Research article

Adapted block hybrid method for the numerical solution of Duffing equations and related problems

  • Received: 26 June 2021 Accepted: 21 September 2021 Published: 28 September 2021
  • MSC : 65L03, 65L05, 65L50

  • Problems of non-linear equations to model real-life phenomena have a long history in science and engineering. One of the popular of such non-linear equations is the Duffing equation. An adapted block hybrid numerical integrator that is dependent on a fixed frequency and fixed step length is proposed for the integration of Duffing equations. The stability and convergence of the method are demonstrated; its accuracy and efficiency are also established.

    Citation: Ridwanulahi Iyanda Abdulganiy, Shiping Wen, Yuming Feng, Wei Zhang, Ning Tang. Adapted block hybrid method for the numerical solution of Duffing equations and related problems[J]. AIMS Mathematics, 2021, 6(12): 14013-14034. doi: 10.3934/math.2021810

    Related Papers:

  • Problems of non-linear equations to model real-life phenomena have a long history in science and engineering. One of the popular of such non-linear equations is the Duffing equation. An adapted block hybrid numerical integrator that is dependent on a fixed frequency and fixed step length is proposed for the integration of Duffing equations. The stability and convergence of the method are demonstrated; its accuracy and efficiency are also established.



    加载中


    [1] S. N. Jator, H. B. Oladejo, Block Nyström method for singular differential equations of the Lane-Emdem Type and problems with highly oscillatory solutions, Int. J. Appl. Comput. Math., 3 (2017), 1385–1402. doi: 10.1007/s40819-017-0376-7
    [2] T. Monovasilis, Z. Kalogiratou, H. Ramos, T. E. Simos, Modified two-step hybrid methods for the numerical integration of oscillatory problems, Math. Method Appl. Sci., 40 (2017), 5286–5294. doi: 10.1002/mma.4386
    [3] J. Sunday, Y. Skwane, M. R. Odekunle, A continuous block integrator for the solution of stiff and oscillatory differential equations, IOSR J. Math., 8 (2013), 75–80.
    [4] W. H. Enright, Second derivative multistep method for stiff ODEs, SIAM J. Numer. Anal., 11 (1974), 321–331. doi: 10.1137/0711029
    [5] E. Hairer, S. P. Norsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer-Verlag, Berlin, 1993.
    [6] J. D. Lambert, I. A. Watson, Symmetric multistep methods for periodic initial value problems, IMA J. Appl. Math., 18 (1976), 189–202. doi: 10.1093/imamat/18.2.189
    [7] S. N. Jator, Solving second order initial value problems by a hybrid multistep method without predictors, Appl. Math. Comput., 277 (2010), 4036–4046.
    [8] J. M. Franco, An embedded pair of exponentially fitted explicit Runge-Kutta methods, J. Comput. Appl. Math., 149 (2002), 407–414. doi: 10.1016/S0377-0427(02)00485-5
    [9] J. M. Franco, Exponentially-fitted explicit Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 167 (2003), 1–19.
    [10] W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math., 3 (1961), 381–397. doi: 10.1007/BF01386037
    [11] B. Neta, C. H. Ford, Families of methods for ordinary differential equations based on trigonometric polynomials, J. Comp. Appl. Math., 10 (1984), 33–38. doi: 10.1016/0377-0427(84)90066-9
    [12] B. Neta, Families of backward differentiation methods based on trigonometric polynomials, Int. J. Comput. Math., 20 (1986), 67–75. doi: 10.1080/00207168608803532
    [13] B. B. Sanugi, D. J. Evans, The numerical solution of oscillatory problems, Int. J. Comput. Math., 31 (1989), 237–255.
    [14] S. C. Duxbury, Mixed Collocation Methods for $y'' = f(x, y)$, Durham Theses, Durham University, 1999.
    [15] J. P. Coleman, S. C. Duxbury, Mixed collocation methods for $y'' = f(x, y)$, J. Comput. Appl. Math., 126 (2000), 47–75. doi: 10.1016/S0377-0427(99)00340-4
    [16] J. M. Franco, A class of explicit two-step hybrid methods for second-order IVPs, J. Comput. Appl. Math., 187 (2006), 41–57. doi: 10.1016/j.cam.2005.03.035
    [17] J. M. Franco, Exponentially fitted explicit Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 167 (2004), 1–19. doi: 10.1016/j.cam.2003.09.042
    [18] Y. Fang, X. Wu, A trigonometrically fitted explicit Numerov-type method for second order initial value problems with oscillating solutions, Appl. Numer. Math., 58 (2008), 341–351. doi: 10.1016/j.apnum.2006.12.003
    [19] Y. Fang, Y. Song, X. Wu, A robust trigonometrically fitted embedded pair for perturbed oscillators, J. Comput. Appl. Math., 225 (2009), 347–355. doi: 10.1016/j.cam.2008.07.053
    [20] L. Gr. Ixaru, G. Vanden Berghe, M. Van Daele, Frequency evaluation in exponentially-fitted algorithms for ODEs, J. Comput. Appl. Math., 140 (2002), 423–434. doi: 10.1016/S0377-0427(01)00474-5
    [21] G. Vanden Berhe, M.Van Daele, Exponentially-fitted Numerov methods, J. Comput. Appl. Math., 200 (2007), 140–153. doi: 10.1016/j.cam.2005.12.022
    [22] J. Martin-Vaquero, J. Vigo-Aguiar, Exponential fitted Gauss, Radau and Lobatto methods of low order, Numer. Algorithms, 48 (2008), 327–346. doi: 10.1007/s11075-008-9202-y
    [23] F. F. Ngwane, S. N. Jator, Solving oscillatory problems using a block hybrid trigonometrically fitted method with two off-step points, Electron. J. Differ. Eq., 20 (2013), 119–132.
    [24] X. You, B. Chen, Symmetric and symplectic exponentially-Fitted Runge-Kutta-Nyström methods for Hamiltonian Problems, Math. Comput. Simulat., 94 (2013), 76–95. doi: 10.1016/j.matcom.2013.05.010
    [25] J. P. Coleman, L. G. Ixaru, P-stability and exponential fitting methods for $y'' = f(x, y)$, IMA J. Numer. Anal., 16 (1996), 179–199. doi: 10.1093/imanum/16.2.179
    [26] A. Konguetsof, T. E. Simos, An exponentially-fitted and trigonometrically-fitted methods for the numerical integration of periodic initial value problems, Comput. Math. Appl., 45 (2003), 547–554. doi: 10.1016/S0898-1221(03)80036-6
    [27] S. N. Jator, S. Swindell, R. D. French, Trigonmetrically fitted block numerov type method for $y{''} = f \left(x, y, y{'} \right)$, Numer. Algorithms, 62 (2013), 13–26. doi: 10.1007/s11075-012-9562-1
    [28] R. I. Abdulganiy, O. A. Akinfenwa, S. A. Okunuga, Maximal order block trigonometrically fitted scheme for the numerical treatment of second order initial value problem with oscillating solutions, IJMSO, 2017 168–186.
    [29] F. F. Ngwane, S. N. Jator, Trigonometrically-fitted second derivative method for oscillatory problems, SpringerPlus, 3 (2014).
    [30] M. A. Razzaq, An analytical approximate technique for solving cubic-quintic Duffing oscillator, Alex. Eng. J., 55 (2016), 2959–2965. doi: 10.1016/j.aej.2016.04.036
    [31] P. L. Ndukum, T. A. Biala, S. N. Jator, R. B. Adeniyi, On a family of trigonometrically fitted extended backward differentiation formulas for stiff and oscillatory initial value problems, Numer. Algorithms, 74 (2017), 267–287. doi: 10.1007/s11075-016-0148-1
    [32] H. Ramos, J. Vigo-Aguiar, On the frequency choice in trigonometrically fitted methods, Appl. Math. Lett., 23 (2010), 1378–1381. doi: 10.1016/j.aml.2010.07.003
    [33] L. Schovanec, J. T. White, A power series method for solving initial value problems utilizing computer algebra systems, Int. J. Comput. Math., 47 (1993), 181–189. doi: 10.1080/00207169308804175
    [34] S. Nourazar, A. Mirzabeigy, Approximate solution for nonlinear Duffing oscillator with damping effect using the modified differential transform method, Sci. Iran., 20 (2013), 364–368.
    [35] F. F. Ngwane, S. N. Jator, A family of trigonometrically fitted Enright second derivative methods for stiff and oscillatory initial value problems, J. Appl. Math., 2015 (2015) 1–17.
    [36] J. Vigo-Aguiar, H. Ramos, On the choice of the frequency in trigonometrically fitted methods for periodic problems, J. Comput. Appl. Math., 277 (2015), 94–105. doi: 10.1016/j.cam.2014.09.008
    [37] R. I. Abdulganiy, O. A. Akinfenwa, S. A. Okunuga, G. O. Oladimeji, A robust block hybrid trigonometric method for the numerical integration of oscillatory second order nonlinear initial value problems, Adv. Modell. Anal. A, 54 (2017), 497–518.
    [38] A. Belendez, C. Pascual, M. Ortuno, T. Belendez, S. Gallego, Application of a modified He's homotopy perturbation method to obtain higher-order aroximations to a nonlinear oscillator with discontinuities, Nonlinear Anal-Real., 10 (2009), 601–610. doi: 10.1016/j.nonrwa.2007.10.015
    [39] H. S. Nguyen, R. B. Sidje, N. H. Cong, Analysis of trigonometric implicit Runge-Kutta methods, J. Comput. Appl. Math., 198 (2007), 187–207. doi: 10.1016/j.cam.2005.12.006
    [40] S. N. Jator, A. O. Akinfenwa, S. A. Okunuga, A. B. Sofoluwe, High-order continuous third derivative formulas with block extension for $y{''} = f \left(x, y, y{'} \right)$, Int. J. Comput. Math., 90 (2003), 1899–1914.
    [41] J. D. Lambert, Computational Methods in Ordinary Differential System, the Initial Value Problem, New York: John Wiley & Sons, 1973.
    [42] S. O. Fatunla, Numerical Methods for Initial Value Problems in Ordinary Differential Equations, Cambridge: Academic Press Inc., 1988.
    [43] J. He, The homotopy perturbation method for nonlinear oscillators with discontinuous, Appl. Math. Comput., 151 (2004), 287–292.
    [44] A. Bel$\acute{e}$ndez, A. Hern$\acute{a}$ndez, T. Bel$\acute{e}$ndez, E. Fern$\acute{a}$ndez, M. L. $\acute{A}$lvarez, C. Neipp, Application of He's homotopy perturbation method to the duffing-harmonic oscillator, Int. J. Nonlin. Sci. Num., 8 (2007), 79–88.
    [45] S. O. Fatunla, Block methods for second order ODEs, Int. J. Comput. Math., 41 (1991), 55–63. doi: 10.1080/00207169108804026
    [46] R. I. Abdulganiy, O. A. Akinfenwa, S. A. Okunuga, Construction of L stable second derivative trigonometrically fitted block backward differentiation formula for the solution of oscillatory initial value problems, Afr. J. Sci. Technol. In., 10 (2018), 411–419.
    [47] D. V. V. Wend, Existence and uniqueness of solution of ordinary differential equations, P. Am. Math. Soc., 23 (1969), 27–33. doi: 10.1090/S0002-9939-1969-0245879-4
    [48] D. V. V. Wend, Uniqueness of solution of ordinary differential equations, Am. Math. Mon., 74 (1967), 948–950. doi: 10.1080/00029890.1967.12000056
    [49] C. Liu, W. Jhao, The power series method for a long-term solution of Duffing oscillator, Commun. Numer. Anal., 2014 (2014), 1–14.
    [50] N. Senu, M. Suleimon, F. Ismail, M. Othman, A new diagonally implicit Runge-Kutta-Nyströ m method for periodic IVPs, WSEAS Trans. Math., 9 (2010), 679–688.
    [51] J. Li, M. Lu, X. Qi, Trigonometrically fitted multi-step hybrid methods for oscillatory special second-order initial value problems, Int. J. Comput. Math., 95, (2018), 979–997.
    [52] I. Kovacic, M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behaviour, Chichester: John Wiley & Sons, 2011.
    [53] R. I. Abdulganiy, O. A. Akinfenwa, S. A. Okunuga, A Simpson type trigonometrically fitted block scheme for numerical integration of oscillatory problems, UJMST, 5 (2017), 25–36.
    [54] R. I. Abdulganiy, Trigonometrically fitted block backward differentiation methods for first order initial value problems with periodic solution, Adv. Math. Comput., 28 (2018), 1–14.
    [55] R. I. Abdulganiy, O. A. Akinfenwa, O. A. Yusuff, O. E. Enobabor, S. A. Okunuga, Block third derivative trigonometrically-fitted methods for stiff and periodic problems, J. Niger. Soc. Phys. Sci., 2 (2020), 12–25.
    [56] T. Ozis, A. Yildirim, A study of nonlinear oscillators with $u^{1/3}$ force by He's variational iteration method, J. Sound Vib., 306 (2007), 372–376. doi: 10.1016/j.jsv.2007.05.021
    [57] Ch. Tsitouras, Explicit eight order two step methods with nine stages for integrating oscillatory problems, Int. J. Mod. Phys. C, 17 (2006), 861–876. doi: 10.1142/S0129183106009357
    [58] D. Younesian, H. Askari, Z. Saadatnia, M. K. Yazdi, Periodic solutions for nonlinear oscillation of a centrifugal governor system using the He's frequency-amplitude formulation and He's energy balance method, Nonlinear Sci. Lett. A, 2 (2011), 143–148.
    [59] F. Samat, E. S. Ismail, A two-step modified explicit hybrid method with step-size-dependent parameters for oscillatory problems, J. Math., 2020 (2020), Article ID 5108482482, 7 pages.
    [60] V. Marinca, N. Herişanu, Explicit and exact solutions to cubic Duffing and double-well Duffing equations, Math. Comput. Model., 53 (2011), 604–609. doi: 10.1016/j.mcm.2010.09.011
    [61] Z. Gholam-Ali, Y. Emmanuel, Exact solutions of a generalized autonomous Duffing-type equation, Appl. Math. Model., 39 (2015), 4607–4616. doi: 10.1016/j.apm.2015.04.027
    [62] X. Li, J. Shen, H. Akca, R. Rakkiyappan, LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter, Appl. Math. Comput., 250 (2015), 798–804.
    [63] Y. Guo, A. C. J. Luo, Periodic motions in a double-well Duffing oscillator under periodic excitation through discrete implicit mappings, Int. J. Dyn. Control, 5 (2017), 1–16. doi: 10.1007/s40435-016-0251-0
    [64] A. C. J. Luo, Discretization and Implicit Mapping Dynamics: Nonlinear Physical Science, Springer: Higher Education Press, 2015.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1489) PDF downloads(85) Cited by(0)

Article outline

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog