    p1a1=1p1a2=1p1ak=1χ(a1+a2++ak+m¯a1ak)=0.

    If χ is a (k+1)-th character modulo p, then we have the identity

    p1a1=1p1a2=1p1ak=1χ(a1+a2++ak+m¯a1ak)=χ1(m)[τk+1(¯χ1)τ(¯χ)+¯λ(m)τk+1(¯χ1λ)τ(¯χ)++¯λk(m)τk+1(¯χ1λk)τ(¯χ)],

    where λ denotes any (k+1)-order character modulo p, and χ=χk+11.

    Proof. If (k+1)(p1), and χ is not a (k+1)-th character modp, then there exists an integer 1<r<p1 such that rk+1¯rk+11modp and χ(r)1. So from the properties of the reduced residue system modulo p we have

    p1a1=1p1a2=1p1ak=1χ(a1+a2++ak+m¯a1ak)=p1a1=1p1a2=1p1ak=1χ(ra1+ra2++rak+m¯rk¯a1ak)=χ(r)p1a1=1p1a2=1p1ak=1χ(a1+a2++ak+m¯rk+1¯a1ak)=χ(r)p1a1=1p1a2=1p1ak=1χ(a1+a2++ak+m¯a1ak). (2.1)

    Since χ(r)1, so from (2.1) we have the identity

    p1a1=1p1a2=1p1ak=1χ(a1+a2++ak+m¯a1ak)=0. (2.2)

    If (k+1)(p1), and χ is a (k+1)-th character modp, let χ=χk+11, and λ is a k+1-order character modulo p. Then for any integer m with (m,p)=1, note that the identity

    1+λ(b)+λ2(b)++λk(b)={k+1,if(b,p)=1andbck+1modp;0,otherwise.

    From the properties of the classical Gauss sums we have

    p1a1=1p1a2=1p1ak=1χ(a1+a2++ak+m¯a1ak)=1τ(¯χ)p1a1=1p1a2=1p1ak=1p1b=1¯χ(b)e(b(a1+a2++ak+m¯a1a1ak)p)=1τ(¯χ)p1a1=1p1a2=1p1ak=1e(a1+a2++akp)p1b=1¯χ(b)e(mbk+1¯a1a2akp)=1τ(¯χ)p1a1=1p1a2=1p1ak=1e(a1+a2++akp)×p1b=1(1+λ(b)+λ2(b)++λk(b))¯χ1(b)e(mb¯a1a2akp)=χ1(m)[τk+1(¯χ1)τ(¯χ)+¯λ(m)τk+1(¯χ1λ)τ(¯χ)++¯λk(m)τk+1(¯χ1λk)τ(¯χ)]. (2.3)

    Now Lemma 2.1 follows from formulae (2.2) and (2.3).

    Lemma 2.2. Let p be an odd prime, k>1 is an integer with (k+1,p1)=1. Then for any non-principal character χmodp and integer m with (m,p)=1, we have the identity

    |p1a1=1p1a2=1p1ak=1χ(a1+a2++ak+m¯a1ak)|=pk2.

    Proof. Note that (k+1,p1)=1, so if a passes through a reduced residue system modulo p, then ak+1 also pass through a reduced residue system modulo p. Let h(k+1)1mod(p1), then from the method of proving (2.3) we have

    p1a1=1p1a2=1p1ak=1χ(a1+a2++ak+m¯a1ak)=1τ(¯χ)p1a1=1p1a2=1p1ak=1e(a1+a2++akp)p1b=1¯χ(b)e(mbk+1¯a1a2akp)=1τ(¯χ)p1a1=1p1a2=1p1ak=1e(a1+a2++akp)p1b=1¯χ(bh)e(mbh(k+1)¯a1a2akp)=1τ(¯χ)p1a1=1p1a2=1p1ak=1e(a1+a2++akp)p1b=1¯χh(b)e(mb¯a1a2akp)=χh(m)τ(¯χh)τ(¯χ)(p1a=1¯χh(a)e(ap))k=χh(m)τk+1(¯χh)τ(¯χ). (2.4)

    Note that |τ(¯χh)|=|τ(¯χ)|=p, from (2.4) we can deduce Lemma 2.2.

    Lemma 2.3. Let p be an odd prime with p1mod3. Then for any 3-th character χ=χ31 modulo p, we have the identity

    p1m=1|p1a=1p1b=1χ(a+b+m¯ab)|4=15p4(p1)+2(p1)¯τ3(χ)χ3(3)p2(τ9(χ1)+τ9(χ1λ)+τ9(χ1¯λ))+2(p1)τ3(χ)¯χ3(3)p2(¯τ9(χ1)+¯τ9(χ1λ)+¯τ9(χ1¯λ)),

    where λ denotes any cubic-order character modulo p.

    Proof. If (3,p1)=3, then for any non-principal character χmodp with χ=χ31, taking k=2 in Lemma 2.1 we have

    p1a=1p1b=1χ(a+b+m¯ab)=χ1(m)τ(¯χ)(τ3(¯χ1)+¯λ(m)τ3(¯χ1λ)+λ(m)τ3(¯χ1¯λ)). (2.5)

    Note that the identity

    p1m=1λ(m)=p1m=1¯λ(m)=0,

    from (2.5) we have

    p1m=1|p1a=1p1b=1χ(a+b+m¯ab)|4=1p2p1m=1|τ3(¯χ1)+¯λ(m)τ3(¯χ1λ)+λ(m)τ3(¯χ1¯λ)|4=p4p1m=1(3+λ(m)¯τ3(¯χ1λ)¯τ3(¯χ1)+¯λ(m)¯τ3(¯χ1¯λ)¯τ3(¯χ1)+¯λ(m)τ3(¯χ1λ)τ3(¯χ1)+λ(m)τ3(¯χ1¯λ)τ3(¯χ1)+¯λ(m)p3¯τ3(¯χ1λ)τ3(¯χ1¯λ)+λ(m)p3τ3(¯χ1λ)¯τ3(¯χ1¯λ))2=p4(p1)(15+2¯τ3(¯χ1λ)¯τ3(¯χ1¯λ)¯τ6(¯χ1)+2¯τ6(¯χ1λ)τ3(¯χ1¯λ)p3¯τ3(¯χ1)+2τ3(¯χ1λ)τ3(¯χ1¯λ)τ6(¯χ1)+2¯τ3(¯χ1λ)τ6(¯χ1¯λ)p3τ3(¯χ1)+2τ6(¯χ1λ)¯τ3(¯χ1¯λ)p3τ3(¯χ1)+2τ3(¯χ1λ)¯τ6(¯χ1¯λ)p3¯τ3(¯χ1)). (2.6)

    From the triplication formula for Gauss sums (see [14]) we have

    τ(χ)=τ(χ31)=1pχ(3)τ(χ1)τ(χ1λ)τ(χ1¯λ). (2.7)

    Note that τ(χ)¯τ(χ)=p, combining (2.6) and (2.7) we have the identity

    p1m=1|p1a=1p1b=1χ(a+b+m¯ab)|4=15p4(p1)+2(p1)¯τ3(χ)χ3(3)p2(τ9(χ1)+τ9(χ1λ)+τ9(χ1¯λ))+2(p1)τ3(χ)¯χ3(3)p2(¯τ9(χ1)+¯τ9(χ1λ)+¯τ9(χ1¯λ)).

    This proves Lemma 2.3.

    Lemma 2.4. Let p be a prime with p1mod6, χ be any sixth-order character modp. Then about the classical Gauss sums τ(χ), the following holds.

    τ3(χ)+τ3(¯χ)={p12(d22p)if p=12h+1,ip12(d22p)if p=12h+7,

    where i2=1, d is uniquely determined by 4p=d2+27c2 and d1mod3.

    Proof. This result is Lemma 2.3 in S. Chowla, J. Cowles and M. Cowles [15], so the proof details are omitted.

    Now we use the several basic lemmas of the previous section to complete the proofs of our theorems. First we prove Theorem 1.1. Let χ=χ31. Then from Lemma 2.3 we have

    p1m=1|p1a=1p1b=1χ(a+b+m¯ab)|4=15p4(p1)+2(p1)¯τ3(χ)χ3(3)p2E9(χ)+2(p1)τ3(χ)¯χ3(3)p2¯E9(χ), (3.1)

    where ¯En(χ) denotes the complex conjugate of En(χ).

    Let r1=τ(χ1), r2=τ(χ1λ) and r3=τ(χ1¯λ). It is clear that

    E1(χ)=τ(χ1)+τ(χ1λ)+τ(χ1¯λ)=p1a=1χ(a)e(a3p). (3.2)

    From (2.7) we have

    r1r2r3=τ(χ1)τ(χ1λ)τ(χ1¯λ)=pτ(χ)¯χ(3). (3.3)

    Note that ri¯ri=p, i=1, 2, 3. So we have

    E2(χ)=r21+r22+r23=(r1+r2+r3)22r1r22r1r32r2r3=E21(χ)2r1r2r3p(¯r1+¯r2+¯r3)=E21(χ)2τ(χ)¯χ(3)¯E1(χ). (3.4)

    For any integer n0, it is easy to get the identity

    En+3(χ)=(r1+r2+r3)En+2(χ)(r1r2+r1r3+r2r3)En+1(χ)+r1r2r3En(χ)=E1(χ)En+2(χ)τ(χ)¯χ(3)¯E1(χ)En+1(χ)+pτ(χ)¯χ(3)En(χ).

    Now note that E0(χ)=3, combining (3.2) and (3.4) and the above identity we may immediately deduce Theorem 1.1.

    Now we prove Theorem 1.2. Taking χ=χ2=(p) as the Legendre symbol modulo p in (3.1). It is clear that χ=χ31=χ2. We discuss in two different conditions p=12k+1 and p=12k+7 respectively.

    If p=12k+1, then χ2(3)=1, τ(χ2)=p (see [13], chapter 9.10), from (3.1) we have

    p1m=1|p1a=1p1b=1(a+b+m¯abp)|4=15p4(p1)+4(p1)p[τ9(χ2)+τ9(χ2λ)+τ9(χ2¯λ)]. (3.5)

    Note that χ2λ is a sixth-order character modulo p and τ(χ2λ)τ(χ2¯λ)=p, from Lemma 2.4 we have

    τ9(χ2λ)+τ9(χ2¯λ)=(τ3(χ2λ)+τ3(χ2¯λ))((τ3(χ2λ)+τ3(χ2¯λ))23p3)=p32(d22p)33p72(d22p). (3.6)

    Combining (3.5) and (3.6) we have the identity

    1p1p1m=1|p1a=1p1b=1(a+b+m¯abp)|4=19p4+4p(d22p)(d44pd2+p2). (3.7)

    If p=12k+7, then χ2(3)=1, τ(χ2)=ip and τ(χ2λ)τ(χ2¯λ)=p, from Lemma 2.4 and the method of proving (3.6) we have

    τ9(χ2λ)+τ9(χ2¯λ)=ip32(d22p)33ip72(d22p). (3.8)

    Combining (3.1) and (3.8) we also have the identity

    1p1p1m=1|p1a=1p1b=1(a+b+m¯abp)|4=19p4+4p(d22p)(d44pd2+p2). (3.9)

    It is clear that Theorem 1.2 follows from (3.7) and (3.9).

    Now we prove Corollary 1.1. From (2.5) and the method of proving (2.6) we have

    p1m=1|p1a=1p1b=1(a+b+m¯abp)|2=1pp1m=1|τ3(χ2)+¯λ(m)τ3(χ2λ)+λ(m)τ3(χ2¯λ)|2=p2p1m=13=3p2(p1). (3.10)

    Let g be any primitive root modulo p, note that for any integer r,

    |p1a=1p1b=1(a+b+g3rm¯abp)|=|p1a=1p1b=1(gra+grb+grm¯abp)|=|(grp)p1a=1p1b=1(a+b+m¯abp)|=|p1a=1p1b=1(a+b+m¯abp)|. (3.11)

    So from (3.10) and (3.11) and the properties of primitive roots and the reduced residue system modulo p we have

    3p2(p1)=p1m=1|p1a=1p1b=1(a+b+m¯abp)|2=2i=0p131k=0|p1a=1p1b=1(a+b+g3k+i¯abp)|2=2i=0p131k=0|p1a=1p1b=1(a+b+gi¯abp)|2=p132i=0|p1a=1p1b=1(a+b+gi¯abp)|2

    which implies the identity

    2i=0(13p1a=1p1b=1(a+b+gi¯abp))2=p2.

    This proves Corollary 1.1.

    It is easy to deduce Corollary 1.2 from our theorems. In fact, if (3,p1)=1, then from Lemma 2.1 and Lemma 2.2 we have the estimate

    p1m=1|p1a=1p1b=1χ(a+b+m¯ab)|4p4(p1). (3.12)

    If 3(p1) and χ is not a 3-th character modulo p, then from Lemma 2.1 we have

    p1m=1|p1a=1p1b=1χ(a+b+m¯ab)|4=0. (3.13)

    If 3(p1) and χ is a 3-th character modulo p, then note that the estimate

    |E9(χ)|3p92, and |τ(χ)|=p,

    from (3.1) we have the estimate

    p1m=1|p1a=1p1b=1χ(a+b+m¯ab)|415p4(p1)+12p4(p1)=27p4(p1). (3.14)

    Combining (3.12)–(3.14) we may immediately deduce Corollary 1.2.

