Research article Special Issues

Certain subclass of analytic functions with respect to symmetric points associated with conic region

  • The purpose of this paper is to introduce and study a new subclass of analytic functions with respect to symmetric points associated to a conic region impacted by Janowski functions. Also, the study has been extended to quantum calculus by replacing the ordinary derivative with a q-derivative in the defined function class. Interesting results such as initial coefficients of inverse functions and Fekete-Szegö inequalities are obtained for the defined function classes. Several applications, known or new of the main results are also presented.

    Citation: Huo Tang, Kadhavoor Ragavan Karthikeyan, Gangadharan Murugusundaramoorthy. Certain subclass of analytic functions with respect to symmetric points associated with conic region[J]. AIMS Mathematics, 2021, 6(11): 12863-12877. doi: 10.3934/math.2021742

    Related Papers:

    [1] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860
    [2] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [3] Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273
    [4] Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
    [5] Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506
    [6] Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa . Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Mathematics, 2022, 7(1): 1507-1535. doi: 10.3934/math.2022089
    [7] Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja . Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824
    [8] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [9] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190
    [10] Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637
  • The purpose of this paper is to introduce and study a new subclass of analytic functions with respect to symmetric points associated to a conic region impacted by Janowski functions. Also, the study has been extended to quantum calculus by replacing the ordinary derivative with a q-derivative in the defined function class. Interesting results such as initial coefficients of inverse functions and Fekete-Szegö inequalities are obtained for the defined function classes. Several applications, known or new of the main results are also presented.



    The classical Hermite-Hadamard (H-H) inequality, serving as a litmus test for convexity, formally establishes that if the function F:[1,2]R is a convex function satisfying the essential containment relationship between its midpoint value and integral mean. Specifically, the following inequalities are satisfied:

    F(1+22)12121F(σ)dσ12(F(1)+F(2)).

    Convexity inequalities have numerous applications in the study of different models from real-world applications [1,2]. Because the H-H inequality is of great significance in convex analysis, it is widely applied in various fields such as integral inequalities, information theory, and optimization theory. In recent years, it has been extended and generalized through various forms of convexity, such as log-convexity [3,4], harmonic convexity [5,6], h-convexity [7,8,9], convexity in q-calculus [10,11,12] and especially s-convexity [13]. Since 1994, s-convexity has been a significant development and widespread application and various generalizations and results regarding H-H inequalities related to s-convex mappings have been established in [14,15,16].

    From another perspective, interval analysis provides an effective numerical tool for solving uncertain and nonlinear problems. Since the publication of the first monograph in 1966 [17], it has evolved into a distinct branch of mathematics, with applications spanning data mining, machine learning, and various other fields. A key focus has been interval-valued (IV) function inequalities. Recently, based on interval calculus and generalized convexity, some authors like Ali et al. [18,19,20], Budak et al. [21,22], Costa et al. [23,24,25], Du et al. [26,27], Khan et al.[28,29], Sarikaya et al. [30,31,32], and Zhao et al. [33,34,35] established the interval versions of the Chebyshev's inequality, Jensen's inequality, and H-H inequality. Furthermore, with the successive introduction of the bilateral Riemann-Liouville (R-L) fractional integral operators (left-hand and right-hand variants) for IV functions, the results related to inequalities for IV functions are more extensive and profound [36,37]. Especially, in 2023, Budak et al. [38] introduced a novel generalized integral to demonstrate the generalized H-H-type inclusion of IV convex functions.

    Motivated by the above-mentioned literature, we have established some novel interval forms of H-H inequalities by using generalized fractional integral operators and combining them with IV s-convex functions. The classical convexity theory is extended to the generalized s-convex framework, some interesting theorems are proved, and the exact inequality representation of the product of two s-convex functions is given. Our findings not only extend the main conclusions in [36,38,39], but also provide new insights for the study of IV inequalities.

    The organization of this work is outlined below: Section 2 introduces essential background concepts, while Section 3 establishes a series of H-H-type inequalities for IV s-convex mappings using generalized fractional integral operators. Section 4 gives the conclusion.

    Let A denote a compact real interval, mathematically expressed as

    [A]=[A_,¯A]={aR|A_a¯A},

    where A_,¯AR satisfy A_¯A. If A_=¯A, the interval becomes degenerate. The intervals discussed in this paper are all non-degenerate intervals. An interval [A] is termed positive when A_>0, and negative if ¯A<0. The sets RI, R+I, and RI, respectively, denote all negative, positive, and arbitrary real-valued intervals. Additionally, we adopt the partial ordering "" defined by

    [A_,¯A][B_,¯B]A_B_and¯B¯A.

    For ηR and ARI, then

    ηA=η[A_,¯A]={[ηA_,η¯A],ifη0,[η¯A,ηA_],ifη<0.

    For arbitrary A,BRI, the following four arithmetic operations are given:

    A+B=[A_,¯A]+[B_,¯B]=[A_+B_,¯A+¯B],AB=[A_,¯A][B_,¯B]=[A_B_,¯A¯B],AB=[min{A_B_,A_¯B,¯AB_,¯A¯B},max{A_B_,A_¯B,¯AB_,¯A¯B}],B/A=[min{B_/A_,B_/¯A,¯B/A_,¯B/¯A},max{B_/A_,B_/¯A,¯B/A_,¯B/¯A}],(0[A_,¯A]).

    For additional information on interval arithmetic, refer to [40].

    Definition 2.1. [13] A function F:[1,2]R is classified as s-convex if it satisfies the convexity condition:

    F(ι1+(1ι)2)ιsF(1)+(1ι)sF(2), (2.1)

    for all 1,2[1,2] and ι[0,1] with s(0,1].

    In [41], Breckner introduced the IV s-convex functions.

    Definition 2.2. [41] F:[1,2]R+I is defined as an IV s-convex function if

    F(ι1+(1ι)2)ιsF(1)+(1ι)sF(2), (2.2)

    for 1,2[1,2] and ι[0,1].

    Consider F:[1,2]R+I, we define 21F(ι)dι by

    21F(ι)dι=[21F_(ι)dι,21¯F(ι)dι]

    and say that the function F is interval Lebesgue integrable on [1,2] (or that FIL[1,2]).

    Definition 2.3. [42] Let FL[1,2]. The bilateral R-L fractional integral operators, namely the left-sided Jα1+F and the right-sided Jα2F, are defined as

    Jα1+F(σ)=1Γ(α)σ1(σι)α1F(ι)dι,

    and

    Jα2F(σ)=1Γ(α)2σ(ισ)α1F(ι)dι,

    respectively, where α>0, 10, J01+F(σ)=J02F(σ)=F(σ) and Γ(α) is the Gamma function.

    The H-H inequality in the form of R-L fractional integrals was proved by Sarikaya et al. in [32] as follows:

    Theorem 2.4. Let FL[1,2] be a mapping from [1,2] to R+. If F satisfies the convexity condition, then

    F(1+22)Γ(α+1)2(21)α(Jα1+F(2)+Jα2F(1))12(F(1)+F(2)),

    with α>0.

    Definition 2.5. [36,37] Let F:[1,2]R+I. The IV R-L fractional integral operators, including both left-sided and right-sided variants, are defined as follows:

    Iα1+F(σ)=1Γ(α)σ1(σι)α1F(ι)dι,σ>1,

    and

    Iα2F(σ)=1Γ(α)2σ(ισ)α1F(ι)dι,σ<2,

    respectively. Here, Iα1+F(σ)=[Jα1+F_(σ),Jα1+¯F(σ)], and α>0.

    In [36], Budak et al. gave the fractional H-H inequality for IV convex functions as follows:

    Theorem 2.6. Let F:[1,2]R+I, and α>0. If F is an IV convex function, then

    F(1+22)Γ(α+1)2(21)α(Iα1+F(2)+Iα2F(1))F(1)+F(2)2. (2.3)

    Definition 2.7. [31] Let φ:[1,2]R+ be a monotonically increasing mapping, and suppose F,φL[1,2]. The generalized R-L fractional integral operators Jα,k1+,φF and Jα,k2,φF are defined by

    Jα,k1+,φ(F)(σ)=1Γ(α)σ1(σι)α1(φ(σ)φ(ι))kF(ι)dι,σ>1,

    and

    Jα,k2,φ(F)(σ)=1Γ(α)2σ(ισ)α1(φ(ι)φ(σ))kF(ι)dι,σ<2,

    respectively, where kN{0}, α>0, and 10.

    In 2023, Budak et al. introduced the generalized fractional integral for IV function as follows:

    Definition 2.8. [38] Let φ:[1,2]R+ be a monotonically increasing function, and F:[1,2]R+I. The generalized R-L fractional integrals Iα,k1+,φF and Iα,k2,φF of interval-valued functions are defined by

    Iα,k1+,φ(F)(σ)=1Γ(α)σ1(σι)α1(φ(σ)φ(ι))kF(ι)dι,σ>1,

    and

    Iα,k2,φ(F)(σ)=1Γ(α)2σ(ισ)α1(φ(ι)φ(σ))kF(ι)dι,σ<2,

    respectively, where α>0, 10 and kN{0}.

    The families of all functions that are Riemann integrable and interval Riemann integrable over the closed interval [1,2] are respectively represented by the notations R[1,2] and IR[1,2].

    Theorem 2.9. [38] Suppose FIR[1,2], φ:[1,2]R is a monotonically increasing function on (1,2) with φL[1,2]. Letting Φ(ι)=F(ι)+F(1+2ι), then ΦIR[1,2], and we have

    F(12(1+2))(Iα,k1+,φ(1)(2)+Iα,k2,φ(1)(1))12(Iα,k1+,φ(Φ)(2)+Iα,k2,φ(Φ)(1))12(F(1)+F(2))(Iα,k1+,φ(1)(2)+Iα,k2,φ(1)(1)),

    where α>0 and kN{0}.

    Let Φ(ϖ)=F(ϖ)+F(1+2ϖ) and Λ(ϖ)=G(ϖ)+G(1+2ϖ) for ϖ[1,2]. It is straightforward to demonstrate that if F,GIR[1,2], then Φ(ϖ),Λ(ϖ)IR[1,2].

    Theorem 3.1. Let F:[1,2]R+I, FIR[1,2], and φ:[1,2]R+ be a monotonically increasing function. If F is an IV s-convex function, then

    F(1+22)(Iα,k1+,φ(1)(2)+Iα,k2,φ(1)(1))12s(Iα,k1+,φ(Φ)(2)+Iα,k2,φ(Φ)(1))12s(F(1)+F(2))(Iα,k1+,φ(1)(2)+Iα,k2,φ(1)(1)), (3.1)

    where α>0 and kN{0}.

    Proof. By the assumption, we have

    F(1+22)F(1)+F(2)2s. (3.2)

    Letting 1=ι1+(1ι)2, 2=(1ι)1+ι2 for ι[0,1], we obtain

    F(1+22)12s(F(ι1+(1ι)2)+F((1ι)1+ι2)). (3.3)

    Then, multiplying the two sides of (3.3) by ια1(φ(2)φ(ι1+(1ι)2))k and integrating on [0, 1], we obtain

    F(1+22)10ια1(φ(2)φ(ι1+(1ι)2))kdι12s(10ια1(φ(2)φ(ι1+(1ι)2))kF(ι1+(1ι)2)dι+10ια1(φ(2)φ(ι1+(1ι)2))kF((1ι)1+ι2)dι).

    Letting y=ι1+(1ι2), we have

    F(1+22)21(2y)α1(φ(2)φ(y))kdy12s(21(2y)α1(φ(2)φ(y))kF(y)dy+21(2y)α1(φ(2)φ(y))kF(1+2y)dy).

    That is,

    F(1+22)Iα,k1+,φ(1)(2)12sIα,k1+,φ(Φ)(2). (3.4)

    By multiplying the two sides of (3.3) by ια1(φ((1ι)1+ι2)φ(1))k and integrating on [0, 1], we obtain

    F(1+22)10τα1(φ((1ι)1+ι2)φ(1))kdι12s(10ια1(φ((1ι)1+ι2)φ(1))kF(ι1+(1ι)2)dι+10ια1(φ((1ι)1+ι2)φ(1))kF((1ι)1+ι2)dι).

    Letting y=(1ι)1+ι2, we have

    F(1+22)Iα,k2,φ(1)(1)12sIα,k2,φ(Φ)(2). (3.5)

    Combining with conclusions (3.4) and (3.5), we obtain

    F(1+22)(Iα,k1+,φ(1)(2)+Iα,k2,φ(1)(1))12s(Iα,k1+,φ(Φ)(2)+Iα,k2,φ(Φ)(1)).

    According to (2.2), we have

    F(ι1+(1ι)2)ιsF(1)+(1ι)sF(2),F((1ι)1+ι2)ιsF(2)+(1ι)sF(1).

    That is,

    F(ι1+(1ι)2)+F((1ι)1+ι2)(F(1)+F(2)). (3.6)

    Multiplying the two sides of (3.6) by ια1(φ(2)φ(ι1+(1ι)2))k and integrating on [0, 1], we obtain

    10ια1(φ(2)φ(ι1+(1ι)2))kF(ι1+(1ι)2)dι+10ια1(φ(2)φ(ι1+(1ι)2))kF(ι2+(1ι)1)dι(F(1)+F(2))10ια1(φ(2)φ(ι1+(1ι)2))kdι.

    Letting y=ι1+(1ι)2, we have

    21(2y21)α1(φ(2)φ(y))kF(y)dy+21(2y21)α1(φ(2)φ(y))kF(1+2y)dy(F(1)+F(2))21(2y21)α1(φ(2)φ(y))kdy.

    That is,

    Iα,k1+,φ(Φ)(2)(F(1)+F(2))Iα,k1+,φ(1)(2). (3.7)

    Similarly, multiplying the two sides of (3.6) by ια1(φ((1ι)1+ι2)φ(1))k and integrating on [0, 1], let y=ι2+(1ι)1, we have

    21(y121)α1(φ(y)φ(1))kF(1+2y)dy+21(y121)α1(φ(y)φ(1))kF(y)dy(F(1)+F(2))21(y121)α1(φ(y)φ(1))kdy.

    Then, we obtain

    Iα,k2,φ(Φ)(1)(F(1)+F(2))Iα,k2,φ(1)(1). (3.8)

    By (3.7) and (3.8), we have

    Iα,k1+,φ(Φ)(2)+Iα,k2,φ(Φ)(1)(F(1)+F(2))(Iα,k1+,φ(1)(2)+Iα,k2,φ(1)(1)).

    Hence, Theorem 3.1 is verified.

    Corollary 3.2. If φ(ι)=ιω for ωR and s=1, then

    F(1+22)Γ(α+k+1)2(21)α+k(Iα+k1+F(2)+Iα+k2F(1))12(F(1)+F(2)).

    Remark 3.3. If s=1, Theorem 3.1 is reduced to Theorem 4.1 obtained by Budak et al. in[38].

    Remark 3.4. If k=0, then

    F(1+22)Γ(α+1)2s(21)α(Iα1+F(2)+Iα2F(1))12s(F(1)+F(2)).

    Remark 3.5. If s=1 and k=0, then Theorem 3.1 simplifies to Theorem 3.2 as presented by Budak et al. in [36].

    Example 3.6. Consider F:[0,2]R+I, where F(x)=[2x24,8x2+20x3], φ(ι)=ιω for ωR, α=2,s=1, and k=1. Then we have

    Δ1=F(1+22)(Iα,k1+,φ(1)(2)+Iα,k2,φ(1)(1))=F(1)1Γ(2)20((2x)2+x2)dx=163[2,9]=[323,48],
    Δ2=12s(Iα,k1+,φ(Φ)(2)+Iα,k2,φ(Φ)(1))=121Γ(2)20((2x)2+x2)(F(x)+F(2x))dx=12[645,163+1285]=[325,46415],

    and

    Δ3=12s(F(1)+F(2))(Iα,k1+,φ(1)(2)+Iα,k2,φ(1)(1))=12(F(0)+F(2))1Γ(2)20((2x)2+x2)dx=83([4,3]+[4,5])=[0,163].

    Then, we obtain

    Δ1Δ2Δ3.

    The graphical representation (Figure 1) confirms the results. $

    Figure 1.  Illustration of Example 3.6: α=2,k=1, and s[0.4,1]. The red pattern represents Δ1, the blue pattern represents Δ2, and the green pattern represents Δ3.

    Theorem 3.7. Assuming that the conditions of Theorem 3.1 are met, then

    F(1+22)(Iα,k(12(1+2))+,φ(1)(2)+Iα,k(12(1+2)),φ(1)(1))12s(Iα,k(12(1+2))+,φ(Φ)(2)+Iα,k(12(1+2)),φ(Φ)(1))12s(F(1)+F(2))(Iα,k(12(1+2))+,φ(1)(2)+Iα,k(12(1+2)),φ(1)(1)), (3.9)

    where α>0 and kN{0}.

    Proof. First, consider 1=12ι1+12(2ι)2 and 2=12ι2+12(2ι)1 for ι[0,1] in the inclusion (3.2). Then,

    F(1+22)12s(F(12ι1+12(2ι)2)+F(12ι2+12(2ι)1))12s(F(1)+F(2)). (3.10)

    Then, multiplying the two sides of (3.10) by ια1(φ(2)φ(12ι1+12(2ι)2))k and integrating on [0, 1], we obtain

    F(1+22)10ια1(φ(2)φ(12ι1+12(2ι)2))kdι12s10ια1(φ(2)φ(12ι1+12(2ι)2))k(F(12ι1+12(2ι)2)+F(12ι2+12(2ι)1))dι12s10ια1(φ(2)φ(12ι1+12(2ι)2))k(F(1)+F(2))dι.

    Letting y=12ι1+12(2ι)2, we have

    F(1+22)(221)α21+22(2y)α1(φ(2)φ(y))kdy12s(221)α21+22(2y)α1(φ(2)φ(y))k(F(y)+F(1+2y))dy12s(F(1)+F(2))(221)α21+22(2y)α1(φ(2)φ(y))kdy,

    that is,

    F(1+22)Iα,k(12(1+2))+,φ(1)(2)12sIα,k(12(1+2))+,φ(Φ)(2)12s(F(1)+F(2))Iα,k(12(1+2))+,φ(1)(2). (3.11)

    Similarly, multiplying the two sides of (3.10) by ια1(φ(12(2ι)1+12ι2)φ(1))k and integrating on [0, 1], we have

    F(1+22)10ια1(φ(12(2ι)1+12ι2)φ(1))kdι12s10ια1(φ(12(2ι)1+12ι2)φ(1))k×(F(12ι1+12(2ι)2)+F(12ι2+12(2ι)1))dι12s(F(1)+F(2))10ια1(φ(12(2ι)1+12ι2)φ(1))kdι.

    Letting y=12(2ι)1+12ι2, we have

    F(1+22)(221)α1+221(y1)α1(φ(y)φ(1))kdy12s(221)α1+221(y1)α1(φ(y)φ(1))k(F(y)+F(1+2y))dy12s(F(1)+F(2))(221)α1+221(y1)α1(φ(y)φ(1))kdy,

    that is,

    F(1+22)Iα,k(12(1+2)),φ(1)(1))12sIα,k(12(1+2)),φ(Φ)(1)12s(F(1)+F(2))Iα+s,k(12(1+2)),φ(1)(1). (3.12)

    By (3.11) and (3.12), we obtain the result.

    Corollary 3.8. If φ(ι)=ιω for ωR and s=1, then

    F(1+22)2α+k1Γ(α+k+1)(21)α+k(Iα+k12(1+2)+F(2)+Iα+k12(1+2)F(1))F(1)+F(2)2.

    Remark 3.9. If s=1, then Theorem 3.7 simplifies to Theorem 4.4 given by Budak et al. in[38].

    Remark 3.10. If k=0, then

    F(1+22)2αΓ(α+1)2s(21)α(Iα+k12(1+2)+F(2)+Iα+k12(1+2)F(1))12s(F(1)+F(2)).

    Remark 3.11. If s=1 and k=0, then Theorem 3.7 which has been obtained by Zhao et al. in [39].

    Example 3.12. Consider F:[0,1]R+I, where F(x)=[x2,5(12)x], φ(ι)=ιω for ωR, α=2,s=1, and k=1. Then we have

    T1=F(1+22)(Iα,k(12(1+2))+,φ(1)(2)+Iα,k(12(1+2)),φ(1)(1))=F(12)1Γ(2)(112(1x)2dx+120x2dx)=112[14,5(12)12][0.0208,0.3750],
    T2=12s(Iα,k(12(1+2))+,φ(Φ)(2)+Iα,k(12(1+2)),φ(Φ)(1))=121Γ(2)(112(1x)2(F(x)+F(1x))dx+120x2(F(x)+F(1x))dx)[0.0229,0.3574],

    and

    T3=12s(F(1)+F(2))(Iα,k(12(1+2))+,φ(1)(2)+Iα,k(12(1+2)),φ(1)(1))=121Γ(2)(F(0)+F(1))(112(1x)2dx+120x2dx)=124([0,4]+[1,92])[0.0417,0.3542].

    Then, we obtain

    T1T2T3.

    Theorem 3.13. Given that the assumptions of Theorem 3.1 hold, we can obtain

    F(1+22)(Iα,k1+,φ(1)(12(1+2))+Iα,k2,φ(1)(12(1+2)))12s(Iα,k1+,φ(Φ)(12(1+2))+Iα,k2,φ(Φ)(12(1+2)))12s(F(1)+F(2))(Iα,k1+,φ(1)(12(1+2))+Iα,k2,φ(1)(12(1+2))), (3.13)

    for α>0 and kN{0}.

    Proof. Considering 1=12(1+ι)1+12(1ι)2 and 1=12(1ι)1+12(1+ι)2 for ι[0,1] in the inclusion (3.2). Then we obtain

    F(1+22)12s(F(12(1+ι)1+12(1ι)2)+F(12(1ι)1+12(1+ι)2))12s(F(1)+F(2)). (3.14)

    Then, multiplying two sides of (3.14) by

    ια1(φ(12(1+2))φ(12(1+ι)1+12(1ι)2))k,

    and integrating on [0, 1], we obtain

    F(1+22)10ια1(φ(1+22)φ(12(1+ι)1+12(1ι)2)k)dι12s10τα1(φ(1+22)φ(12(1+ι)1+12(1ι)2))k(F(12(1+ι)1+12(1ι)2)+F(12(1ι)1+12(1+ι)2))dι12s(F(1)+F(2))10ια1(φ(1+22)φ(12(1+ι)1+12(1ι)2))kdι.

    Letting z=12(1+ι)1+12(1ι)2, we have

    F(1+22)1+221(1+22z)α1(φ(12(1+2))φ(z))kdz12s1+221(1+22z)α1(φ(1+22)φ(z))k(F(z)+F(1+2z))dz12s(F(1)+F(2))12(1+2)1(1+22z)α1(φ(1+22)φ(z))kdz,

    that is,

    F(1+22)Iα,k1+,φ(1)(1+22)12sIα,k1+,φ(Φ)(1+22)12s(F(1)+F(2))Iα,k1+,φ(1)(1+22). (3.15)

    Multiplying two sides of (3.14) by

    ια1(φ(12(1ι)1+12(1+ι)2)φ(1+22))k,

    and integrating on [0, 1], we obtain

    F(1+22)10τα1(φ(1+22)φ(12(1+ι)1+12(1ι)2))kdι12s10ια1(φ(1+22)φ(12(1+ι)1+12(1ι)2))k×(F(12(1+ι)1+12(1ι)2)+F(12(1ι)1+12(1+ι)2))dι12s(F(1)+F(2))10ια1(φ(1+22)φ(12(1+ι)1+12(1ι)2))kdι.

    Letting z=12(1ι)1+12(1+ι)2, we obtain

    F(1+22)Iα,k2,φ(1)(1+22)12sIα,k2,φ(Φ)(1+22)12s(F(1)+F(2))Iα,k2,φ(1)(1+22). (3.16)

    Adding the inclusion (3.15) to (3.16), we complete the proof.

    Corollary 3.14. If φ(ι)=ιω for ωR and s=1, then

    F(1+22)2α+k1Γ(α+k+1)(21)α+k(Iα+k1+F(1+22)+Iα+k2F(1+22))12(F(1)+F(2)).

    Remark 3.15. If s=1, Theorem 3.13 simplifies to Theorem 4.7 presented by Budak et al. in[38].

    Remark 3.16. If s=1 and k=0, then

    F(1+22)2α1Γ(α+1)(21)α(Iα1+F(1+22)+Iα2F(1+22))12(F(1)+F(2)),

    which has been obtained by Zhao et al. in [39].

    Example 3.17. Consider F:[0,2]R+I, where F(x)=[x2,x2+8], φ(ι)=ιω for ωR, α=2,s=1, and k=1. Then we have

    D1=F(1+22)(Iα,k1+,φ(1)(12(1+2))+Iα,k2,φ(1)(12(1+2)))=F(1)1Γ(2)(10(1x)2dx+21(x1)2dx)=23[1,7]=[23,143],
    D2=12s(Iα,k1+,φ(Φ)(12(1+2))+Iα,k2,φ(Φ)(12(1+2)))=121Γ(2)20(1x)2(F(x)+F(2x))dx=[1615,6415],

    and

    D3=12s(F(1)+F(2))(Iα,k1+,φ(1)(12(1+2))+Iα,k2,φ(1)(12(1+2)))=121Γ(2)(F(0)+F(2))20(1x)2dx=13([0,8]+[4,4])=[43,4].

    Then, we obtain

    D1D2D3.

    Theorem 3.18. Let F,G:[1,2]R+I, s1,s2(0,1], and φ:[1,2]R be a monotonically increasing function. If F and G are both IV s-convex functions, then

    F(1+22)G(1+22)(Iα,k1+,φ(1)(2)+Iα,k2,φ(1)(1))12s1+s2(Iα,k1+,φ(ΦΛ)(2)+Iα,k2,φ(ΦΛ)(1))12s1+s2(P(1,2)+Q(1,2))(Iα,k1+,φ(1)(2)+Iα,k2,φ(1)(1)), (3.17)

    where

    P(1,2)=F(1)G(1)+F(2)G(2),

    and

    Q(1,2)=F(1)G(2)+F(2)G(1).

    Proof. By hypothesis, then

    F(1+22)F(1)+F(2)2s1,G(1+22)G(1)+G(2)2s2.

    Considering 1=ι1+(1ι2) and 2=(1ι)1+ι2, we obtain

    F(1+22)G(1+22)12s1+s2(F(ι1+(1ι2))+F((1ι)1+ι2))(G(ι1+(1ι2))+G((1ι)1+ι2))12s1+s2(P(1,2)+Q(1,2)). (3.18)

    By multiplying two sides of (3.18) by ια1(φ(2)φ(ι1+(1ι)2))k and integrating on [0, 1], we obtain

    F(1+22)G(1+22)10ια1(φ(2)φ(ι1+(1ι)2))kdι12s1+s210ια1(φ(2)φ(ι1+(1ι)2))k(F(ι1+(1ι2))+F((1ι)1+ι2))(G(ι1+(1ι2))+G((1ι)1+ι2))dτ12s1+s2(P(1,2)+Q(1,2))10ια1(φ(2)φ(ι1+(1ι)2))kdι.

    Letting y=ι1+(1ι)2, then

    F(1+22)G(1+22)(121)α21(2y)α1(φ(2)φ(y))kdy12s1+s2(121)α(21(2y)α1(φ(2)φ(y))k(F(y)+F(1+2y))(G(y)+G(1+2y))dy12s1+s2(121)α(P(1,2)+Q(1,2))21(2y)α1(φ(2)φ(y))kdy,

    that is,

    F(1+22)Iα,k1+,φ(1)(2)12s1+s2Iα,k1+,φ(ΦΛ)(2)12s1+s2(P(1,2)+Q(1,2))Iα,k1+,φ(1)(2). (3.19)

    By multiplying two sides of (3.18) by ια1(φ((1ι)1+ι2)φ(1))k and integrating on [0, 1], we have

    F(1+22)G(1+22)10ια1(φ((1ι)1+ι2)φ(1))kdι12s1+s210ια1(φ((1ι)1+ι2)φ(1))k(F(ι1+(1ι2))+F((1ι)1+ι2))(G(ι1+(1ι2))+G((1ι)1+ι2))dτ12s1+s210ια1(φ((1ι)1+ι2)φ(1))k(P(1,2)+Q(1,2))dι.

    Letting y=(1ι)1+ι2, that is,

    F(1+22)G(1+22)Iα,k2,φ(1)(1)12s1+s2Iα,k2,φ(ΦΛ)(1)12s1+s2(P(1,2)+Q(1,2))Iα,k2,φ(1)(1). (3.20)

    Adding the inclusion (3.19) and (3.20), we obtained the desired result.

    Example 3.19. Assume F,G:[0,2]R+I, where F(x)=[x2,x2+10] and

    G(x)=[12x2,x2+8],

    respectively. Let φ(ι)=ιω for ωR, α=2,k=1, and s=1. Then we have

    Θ1=F(1+22)G(1+22)(Iα,k1+,φ(1)(2)+Iα,k2,φ(1)(1))=F(1)G(1)1Γ(2)20((2x)2+x2)dx=163([1,9][12,7])=[83,336],

    and

    Θ2=12s1+s2(Iα,k1+,φ(ΦΛ)(2)+Iα,k2,φ(ΦΛ)(1))=141Γ(2)20((2x)2+x2)(F(x)+F(2x))(G(x)+G(2x))dx=[5.4857,303.2381],

    and

    Θ3=12s1+s2(P(1,2)+Q(1,2))(Iα,k1+,φ(1)(2)+Iα,k2,φ(1)(1))=14(F(0)+F(2))(G(0)+G(2))1Γ(2)20((2x)2+x2)dx=43([8,192])=[323,256].

    Then, we obtain

    Θ1Θ2Θ3.

    Analogously, we can derive the subsequent results.

    Theorem 3.20. Assuming that the conditions of Theorem 3.18 hold, we consequently obtain

    F(1+22)G(1+22)(Iα,k(12(1+2))+,φ(1)(2)+Iα,k(12(1+2)),φ(1)(1))12s1+s2(Iα,k(12(1+2))+,φ(ΦΛ)(2)+Iα,k(12(1+2)),φ(ΦΛ)(1))12s1+s2(P(1,2)+Q(1,2))(Iα,k(12(1+2))+,φ(1)(2)+Iα+s,k(12(1+2)),φ(1)(1)). (3.21)

    Theorem 3.21. Assuming that the conditions of Theorem 3.18 hold, we obtain

    F(1+22)G(1+22)(Iα,k1+,φ(1)(1+22)+Iα,k2,φ(1)(1+22))12s1+s2(Iα,k1+,φ(ΦΛ)(1+22)+Iα,k2,φ(ΦΛ)(1+22))12s1+s2(P(1,2)+Q(1,2))(Iα,k1+,φ(1)(1+22)+Iα,k2,φ(1)(1+22)). (3.22)

    This study derives novel H-H-type inequalities through generalized fractional integrals applied to IV s-convex functions. These not only generalize but also refine the previously proposed inequalities established by Budak et al. and provide a foundation for further exploration of generalized convexity and IV estimation. The developed techniques offer new tools for uncertainty quantification in convex optimization problems with imprecise measurements. Future research directions include:

    (1) Develop new interval H-H inequalities based on more general convexity.

    (2) Extension to IV quasi-convex functions using variable-order fractional operators.

    (3) Applications in robust portfolio optimization with IV risk measures.

    G. Deng and D. Zhao: Conceptualization, Methodology, Formal analysis; S. Etemad: Conceptualization, Software, Formal analysis, Investigation, Writing–original draft preparation; G. Deng: Writing–original draft preparation; D. Zhao: Validation, Investigation, Supervision, Project administration, Writing–review and editing; J. Tariboon: Validation, Formal analysis, Project administration, Writing–review and editing. All authors read and approved the final manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was funded by the National Science, Research and Innovation Fund (NSRF) and King Mongkut's University of Technology North Bangkok, under Contract No. KMUTNB-FF-68-B-04, and the Foundation of Hubei Normal University (2024Z022).

    The authors declare no conflict of interest.



    [1] M. H. Annaby, Z. S. Mansour, q-fractional calculus and equations, Lecture Notes in Mathematics, Heidelberg: Springer, 2012.
    [2] A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, New York: Springer, 2013.
    [3] M. Arif, Z. G. Wang, R. Khan, S. K. Lee, Coefficient inequalities for Janowski-Sakaguchi type functions associated with conic regions, Hacet. J. Math. Stat., 47 (2018), 261–271.
    [4] K. O. Babalola, On λ-pseudo-starlike functions, J. Classical Anal., 3 (2013), 137–147.
    [5] B. C. Carlson, D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737–745. doi: 10.1137/0515057
    [6] A. W. Goodman, Univalent functions, Mariner Comp., 1983.
    [7] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [8] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Pol. Math., 28 (1973), 297–326. doi: 10.4064/ap-28-3-297-326
    [9] D. Kavitha, K. Dhanalakshmi, Subclasses of analytic functions with respect to symmetric and conjugate points bounded by conical domain, Adv. Math.: Sci. J., 9 (2020), 397–404.
    [10] B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), 1334. doi: 10.3390/math8081334
    [11] B. Khan, H. M. Srivastava, N. Khan, M. Darus, Q. Z. Ahmad, M. Tahir, Applications of certain conic domains to a subclass of q-starlike functions associated with the Janowski functions, Symmetry, 13 (2021), 574. doi: 10.3390/sym13040574
    [12] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis, Cambridge: Intrnational Press Inc., 1992.
    [13] S. N. Malik, S. Mahmood, M. Raza, S. Farman, S. Zainab, Coefficient inequalities of functions associated with petal type domains, Mathematics, 6 (2018), 298. doi: 10.3390/math6120298
    [14] Z. Nehari, Conformal mapping, New York: McGraw-Hill Book Co., 1952.
    [15] K. I. Noor, M. Arif, W. Ul-Haq, On k-uniformly close-to-convex functions of complex order, Appl. Math. Comput., 215 (2009), 629–635.
    [16] K. I. Noor, S. N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217. doi: 10.1016/j.camwa.2011.07.006
    [17] S. O. Olatunji, H. Dutta, Fekete-Szego problem for certain analytic functions defined by q-derivative operator with respect to symmetric and conjugate points, Proyecciones, 37 (2018), 627–635. doi: 10.4067/S0716-09172018000400627
    [18] C. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
    [19] R. K. Raina, J. Sokół, On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44 (2015), 1427–1433.
    [20] H. M. Srivastava, Univalent functions, fractional calculus and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus, and their applications, 1989.
    [21] H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 1–15.
    [22] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407–425.
    [23] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, A generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mt. J. Math., 49 (2019), 2325–2346.
    [24] H. M. Srivastava, N. Khan, M. Darus, M. T. Rahim, Q. Z. Ahmad, Y. Zeb, Properties of spiral-like close-to-convex functions associated with conic domains, Mathematics, 7 (2019), 1–12.
    [25] H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad, Fekete-Szego inequality for classes of (p,q)-starlike and (p,q)-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Math. (RACSAM), 113 (2019), 3563–3584.
    [26] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of q-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1–14.
    [27] H. M. Srivastava, Operators of basic (or q-)calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0
    [28] H. M. Srivastava, T. M. Seoudy, M. K. Aouf, A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic (or q-)calculus, AIMS Math., 6 (2021), 6580–6602. doi: 10.3934/math.2021388
    [29] M. S. Ur Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, B. Khan, Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions, AIMS Math., 6 (2021), 1110–1125. doi: 10.3934/math.2021067
    [30] M. S. Ur Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Coefficient inequalities for certain subclasses of multivalent functions associated with conic domain, J. Inequal. Appl., 2020 (2020), 1–17.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2838) PDF downloads(122) Cited by(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog