The notion of left almost semihyperrings (briefly, $ LA $-semihyperrings), as a generalization of left almost semirings (briefly, $ LA $-semirings), was introduced by Nawaz, Rehman and Gulistan in 2018. The purpose of this article is to study the classes of weakly regular $ LA $-semihyperrings and regular $ LA $-semihyperrings. Then, characterizations of weakly regular $ LA $-semihyperrings and regular $ LA $-semihyperrings in terms of their hyperideals have been obtained.
Citation: Warud Nakkhasen. Left almost semihyperrings characterized by their hyperideals[J]. AIMS Mathematics, 2021, 6(12): 13222-13234. doi: 10.3934/math.2021764
[1] | Warud Nakkhasen . Characterizations of intra-regular LA-semihyperrings in terms of their hyperideals. AIMS Mathematics, 2022, 7(4): 5844-5859. doi: 10.3934/math.2022324 |
[2] | Naveed Yaqoob, Jian Tang . Approximations of quasi and interior hyperfilters in partially ordered LA-semihypergroups. AIMS Mathematics, 2021, 6(8): 7944-7960. doi: 10.3934/math.2021461 |
[3] | Warud Nakkhasen, Teerapan Jodnok, Ronnason Chinram . Intra-regular semihypergroups characterized by Fermatean fuzzy bi-hyperideals. AIMS Mathematics, 2024, 9(12): 35800-35822. doi: 10.3934/math.20241698 |
[4] | Alexander Bruno . Five new methods of celestial mechanics. AIMS Mathematics, 2020, 5(5): 5309-5319. doi: 10.3934/math.2020340 |
[5] | Luke Lewis-Borrell, Jessica Irving, Chris J. Lilley, Marie Courbariaux, Gregory Nuel, Leon Danon, Kathleen M. O'Reilly, Jasmine M. S. Grimsley, Matthew J. Wade, Stefan Siegert . Robust smoothing of left-censored time series data with a dynamic linear model to infer SARS-CoV-2 RNA concentrations in wastewater. AIMS Mathematics, 2023, 8(7): 16790-16824. doi: 10.3934/math.2023859 |
[6] | Jian Tang, Xiang-Yun Xie, Ze Gu . A study on weak hyperfilters of ordered semihypergroups. AIMS Mathematics, 2021, 6(5): 4319-4330. doi: 10.3934/math.2021256 |
[7] | Jukkrit Daengsaen, Sorasak Leeratanavalee . Semilattice strongly regular relations on ordered $ n $-ary semihypergroups. AIMS Mathematics, 2022, 7(1): 478-498. doi: 10.3934/math.2022031 |
[8] | Shahida Bashir, Rabia Mazhar, Bander Almutairi, Nauman Riaz Chaudhry . A novel approach to study ternary semihypergroups in terms of prime soft hyperideals. AIMS Mathematics, 2023, 8(9): 20269-20282. doi: 10.3934/math.20231033 |
[9] | Agus Suryanto, Isnani Darti . On the nonstandard numerical discretization of SIR epidemic model with a saturated incidence rate and vaccination. AIMS Mathematics, 2021, 6(1): 141-155. doi: 10.3934/math.2021010 |
[10] | Rukhshanda Anjum, Saad Ullah, Yu-Ming Chu, Mohammad Munir, Nasreen Kausar, Seifedine Kadry . Characterizations of ordered $h$-regular semirings by ordered $h$-ideals. AIMS Mathematics, 2020, 5(6): 5768-5790. doi: 10.3934/math.2020370 |
The notion of left almost semihyperrings (briefly, $ LA $-semihyperrings), as a generalization of left almost semirings (briefly, $ LA $-semirings), was introduced by Nawaz, Rehman and Gulistan in 2018. The purpose of this article is to study the classes of weakly regular $ LA $-semihyperrings and regular $ LA $-semihyperrings. Then, characterizations of weakly regular $ LA $-semihyperrings and regular $ LA $-semihyperrings in terms of their hyperideals have been obtained.
The study of left almost semigroups (briefly, $ LA $-semigroups), as a generalization of commutative semigroups, was first introduced in 1972 by Kazim and Naseeruddin [25]. It is also called an Abel-Grassmann's groupoid (briefly, $ AG $-groupoid) [32]. An $ LA $-semigroup is a non-associative and non-commutative algebraic structure midway between a groupoid and a commutative semigroup. Mushtaq and Yousuf [27] examined some basic results of the structure of $ LA $-semigroups, for examples, a commutative monoid is an $ LA $-semigroup with right identity, every left cancellative $ LA $-semigroup is right cancellative and every right cancellative $ LA $-monoid is left cancellative. On $ LA $-semigroups, regularities are interesting and essential properties to investigate. Khan and Asif [20] classified intra-regular $ LA $-semigroups based on the features of their fuzzy ideals in 2010. Abdullah, Aslam and Amin [2] began discussing regular $ LA $-semigroup categorizations in terms of interval $ (\alpha, \beta) $-fuzzy ideals. Also, Khan, Jun and Yousafzai [22] used their fuzzy left ideals and fuzzy right ideals to characterize right regular $ LA $-semigroups. In 2016, Khan, Yousafzai and Khan [24] defined a class of $ (m, n) $-regular $ LA $-semigroups based on their $ (m, n) $-ideals. Several characterizations of weakly regular $ LA $-semigroups by using the smallest ideals and fuzzy ideals of $ LA $-semigroups were investigated by Yousafzai, Iampan and Tang [46]. Furthermore, Sezer [36] has developed soft sets to characterize regular, intra-regular, completely regular, weakly regular and quasi-regular $ LA $-semigroups. Recently, various properties of $ LA $-semigroups have been studied by many mathematicians (see, e.g., [4,8,14,15,44,47]). Additionally, the notion of left almost semirings (briefly, $ LA $-semirings), which is a generalization of left almost rings (briefly, $ LA $-rings) [37], has been considered different properties by some mathematicians (see, e.g., [12,13,33]). Moreover, the concept of left almost was studied in other algebraic structures (for example, in ordered $ LA $-$ (\Gamma) $-semigroups [5,7,19,45], in gamma $ LA $-rings and gamma $ LA $-semigroups [23], in $ LA $-polygroups [3,40,42]).
The concept of hyperstructures was introduced by Marty [26] in the 8$ ^{\rm th} $ Congress of Scandinavian Mathematicians. There are many authors expanded the concept of hyperstructures (see, e.g., ([9,10,11,28,29,31,38,39]). Hila and Dine [18] introduced the notion of left almost semihypergroups (briefly, $ LA $-semihypergroups) which is a generalization of $ LA $-semigroups and commutative semihypergroups. It is a useful non-associative algebraic hyperstructure, midway between a hypergroupoid and a commutative semihypergroup, with wide applications in the theory of flocks etc. In 2013, Yaqoob, Corsini and Yousafzai [41] used the properties of their left and right hyperideals to characterize intra-regular $ LA $-semihypergroups. Then, the class of regular $ LA $-semihypergroups was characterized in terms of $ (\in_{\Gamma}, \in_{\Gamma}\vee q_{\Delta}) $-cubic (resp., left, right, two-sided, bi, generalized bi, interior, quasi)-hyperideals of $ LA $-semihypergroups by Gulistan, Khan, Yaqoob and Shahzad [16]. In addition, Khan, Farooq, Izhar and Davvaz [21] studied into some properties of fuzzy left and right hyperideals in regular and intra-regular $ LA $-semihypergroups. In terms of soft interior hyperideals, Abbasi, Khan, Talee and Khan [1] gave different essential characterizations of left regular $ LA $-semihypergroups. On the other hand, Yaqoob and Gulistan [43] introduced the concept of ordered $ LA $-semihypergroups which is a generalization of $ LA $-semihypergroups. Next, the results of fuzzy hyperideals and generalized fuzzy hyperideals of ordered $ LA $-semihypergroups were then examined by Azhar, Gulistan, Yaqoob and Kadry (see, [6,17]).
In 2018, Nawaz, Rehman and Gulistan [30] defined the idea of left almost semihyperrings (briefly, $ LA $-semihyperrings), as a generalization of $ LA $-semirings, and studied at some of their basic properties. In 2020, Rahman, Hidayat and Alghofari [34] applied the concept of fuzzy sets to define the new algebraic structure, namely, fuzzy left almost semihyperrings, and they have shown that the set of all fuzzy subsets in $ LA $-semihyperrings is also $ LA $-semihyperrings. In this paper, we are interesting in the classes of weakly regular $ LA $-semihyperrings and regular $ LA $-semihyperrings. Then, we give some characterizations of weakly regular $ LA $-semihyperrings and regular $ LA $-semihyperrings in terms of their hyperideals.
Firstly, we recall some of the basic concepts and properties, which are necessary for this paper. Let $ H $ be a nonempty set. Then, the map $ \circ:H\times H\rightarrow \mathcal{P}^*(H) $ is called a hyperoperation on $ H $ where $ \mathcal{P}^*(H) = \mathcal{P}(H)\setminus\{\emptyset\} $ denotes the set of all nonempty subsets of $ H $. A hypergroupoid is called the pair $ (H, \circ) $, where $ \circ $ is a hyperopartion on a nonempty set $ H $. If $ x\in H $ and $ A, B $ are two nonempty subsets of $ H $, then we denote
$ {A\circ B = \bigcup\limits_{a\in A, b\in B}a\circ b, A\circ x = A\circ\{x\}} ~~{\rm{and}}~~ x\circ B = \{x\}\circ B.$ |
A hypergroupoid $ (H, \circ) $ is called an $ LA $-semihypergroup [18] if for all $ x, y, z\in H, (x\circ y)\circ z = (z\circ y)\circ x $, which means that
$ {\bigcup\limits_{u\in x\circ y}u\circ z = \bigcup\limits_{v\in z\circ y}v\circ x}.$ |
This law is known as a left invertive law.
For any nonempty subsets $ A, B $ and $ C $ of an $ LA $-semihypergroup $ (H, \circ) $, we have that
$(A\circ B)\circ C = (C\circ B)\circ A$. |
The following the notion, which appears in [30], will be considering in this study.
A hyperstructure $ (S, +, \cdot) $ is called an $ LA $-semihyperring if it satisfies the following conditions:
$(i) $ $ (S, +) $ is an $ LA $-semihypergroup;
$(ii)$ $ (S, \cdot) $ is an $ LA $-semihypergroup;
$(iii)$ $ x\cdot (y+z) = x\cdot y+ x\cdot z $ and $ (y+z)\cdot x = y\cdot x+z\cdot x $ for all $ x, y, z\in S $.
Example 2.1. [30] Let $ S = \{a, b, c\} $ be a set with the hyperoperations $ + $ and $ \cdot $ on $ S $ defined as follows:
$ \begin{array}{c|ccc} + & a & b & c \\ \hline a & \{a\} & \{a, b, c\} & \{a, b, c\} \\ b & \{b, c\} & \{b, c\} & \{b, c\} \\ c & \{a, b, c\} & \{a, b, c\} & \{a, b, c\} \end{array}~~~\begin{array}{c|ccc} \cdot & a & b & c \\ \hline a & \{a\} & \{a\} & \{a\} \\ b & \{a\} & \{a, b, c\} & \{c\} \\ c & \{a\} & \{a, b, c\} & \{a, b, c\} \end{array} $ |
Then, $ (S, +, \cdot) $ is an $ LA $-semihyperring.
For more convenient, we say an $ LA $-semihyperring $ S $ instead of an $ LA $-semihyperring $ (S, +, \cdot) $ and we write $ xy $ instead of $ x\cdot y $ for any $ x, y\in S $.
In an $ LA $-semihyperring $ S $, the medial law $ (xy)(zw) = (xz)(yw) $ holds for all $ x, y, z, w\in S $. An element $ e $ of an $ LA $-semihyperring $ S $ is called a left identity (resp., pure left identity) if for all $ x\in S $, $ x\in ex $ (resp., $ x = ex $). If an $ LA $-semihyperring $ S $ contains a pure left identity $ e $, then it is unique. In an $ LA $-semihyperring $ S $ with a pure left identity $ e $, the paramedial law $ (xy)(zw) = (wy)(zx) $ holds for all $ x, y, z, w\in S $.
An element $ a $ of an $ LA $-semihyperring $ S $ with a left identity (resp., pure left identity) $ e $ is called a left invertible (resp., pure left invertible) if there exists $ x\in S $ such that $ e\in xa $ (resp., $ e = xa $). An $ LA $-semihyperring $ S $ is called a left invertible (resp., pure left invertible) if every element of $ S $ is a left invertible (resp., pure left invertible).
We observe that if an element $ e $ is a pure left identity of an $ LA $-semihyperring $ S $, then $ e $ is a left identity. But the converse is not true in general, as the following example.
Example 2.2. Let $ S = \{a, b, c\} $ be a set with the hyperoperations $ + $ and $ \cdot $ on $ S $ defined as follows:
$ \begin{aligned} &\begin{array}{c|ccc} + & a & b & c \\ \hline a & \{a\} & \{a, b, c\} & \{a, b, c\} \\ b & \{a, b, c\} & \{b, c\} & \{b, c\} \\ c & \{a, b, c\} & \{a, b, c\} & \{a, b, c\} \end{array}~~~~ \begin{array}{c|ccc} \cdot & a & b & c \\ \hline a & \{a\} & \{a\} & \{a\} \\ b & \{a\} & \{a, b, c\} & \{c\} \\ c & \{a\} & \{a, b, c\} & \{a, b, c\} \end{array} \end{aligned} $ |
Then, $ (S, +, \cdot) $ is an $ LA $-semihyperring [35]. One can see that $ b $ is a left identity, but it is not a pure left identity.
Lemma 2.3. [30] Let $ S $ be an $ LA $-semihyperring with a pure left identity $ e $. Then $ x(yz) = y(xz) $ for all $ x, y, z\in S $.
For any $ LA $-semihyperring $ S $, the following law holds $ (AB)(CD) = (AC)(BD) $ for all nonempty subsets $ A, B, C, D $ of $ S $. If an $ LA $-semihyperring $ S $ contains the pure left identity $ e $, then $ (AB)(CD) = (DB)(CA) $ and $ A(BC) = B(AC) $ for every nonempty subsets $ A, B, C, D $ of $ S $.
Now, we recall the concepts of different types of hyperideals of $ LA $-semihyperrings which occurred in [30] as follows. Let $ S $ be an $ LA $-semihyperring and a nonempty subset $ A $ of $ S $ such that $ A+A\subseteq A $. Then:
$(i) $ $ A $ is called a left hyperideal of $ S $ if $ SA\subseteq A $;
$(ii)$ $ A $ is called a right hyperideal of $ S $ if $ AS\subseteq A $;
$(iii)$ $ A $ is called a hyperideal of $ S $ if it is both a left and a right hyperideal of $ S $;
$(iv)$ $ A $ is called a quasi-hyperideal of $ S $ if $ SA\cap AS\subseteq A $;
$(v)$ $ A $ is called a bi-hyperideal of $ S $ if $ AA\subseteq A $ and $ (AS)A\subseteq A $.
Example 2.4. Let $ S = \{a, b, c, d, e\} $ be a set with the hyperoperations $ + $ and $ \cdot $ on $ S $ defined as follows:
$ \begin{aligned} &\begin{array}{c|ccccc} + & a & b & c & d & e \\ \hline a & \{a\} & \{a\} & \{a\} & \{a\} & \{a\} \\ b & \{a\} & \{a\} & \{a\} & \{a\} & \{a\} \\ c & \{a\} & \{a\} & \{a\} & \{a\} & \{a\} \\ d & \{a\} & \{a\} & \{a\} & \{a\} & \{a\} \\ e & \{a\} & \{a\} & \{a\} & \{a\} & \{a\} \end{array}~~~ \begin{array}{c|ccccc} \cdot & a & b & c & d & e \\ \hline a & \{a\} & \{a\} & \{a\} & \{a\} & \{a\} \\ b & \{a\} & \{a, e\} & \{a, e\} & \{a, c\} & \{a, e\} \\ c & \{a\} & \{a, e\} & \{a, e\} & \{a, b\} & \{a, e\} \\ d & \{a\} & \{a, b\} & \{a, c\} & \{d\} & \{a, e\} \\ e & \{a\} & \{a, e\} & \{a, e\} & \{a, e\} & \{a, e\} \end{array} \end{aligned} $ |
Then, $ (S, +, \cdot) $ is an $ LA $-semihyperring. Now, we can see that $ A = \{a, b, e\} $ is a left hyperideal of $ S $, but it is not a right hyperideal, because $ b\cdot d = \{a, c\}\nsubseteq\{a, b, e\} $.
Proposition 2.5. Let $ S $ be an $ LA $-semihyperring such that $ S = S^2 $. Then every right hyperideal of $ S $ is a hyperideal.
Proof. Let $ R $ be a right hyperideal of $ S $. Let $ a\in SR $. Then $ a\in sr $ for some $ r\in R $ and $ s\in S $. Since $ S = S^2 $, $ s\in xy $ for some $ x, y\in S $. By using the left invertive law, we have
$ a\in sr\subseteq (xy)r = (ry)x\subseteq (RS)S\subseteq RS\subseteq R. $ |
Thus, $ SR\subseteq R $. This shows that $ R $ is a left hyperideal of $ S $. Therefore, $ R $ is a hyperideal of $ S $.
For any $ LA $-semihyperring $ S $ with a pure left identity $ e $, we have that $ S = S^2 $. Then, we have the following lemma.
Lemma 2.6. Let $ S $ be an $ LA $-semihyperring with a pure left identity $ e $. Then every right hyperideal of $ S $ is a hyperideal of $ S $.
Lemma 2.7. Every left (resp., right) hyperideal of an $ LA $-semihyperring $ S $ is a quasi-hyperideal of $ S $.
Proof. Let $ Q $ be a left hyperideal of an $ LA $-semihyperring $ S $. Then, $ Q+Q\subseteq Q $ and $ SQ\cap QS\subseteq SQ\subseteq Q $. Hence, $ Q $ is a quasi-hyperideal of $ S $. For the case of the right hyperideal, we can prove similarly.
Lemma 2.8. The intersection of a left hyperideal $ L $ and a right hyperideal $ R $ of an $ LA $-semihyperring $ S $ is a quasi-hyperideal of $ S $.
Proof. It is easy to show that $ L\cap R+L\cap R\subseteq L\cap R $. Next, consider
$ S(L\cap R)\cap (L\cap R)S\subseteq SL\cap RS\subseteq L\cap R. $ |
Hence, $ L\cap R $ is a quasi-hyperideal of $ S $.
Lemma 2.9. Let $ S $ be an $ LA $-semihyperring with a left identity $ e $ such that $ (xe)S\subseteq xS $ for all $ x\in S $. Then every quasi-hyperideal of $ S $ is a bi-hyperideal of $ S $.
Proof. Let $ B $ be a quasi-hyperideal of $ S $. Then, $ B+B\subseteq B $ and $ SB\cap BS\subseteq B $. Clearly, $ BB\subseteq B $. Now, we have that $ (BS)B\subseteq SB $. Next, let $ x\in (BS)B $. So, $ x\in (as)b $ for some $ a, b\in B $ and $ s\in S $. By assumption and using the medial law, we have
$ \begin{align*} x\in (as)b &\subseteq (as)(eb) = (ae)(sb) \subseteq (ae)S \subseteq aS \subseteq BS. \end{align*} $ |
Thus, $ (BS)B\subseteq BS $. It follows that $ (BS)B\subseteq SB\cap BS\subseteq B $. Therefore, $ B $ is a bi-hyperideal of $ S $.
Lemma 2.10. If $ S $ is an $ LA $-semihyperring with a pure left identity $ e $, then for every $ a\in S $, $ a^2S $ is a hyperideal of $ S $ such that $ a^2\subseteq a^2S $.
Proof. Assume that $ S $ is an $ LA $-semihyperring with a pure left identity $ e $. Let $ a\in S $. By using the left invertive law, we have
$ \begin{align*} a^2S+a^2S & = (aa)S+(aa)S = (Sa)a+(Sa)a\\ & = ((S+S)a)a \subseteq (Sa)a \\ & = (aa)S = a^2S. \end{align*} $ |
Then, using Lemma 2.3, the left invertive law and the paramedial law, we have
$ S(a^2S) = a^2(SS)\subseteq a^2S $ |
and
$ \begin{align*} (a^2S)S & = ((aa)S)S = ((Sa)a)S = (Sa)(Sa) = (aa)(SS) \subseteq a^2S. \end{align*} $ |
Hence, $ a^2S $ is a hyperideal of $ S $. Now, using the left invertive law, we have
$ a^2 = aa = (ea)a = (aa)e\subseteq a^2S. $ |
This completes the proof.
In this section, the class of weakly regular $ LA $-semihyperrings has been studied, we give some characterizations of weakly regular $ LA $-semihyperrings by using the concepts of left hyperideals and right hyperideals of $ LA $-semihyperrings.
Definition 3.1. An element $ a $ of an $ LA $-semihyperrnig $ S $ is said to be weakly regular if there exist $ x, y\in S $ such that $ a\in (ax)(ay) $. The $ LA $-semihyperring $ S $ is called weakly regular if every element of $ S $ is weakly regular.
Example 3.2. In Example 2.1, we can show that there exist $ x, y\in S $ such that $ a\in (ax)(ay) $ for all $ a\in S $. Therefore, $ S $ is weakly regular.
Theorem 3.3. Let $ S $ be a pure left invertible $ LA $-semihyperring with a pure left identity $ e $. Then $ S $ is weakly regular if and only if $ R_1\cap R_2\subseteq R_1R_2 $, where both $ R_1 $ and $ R_2 $ are right hyperideals of $ S $.
Proof. Assume that $ S $ is weakly regular. Let $ R_1 $ and $ R_2 $ be right hyperideals of $ S $ and $ a\in R_1\cap R_2 $. Then, there exist $ x, y\in S $ such that $ a\in (ax)(ay)\subseteq (R_1S)(R_2S)\subseteq R_1R_2 $. Hence, $ R_1\cap R_2\subseteq R_1R_2 $.
Conversely, let $ a\in S $. Since $ S $ is a pure left invertible $ LA $-semihyperring, there exists $ x\in S $ such that $ e = xa $. By Lemma 2.10, we have that $ a^2S $ is a right hyperideal of $ S $ and $ a^2\subseteq a^2S $. Then, by using assumption, the left invertive law and Lemma 2.3, we have
$ \begin{align*} a^2 &\subseteq (a^2S)\cap(a^2S) \\ &\subseteq (a^2S)(a^2S) \\ & = a^2((a^2S)S) \\ & = a^2((SS)a^2) \\ &\subseteq (aa)(S(aa)) \\ & = (aa)(a(Sa)) \\ &\subseteq (aS)(aS). \end{align*} $ |
Next, using the left invertive law and Lemma 2.3, we have
$ \begin{align*} a = ea & = (xa)a = (aa)x \subseteq ((aS)(aS))x \\ & = (x(aS))(aS) = (a(xS))(aS) \\ &\subseteq (aS)(aS). \end{align*} $ |
This implies that $ a\in (ax)(ay) $ for some $ x, y\in S $. Therefore, $ S $ is weakly regular.
The proof of the following theorem is similar to Theorem 3.3.
Theorem 3.4. Let $ S $ be a pure left invertible $ LA $-semihyperring with a pure left identity $ e $. Then $ S $ is weakly regular if and only if $ L_1\cap L_2\subseteq L_1L_2 $, where both $ L_1 $ and $ L_2 $ are left hyperideals of $ S $.
Theorem 3.5. Let $ S $ be a pure left invertible $ LA $-semihyperring with a pure left identity $ e $. Then $ S $ is weakly regular if and only if $ R\cap L\subseteq L^2R^2 $, for every right hyperideal $ R $ and left hyperideal $ L $ of $ S $.
Proof. Assume that $ S $ is weakly regular. Let $ R $ be a right hyperideal and $ L $ be a left hyperideal of $ S $ and $ a\in R\cap L $. Then, there exist $ x, y\in S $ such that $ a\in (ax)(ay) $. By using the left invertive law, the medial law, the paramedial law and Lemma 2.3, we have
$ \begin{align*} a &\in (ax)(ay) \\ &\subseteq (((ax)(ay))x)(((ax)(ay))y) \\ & = ((ax)(ay))((((ax)(ay))x)y) \\ & = ((ax)(ay))((yx)((ax)(ay))) \\ & = ((ax)(ay))((ax)((yx)(ay))) \\ & = ((ax)(ay))(((ay)(yx))(xa)) \\ & = ((ax)(ay))((((yx)y)a)(xa)) \\ &\subseteq ((aS)(aS))((Sa)(Sa)) \\ & = ((Sa)(Sa))((aS)(aS)) \\ &\subseteq ((SL)(SL))((RS)(RS)) \\ &\subseteq L^2R^2. \end{align*} $ |
Therefore, $ R\cap L\subseteq L^2R^2 $.
Conversely, let $ R_1 $ and $ R_2 $ be right hyperideals of $ S $. By Lemma 2.6, we have that $ R_1 $ is also a left hyperideal of $ S $. By assumption, $ R_1\cap R_2\subseteq R_1^2R_2^2\subseteq R_1R_2 $. Consequently, $ S $ is weakly regular by Theorem 3.3.
Theorem 3.6. Let $ S $ be a pure left invertible $ LA $-semihyperring with a pure left identity $ e $. Then $ S $ is weakly regular if and only if $ R\cap L\subseteq L^3R $, for every right hyperideal $ R $ and left hyperideal $ L $ of $ S $.
Proof. Let $ R $ be a right hyperideal and $ L $ be a left hyperideal of $ S $ and $ a\in R\cap L $. By assumption, there exist $ x, y\in S $ such that $ a\in (ax)(ay) $. Then, by using the left invertive law, the medial law, the paramedial law and Lemma 2.3, we have
$ \begin{align*} a &\in (ax)(ay) \\ &\subseteq (((ax)(ay))x)(((ax)(ay))y) \\ & = (y((ax)(ay)))(x((ax)(ay))) \\ & = ((ax)(y(ay)))((ax)(x(ay))) \\ & = ((ax)(ay^2))((ax)(a(xy))) \\ & = ((y^2a)(xa))((ax)(a(xy))) \\ & = (((ax)(a(xy)))(xa))(y^2a) \\ & = ((((xy)a)(xa))(xa))((yy)a) \\ & = ((((xy)a)(xa))(xa))((ay)y) \\ &\subseteq (((SL)(SL))(SL))((RS)S) \\ &\subseteq ((LL)L)R \\ & = L^3R. \end{align*} $ |
Hence, $ R\cap L\subseteq L^3R $.
Conversely, let $ R_1 $ and $ R_2 $ be right hyperideals of $ S $. By Lemma 2.6, we have that $ R_1 $ also a left hyperideal of $ S $. By assumption, $ R_1\cap R_2\subseteq R_1^3R_2 = ((R_1R_1)R_1)R_2\subseteq R_1R_2 $. By Theorem 3.1, $ S $ is weakly regular.
In this section, we characterize the class of regular $ LA $-semihyperrings in terms of (resp., left, right) hyperideals, quasi-hyperideals and bi-hyperideals of $ LA $-semihyperrings.
Definition 4.1. An element $ a $ of an $ LA $-semihyperrnig $ S $ is said to be regular if there exists an element $ x\in S $ such that $ a\in (ax)a $. The $ LA $-semihyperring $ S $ is called regular if every element of $ S $ is regular.
Example 4.2. In Example 2.2, we have that there exists $ x\in S $ such that $ a\in (ax)a $ for all $ a\in S $. Hence, $ S $ is regular.
Lemma 4.3. Let $ S $ be an $ LA $-semihyperring. Then the following conditions are equivalent:
$ $(i)$ $ $ S $ is regular;
$ $(ii)$ $ $ a\in (aS)a $, for every $ a\in S $;
$ $(iii)$ $ $ A\subseteq (AS)A $, for all $ \emptyset\neq A\subseteq S $.
Theorem 4.4. Let $ S $ be a pure left invertible $ LA $-semihyperring with a pure left identity $ e $. Then $ S $ is regular if and only if $ R\cap L = RL $, for every right hyperideal $ R $ and left hyperideal $ L $ of $ S $.
Proof. Assume that $ S $ is regular. Let $ R $ be a right hyperideal and $ L $ be a left hyperideal of $ S $ and let $ a\in R\cap L $. Then, $ a\in (aS)a\subseteq (RS)L\subseteq RL $. It follows that $ R\cap L\subseteq RL $. Since $ RL\subseteq R $ and $ RL\subseteq L $, we have $ RL\subseteq R\cap L $. Thus, $ R\cap L = RL $.
Conversely, let $ a\in S $. Since $ S $ is a pure left invertible $ LA $-semihyperring, there exists $ x\in S $ such that $ e = xa $. By Lemma 2.10, $ a^2S $ is both a right hyperideal and a left hyperideal of $ S $. Moreover, $ a^2\subseteq a^2S $. Then, by using the given assumption, Lemma 2.3 and the left invertive law, we have
$ \begin{align*} a^2 &\subseteq (a^2S)\cap(a^2S) \\ & = (a^2S)(a^2S) \\ & = a^2((a^2S)S) \\ & = a^2((SS)a^2) \\ &\subseteq (aa)(S(aa)) \\ & = (aa)(a(Sa)) \\ & = ((a(Sa))a)a \\ &\subseteq ((aS)a)a. \end{align*} $ |
Hence, using the invertive law, we have
$ \begin{align*} a = ea & = (xa)a = (aa)x \subseteq (((aS)a)a)x \\ & = (xa)((aS)a) = e((aS)a) \\ & = (aS)a. \end{align*} $ |
Therefore, $ S $ is regular.
Theorem 4.5. Let $ S $ be a pure left invertible $ LA $-semihyperring with a pure left identity $ e $ such that $ (xe)S\subseteq xS $ for all $ x\in S $. Then the following statements are equivalent:
$ $(i)$ $ $ S $ is regular;
$ $(ii)$ $ $ (BS)B = B $, for every bi-hyperideal $ B $ of $ S $;
$ $(iii)$ $ $ (QS)Q = Q $, for every quasi-hyperideal $ Q $ of $ S $.
Proof. $ (i)\Rightarrow (ii) $ Assume that $ S $ is regular. Let $ B $ be a bi-hyperideal of $ S $ and $ a\in B $. Then, $ a\in (aS)a\subseteq (BS)B $. Thus, $ B\subseteq (BS)B $. On the other hand $ (BS)B\subseteq B $. Hence, $ (BS)B = B $.
$ (ii)\Rightarrow (iii) $ It follows from Lemma 2.9.
$ (iii)\Rightarrow (i) $ Let $ R $ be a right hyperideal and $ L $ be a left hyperideal of $ S $. By Lemma 2.8, $ R\cap L $ is a quasi-hyperideal of $ S $. By assumption, we have that $ R\cap L = ((R\cap L)S)(R\cap L)\subseteq (RS)L\subseteq RL $. Any other way, $ RL\subseteq R\cap L $. Thus, $ R\cap L = RL $. Therefore, $ S $ is regular by Theorem 4.4.
Theorem 4.6. Let $ S $ be a pure left invertible $ LA $-semihyperring with a pure left identity $ e $ such that $ (xe)S\subseteq xS $ for all $ x\in S $. Then the following statements are equivalent:
$(i)$ $ S $ is regular;
$(ii)$ $ B\cap I\subseteq (BI)B $, for every bi-hyperideal $ B $ and hyperideal $ I $ of $ S $;
$(iii)$ $ Q\cap I\subseteq (QI)Q $, for every quasi-hyperideal $ Q $ and hyperideal $ I $ of $ S $.
Proof. $ (i)\Rightarrow (ii) $ Assume that $ S $ is regular. Let $ B $ be a bi-hyperideal and $ I $ be a hyperideal of $ S $.
Now, let $ a\in B\cap I $. It turns out that $ a\in (aS)a $. Thus, by left invertive law and Lemma 2.3, we have
$ \begin{align*} a\in (aS)a &\subseteq (((aS)a)S)a \\ & = ((Sa)(aS))a \\ & = (a((Sa)S))a\\ &\subseteq (B((SI)S))B \\ &\subseteq (BI)B. \end{align*} $ |
Hence, $ B\cap I\subseteq (BI)B $.
$ (ii)\Rightarrow (iii) $ By Lemma 2.9, we have that every quasi-hyperideal of $ S $ is a bi-hyperideal. Hence, $ (iii) $ holds.
$ (iii)\Rightarrow (i) $ Let $ R $ be a right hyperideal and $ L $ be a left hyperideal of $ S $. Then, $ R\cap L $ is a quasi-hyperideal of $ S $ by Lemma 2.8. Since $ (iii) $ holds, we get that $ R\cap L = (R\cap L)\cap S\subseteq ((R\cap L)S)(R\cap L) \subseteq (RS)L\subseteq RL $. Also, $ R\cap L = RL $. By Theorem 4.4, $ S $ is regular.
Theorem 4.7. Let $ S $ be a pure left invertible $ LA $-semihyperring with a pure left identity $ e $ such that $ (xe)S\subseteq xS $ for all $ x\in S $. Then the following conditions are equivalent:
$ $(i)$ $ $ S $ is regular;
$ $(ii)$ $ $ B\cap L\subseteq (BS)L $, for every bi-hyperideal $ B $ and left hyperideal $ L $ of $ S $;
$ $(iii)$ $ $ Q\cap L\subseteq (QS)L $, for every quasi-hyperideal $ Q $ and left hyperideal $ L $ of $ S $.
Proof. $ (i)\Rightarrow (ii) $ Assume that $ S $ is regular. Let $ B $ be a bi-hyperideal and $ L $ be a left hyperideal of $ S $ and $ a\in B\cap L $. Then, $ a\in (aS)a $. By using the left invertive law, we have
$ \begin{align*} a\in (aS)a &\subseteq (aS)((aS)a)\\ & = (((aS)a)S)a \\ &\subseteq (((BS)B)S)L\\ &\subseteq (BS)L. \end{align*} $ |
Hence, $ B\cap L\subseteq (BS)L $.
$ (ii)\Rightarrow (iii) $ Since every quasi-hyperideal is a bi-hyperideal of $ S $, $ (iii) $ holds.
$ (iii)\Rightarrow (i) $ Let $ R $ be a right hyperideal and $ L $ be a left hyperideal of $ S $. By Lemma 2.7, $ R $ is also a quasi-hyperideal of $ S $. By assumption, $ R\cap L\subseteq (RS)L\subseteq RL $. So, $ R\cap L = RL $. Therefore, $ S $ is regular by Theorem 4.4.
The proof of the following theorem is similar to Theorem 4.7.
Theorem 4.8. Let $ S $ be a pure left invertible $ LA $-semihyperring with a pure left identity $ e $ such that $ (xe)S\subseteq xS $ for all $ x\in S $. Then the following conditions are equivalent:
$(i) $ $ S $ is regular;
$(ii) $ $ B\cap R\subseteq (RS)B $, for every bi-hyperideal $ B $ and right hyperideal $ R $ of $ S $;
$ (iii) $ $ Q\cap R\subseteq (RS)Q $, for every quasi-hyperideal $ Q $ and right hyperideal $ R $ of $ S $.
Theorem 4.9. Let $ S $ be a pure left invertible $ LA $-semihyperring with a pure left identity $ e $ such that $ (xe)S\subseteq xS $ for all $ x\in S $. Then the following conditions are equivalent:
$ (i) $ $ S $ is regular;
$ (ii) $ $ B\cap R\cap L\subseteq (BR)L $, for every bi-hyperideal $ B $, right hyperideal $ R $ and left hyperideal $ L $ of $ S $;
$ (iii) $ $ Q\cap R\cap L\subseteq (QR)L $, for every quasi-hyperideal $ Q $, right hyperideal $ R $ and left hyperideal $ L $ of $ S $.
Proof. $ (i)\Rightarrow (ii) $ Assume that $ S $ is regular. Let $ B $ be a bi-hyperideal, $ R $ be a right hyperideal and $ L $ be a left hyperideal of $ S $ and $ a\in B\cap R\cap L $. Then, $ a\in (aS)a $. By using the medial law, we have
$ \begin{align*} a\in (aS)a &\subseteq (((aS)a)S)((aS)a) \\ & = (((aS)a)(aS))(Sa) \\ &\subseteq (((BS)B)(RS))(SL) \\ &\subseteq (BR)L. \end{align*} $ |
This implies that $ B\cap R\cap L\subseteq (BR)L $.
$ (ii)\Rightarrow (iii) $ The implication follows by Lemma 2.9.
$ (iii)\Rightarrow (i) $ Let $ R $ be a right hyperideal and $ L $ be a left hyperideal of $ S $. By Lemma 2.7, $ R $ is also a quasi-hyperideal of $ S $. By the hypothesis, we have that $ R\cap L = R\cap R\cap L\subseteq (RR)L\subseteq RL $. Since $ RL\subseteq R\cap L $, it follows that $ R\cap L = RL $. By Theorem 4.4, $ S $ is regular.
In this paper, the classes of weakly regular $ LA $-semihyperrings and regular $ LA $-semihyperrings have been considered. In Section 3, the characterizations of weakly regular $ LA $-semihyperrings by the properties of their left hyperideals and right hyperideals were shown in Theorem 3.3–Theorem 3.6. In Section 4, the fundamental characterization of regular $ LA $-semihyperrings by using their left hyperideals and right hyperideals has been given in Theorem 4.4. Finally, we characterized regular $ LA $-semihyperrings in terms of (resp., left, right) hyperideals, quasi-hyperideals and bi-hyperideals of $ LA $-semihyperrings were shown in Theorem 4.5–Theorem 4.9. In our future work, we will characterize the class of intra-regular $ LA $-semihyperrings by using the concept of their hyperideals.
This research project was financially supported by Mahasarakham University.
The author declares no conflict of interest.
[1] |
M. Y. Abbasi, S. A. Khan, A. F. Talee, A. Khan, Soft interior-hyperideals in left regular $LA$-semihypergroups, Kragujev. J. Math., 44 (2020), 217–236. doi: 10.46793/KgJMat2002.217A
![]() |
[2] |
S. Abdullah, S. Aslam, N. U. Amin, $LA$-semigroups characterized by the properties of interval valued $(\alpha, \beta)$-fuzzy ideals, J. Appl. Math. Inform., 32 (2014), 405–426. doi: 10.14317/jami.2014.405
![]() |
[3] | N. Abughazalah, N. Yaqoob, A. Bashir, Cayley graphs over $LA$-groups and $LA$-polygroups, Math. Probl. Eng., 2021 (2021), 1–9. |
[4] | I. Ahmad, S. Rahman, M. Iqbal, Amanullah, A note on left abelian distributive $LA$-semigroups, Punjab Univ. J. Math., 52 (2020), 47–63. |
[5] | M. A. Ansari, Roughness in generalized $(m, n)$ bi-ideals in ordered $LA$-semigroups, Int. J. Math. Comput. Sci., 14 (2019), 371–386. |
[6] | M. Azhar, M. Gulistan, N. Yaqoob, S. Kadry, On fuzzy ordered $LA$-semihypergroups, Int. J. Anal. Appl., 16 (2018), 276–289. |
[7] | A. Basar, A note on $(m, n)$-$\Gamma$-ideals of ordered $LA$-$\Gamma$-semigroups, Konuralp J. Math., 7 (2019), 107–111. |
[8] |
S. I. Batool, I. Younas, M. Khan, N. Yaqoob, A new technique for the construction of confusion component based on inverse $LA$-semigroups and its application in stenography, Multimed. Tools Appl., 80 (2021), 28857–28877. doi: 10.1007/s11042-021-11090-w
![]() |
[9] | P. Corsini, Prolegomena of hypergroup theory, USA: Aviani Editore, 1993. |
[10] | P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Dordrecht: Kluwer Academic Publishers, 2003. |
[11] | B. Davvaz, V. Leoreanu-Fotea, Hyperring theorey and applications, USA: International Academic Press, 2007. |
[12] | D. M. Devi, G. S. Latha, $LA$-semirings satisfying the identity $a.b = a+b+1$, Int. J. Innovative Sci., Eng. Tech., 2 (2015), 378–389. |
[13] | D. M. Devi, G. S. Latha, $LA$-semirings in which $(S, .)$ is anti-inverse semigroup, Int. J. Eng. Tech., 2 (2016), 124–127. |
[14] | A. Elmoasy, On rough fuzzy prime ideals in left almost semigroups, Int. J. Anal. Appl., 19 (2021), 455–464. |
[15] | T. Gaketem, Bipolar $(\lambda, \delta)$-fuzzy ideals in $LA$-semigroups, Appl. Sci., 23 (2021), 49–55. |
[16] |
M. Gulistan, M. Khan, N. Yaqoob, M. Shahzad, Structural properties of cubic sets in regular $LA$-semihypergroups, Fuzzy Inf. Eng., 9 (2017), 93–116. doi: 10.1016/j.fiae.2017.03.005
![]() |
[17] |
M. Gulistan, N. Yaqoob, S. Kadry, M. Azhar, On generalized fuzzy sets in ordered $LA$-semihypergroups, Proc. Est. Acad. Sci., 68 (2019), 43–54. doi: 10.3176/proc.2019.1.06
![]() |
[18] | K. Hila, J. Dine, On hyperideals in left almost semihypergroups, ISRN Algebra, 2011 (2011), 1–8. |
[19] | W. Jantanan, R. Chinram, P. Petchkaew, On $(m, n)$-quasi-gamma-ideals in ordered $LA$-gamma-semigroups, J. Math. Comput. Sci., 11 (2021), 3377–3390. |
[20] | M. Khan, T. Asif, Characterizations of intra-regular left almost semigroups by their fuzzy ideals, J. Math. Res., 2 (2010), 87–96. |
[21] | A. Khan, M. Farooq, M. Izhar, B. Davvaz, Fuzzy hyperideals of left almost semihypergroups, Int. J. Anal. Appl., 15 (2017), 155–171. |
[22] | M. Khan, Y. B. Jun, F. Yousafzai, Fuzzy ideals in right regular $LA$-semigroups, Hacet. J. Math. Stat., 44 (2015), 569–586. |
[23] |
W. A. Khan, A. Taouti, A. Salami, Z. Hussain, On gamma $LA$-rings and gamma $LA$-semirings, Eur. J. Pure Appl. Math., 14 (2021), 989–1001. doi: 10.29020/nybg.ejpam.v14i3.4034
![]() |
[24] | W. Khan, F. Yousafzai, M. Khan, On generalized ideals of left almost semigroups, Eur. J. Pure Appl. Math., 9 (2016), 277–291. |
[25] | M. A. Kazim, M. Neseeruddin, On almost semigroups, Alig. Bull. Math., 2 (1972), 1–7. |
[26] | F. Marty, Sur une generalization de la notion de group, 8th Congress Mathematics Scandinaves, Stockholm, 1934. |
[27] | Q. Mushtaq, S. M. Yousuf, On $LA$-semigroups, Alig. Bull. Math., 8 (1978), 65–70. |
[28] | W. Nakkhasen, On $Q$-fuzzy hyperideals of semihyperrings, Int. J. Math. Comput. Sci., 14 (2019), 535–546. |
[29] | W. Nakkhasen, B. Pibaljommee, Intra-regular semihyperrings, J. Discrete Math. Sci. Cryptogr., 22 (2019), 1019–1034. |
[30] | S. Nawaz, I. Rehman, M. Gulistan, On left almost semihyperrings, Int. J. Anal. Appl., 16 (2018), 528–541. |
[31] | B. Pibaljommee, W. Nakkhasen, Connections of ($m, n$)-bi-quasi hyperideals in semihyperrings, Thai J. Math., 2020, 39–48. |
[32] | P. V. Proti$\acute{\text{c}}$, N. Stevanovi$\acute{\text{c}}$, AG-test and some general properties of Abel-Grassmann's groupoids, Pure Math. Appl., 6 (1995), 371–383. |
[33] | K. Rahman, F. Husain, S. Abdullah, M. Khan, Left almost semirings, Int. J. Comput. Sci. Inf. Secur., 14 (2016), 201–216. |
[34] | I. Rahman, N. Hidayat, A. R. Alhofari, Fuzzy left almost semihyperrings, Adv. Soc, Educ. Humanities Res., 550 (2020), 412–417. |
[35] | I. Rehman, N. Yaqoob, S. Nawaz, Hyperideals and hypersystems in $LA$-hyperrings, Songklanakarin J. Sci. Tech., 39 (2017), 651–657. |
[36] | A. S. Sezer, Certain characterizations of $LA$-semigroups by soft sets, J. Intell. Fuzzy Syst., 24 (2014), 1035–1046. |
[37] | T. Shah, I. Rehman, On $LA$-rings of finitely nonzero functions, Int. J. Contemp. Math. Sci., 5 (2010), 209–222. |
[38] | T. Vougiouklis, On some representation of hypergroups, Ann. Sci. Univ. Clermont-Ferrand II Math., 95 (1990), 21–29. |
[39] | T. Vougiouklis, Hyperstructures and their representations, USA: Hadronic Press, Inc., 1994. |
[40] |
N. Yaqoob, Approximations in left almost polygroups, J. Intell. Fuzzy Syst., 36 (2019), 517–526. doi: 10.3233/JIFS-18776
![]() |
[41] | N. Yaqoob, P. Corsini, F. Yousafzai, On intra-regular left almost semihypergroups with pure left identity, J. Math., 2013 (2013), 1–10. |
[42] | N. Yaqoob, I. Cristea, M. Gulistan, S. Nawaz, Left almost polygroups, Ital. J. Pure Appl. Math., 39 (2018), 465–474. |
[43] |
N. Yaqoob, M. Gulistan, Partially ordered left almost semihypergroups, J. Egypt. Math. Soc., 23 (2015), 231–235. doi: 10.1016/j.joems.2014.05.012
![]() |
[44] |
P. Yiarayong, On generalizations of fuzzy quasi-prime ideals in $LA$-semigroups, Soft Comput., 24 (2020), 2125–2137. doi: 10.1007/s00500-019-04043-x
![]() |
[45] |
P. Yiarayong, On generalizations of quasi-prime ideals of an ordered left almost semigroups, Afrika Mathematika, 32 (2021), 969–982. doi: 10.1007/s13370-021-00873-x
![]() |
[46] | F. Yousafzai, A. Iampam, J. Tang, Study on smallest (fuzzy) ideals of $LA$-semigroups, Thai J. Math., 16 (2018), 549–561. |
[47] | I. Younas, Q. Mushtaq, A. Rafiq, Presentation of inverse $LA$-semigroups, Maejo Int. J. Sci. Tech., 14 (2020), 242–251. |
1. | Warud Nakkhasen, Characterizations of intra-regular LA-semihyperrings in terms of their hyperideals, 2022, 7, 2473-6988, 5844, 10.3934/math.2022324 | |
2. | Pairote Yiarayong, Applications of Hoehnke hyperideals to prime left hyperideals in left almost semihypergroups, 2023, 34, 1012-9405, 10.1007/s13370-023-01112-1 |