    This completes the proofs of our all results.

    The main result of this paper is using the elementary and analytic methods to give an exact calculating formula for the fourth power mean of the character sums analogous to 2-dimensional Kloosterman sums. The result is a new contribution to the relevant fields.

    This work is supported by the N. S. F. (11771351, 413610022) of China and the N. S. F. of Shaanxi Province (2021JM-323).

    All authors declare no conflicts of interest in this paper.



    [1] R. A. Smith, On n-dimensional Kloosterman sums, J. Number Theory, 11 (1979), 324–343. doi: 10.1016/0022-314X(79)90006-4. doi: 10.1016/0022-314X(79)90006-4
    [2] W. P. Zhang, D. Han, A new identity involving the classical Kloosterman sums and 2-dimensional Kloostermann sums, Int. J. Number Theory, 12 (2016), 111–119. doi: 10.1142/S179304211650007X. doi: 10.1142/S179304211650007X
    [3] W. P. Zhang, X. X. Li, The fourth power mean of the general 2-dimensional Kloostermann sums modp, Acta Math. Sin. English Ser., 33 (2017), 861–867. doi: 10.1007/s10114-016-6347-9. doi: 10.1007/s10114-016-6347-9
    [4] X. X. Lv, W. P. Zhang, On the character sum of polynomials and the two-term exponential sums, Acta Math. Sin. English Ser., 36 (2020), 196–206. doi: 10.1007/s10114-020-9255-y. doi: 10.1007/s10114-020-9255-y
    [5] X. L. Xu, J. F. Zhang, W. P. Zhang, The character sum of polynomials with k variables and two-term exponential sums, Notes Number Theory, 27 (2021), 112–124. doi: 10.7546/nntdm.2021.27.1.112-124. doi: 10.7546/nntdm.2021.27.1.112-124
    [6] S. Chern, On the power mean of a sum analogous to the Kloosterman sum, 2017, arXiv: 1712.01422.
    [7] W. P. Zhang, On the fourth and sixth power mean of the classical Kloosterman sums, J. Number Theory, 131 (2011), 228–238. doi: 10.1016/j.jnt.2010.08.008. doi: 10.1016/j.jnt.2010.08.008
    [8] W. P. Zhang, X. X. Lv, The fourth power mean of the general 3-dimensional Kloostermann sums modp, Acta Math. Sin. English Ser., 33 (2017), 369–377. doi: 10.1007/s10114-016-6347-9. doi: 10.1007/s10114-016-6347-9
    [9] W. P. Zhang, On the fourth power mean of the general Kloosterman sums, J. Number Theory, 169 (2016), 315–326. doi: 10.1016/j.jnt.2016.05.018. doi: 10.1016/j.jnt.2016.05.018
    [10] W. P. Zhang, S. M. Shen, A note on the fourth power mean of the generalized Kloosterman sums, J. Number Theory, 174 (2017), 419–426. doi: 10.1016/j.jnt.2016.11.020. doi: 10.1016/j.jnt.2016.11.020
    [11] W. Duke, H. Iwaniec, A relation between cubic exponential and Kloosterman sums, Contemp. Math., 145 (1993), 255–258.
    [12] Y. W. Hou, W. P. Zhang, One kind high dimensional Kloosterman sums and its upper bound estimate, Journal of Shaanxi Normal University (Natural Science Edition), 46 (2018), 28–31.
    [13] T. M. Apostol, Introduction to analytic number theory, Springer Science & Business Media, 1976.
    [14] J. Greene, D. Stanton, The triplication formula for Gauss sums, Aeq. Math., 30 (1986), 134–141. doi: 10.1007/BF02189920. doi: 10.1007/BF02189920
    [15] S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. doi: 10.1016/0022-314X(77)90010-5. doi: 10.1016/0022-314X(77)90010-5
  • This article has been cited by:

    1. Jiayuan Hu, Xiaogang Liu, Some New Identities Related to Dedekind Sums Modulo a Prime, 2024, 2024, 2314-4785, 1, 10.1155/2024/8844153
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2614) PDF downloads(97) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog