
In this paper, the reverse space cmKdV equation, the reverse time cmKdV equation and the reverse space-time cmKdV equation are constructed and each of three types diverse soliton solutions is derived based on the Hirota bilinear method. The Lax integrability of three types of nonlocal equations is studied from local equation by using variable transformations. Based on exact solution formulae of one- and two-soliton solutions of three types of nonlocal cmKdV equation, some figures are used to describe the soliton solutions. According to the dynamical behaviors, it can be found that these solutions possess novel properties which are different from the ones of classical cmKdV equation.
Citation: Wen-Xin Zhang, Yaqing Liu. Solitary wave solutions and integrability for generalized nonlocal complex modified Korteweg-de Vries (cmKdV) equations[J]. AIMS Mathematics, 2021, 6(10): 11046-11075. doi: 10.3934/math.2021641
[1] | Gaukhar Shaikhova, Bayan Kutum, Ratbay Myrzakulov . Periodic traveling wave, bright and dark soliton solutions of the (2+1)-dimensional complex modified Korteweg-de Vries system of equations by using three different methods. AIMS Mathematics, 2022, 7(10): 18948-18970. doi: 10.3934/math.20221043 |
[2] | M. A. El-Shorbagy, Sonia Akram, Mati ur Rahman, Hossam A. Nabwey . Analysis of bifurcation, chaotic structures, lump and M−W-shape soliton solutions to (2+1) complex modified Korteweg-de-Vries system. AIMS Mathematics, 2024, 9(6): 16116-16145. doi: 10.3934/math.2024780 |
[3] | Khalid Khan, Amir Ali, Muhammad Irfan, Zareen A. Khan . Solitary wave solutions in time-fractional Korteweg-de Vries equations with power law kernel. AIMS Mathematics, 2023, 8(1): 792-814. doi: 10.3934/math.2023039 |
[4] | Kamyar Hosseini, Farzaneh Alizadeh, Sekson Sirisubtawee, Chaiyod Kamthorncharoen, Samad Kheybari, Kaushik Dehingia . Integrability, Hirota D-operator expression, multi solitons, breather wave, and complexiton of a generalized Korteweg-de Vries–Caudrey Dodd Gibbon equation. AIMS Mathematics, 2025, 10(3): 5248-5263. doi: 10.3934/math.2025242 |
[5] | Li Cheng, Yi Zhang, Ying-Wu Hu . Linear superposition and interaction of Wronskian solutions to an extended (2+1)-dimensional KdV equation. AIMS Mathematics, 2023, 8(7): 16906-16925. doi: 10.3934/math.2023864 |
[6] | Ibrahim Alraddadi, Faisal Alsharif, Sandeep Malik, Hijaz Ahmad, Taha Radwan, Karim K. Ahmed . Innovative soliton solutions for a (2+1)-dimensional generalized KdV equation using two effective approaches. AIMS Mathematics, 2024, 9(12): 34966-34980. doi: 10.3934/math.20241664 |
[7] | Qiulan Zhao, Muhammad Arham Amin, Xinyue Li . Classical Darboux transformation and exact soliton solutions of a two-component complex short pulse equation. AIMS Mathematics, 2023, 8(4): 8811-8828. doi: 10.3934/math.2023442 |
[8] | A. K. M. Kazi Sazzad Hossain, M. Ali Akbar . Solitary wave solutions of few nonlinear evolution equations. AIMS Mathematics, 2020, 5(2): 1199-1215. doi: 10.3934/math.2020083 |
[9] | Zh. Myrzakulova, Z. Zakariyeva, K. Suleimenov, U. Uralbekova, K. Yesmakhanova . Explicit solutions of nonlocal reverse-time Hirota-Maxwell-Bloch system. AIMS Mathematics, 2024, 9(12): 35004-35015. doi: 10.3934/math.20241666 |
[10] | Sixing Tao . Breathers, resonant multiple waves and complexiton solutions of a (2+1)-dimensional nonlinear evolution equation. AIMS Mathematics, 2023, 8(5): 11651-11665. doi: 10.3934/math.2023590 |
In this paper, the reverse space cmKdV equation, the reverse time cmKdV equation and the reverse space-time cmKdV equation are constructed and each of three types diverse soliton solutions is derived based on the Hirota bilinear method. The Lax integrability of three types of nonlocal equations is studied from local equation by using variable transformations. Based on exact solution formulae of one- and two-soliton solutions of three types of nonlocal cmKdV equation, some figures are used to describe the soliton solutions. According to the dynamical behaviors, it can be found that these solutions possess novel properties which are different from the ones of classical cmKdV equation.
Integrable systems have been studied for over 50 years in which there is an increasing interest in acquiring the nonlocal systems of integrable equations and analyzing their solutions and properties. The pioneering work for the nonlocal integrable system has been done by Ablowitz and Musslimani [1] when they investigated the nonlocal nonlinear Schr¨odinger (NLS) equation through inverse scattering transform. It should be noted that the NLS equation is parity-time-symmetric (PT-symmetry), which has become an interesting topic in quantum mechanics [2], optics [3,4,5,6] and Bose-Einstein condensates [7,8], etc. The nonlocal integrable systems are of important significance in the theoretical study of mathematical physics and applications in the fields of nonlinear science [9]. In the past few years, this research field started to attract a lot of attention [10,11,12,13,14]. For instance, Xu and Chow [15] derived the breathers and rogue waves solutions of a third order nonlocal partial differential equation by bilinear transformation. Lou [16] derived multi-place nonlocal integrable systems, especially for the two-place and four-place nonlocal NLS equations and Kadomtsev-Petviashvili (KP) equations. Chen et al. [17] collected the nonlocal NLS hierarchy, nonlocal modified Korteweg-de Vries (mKdV) hierarchy and nonlocal versions of the sine-Gordon equation in nonpotential form. Rao et al. [18,19] showed the PT-symmetric nonlocal Davey-Stewartson I equation by using the Kadomtsev-Petviashvili hierarchy reduction method. Yu and Fan [20] studied the coupled nonlocal nonlinear Schr¨odinger equations with the self-induced PT-symmetric potential using the Hirota bilinear method.
The KdV equation [21,22,23] and the mKdV equation [24] describe the evolution of small amplitude and weakly dispersive waves which occur in the shallow water. The complex mKdV equation is the next member of the nonlinear Schr¨odinger hierarchy, which possesses all the basic characters of integrable models. In physical application, the nonlocal mKdV possesses the shifted parity and/or delayed time reversal symmetry, and thus it could be related to the Alice-Bob system [25]. For instance, a special solution of the nonlocal mKdV was applied to theoretically capture the salient features of two correlated dipole blocking events in atmospheric and oceanic dynamical systems [26]. Since the nonlocal NLS was found, the nonlocal mKdV equation has attracted much attention. Ablowitz and Musslimani analyzed Lax pairs, conservation laws, inverse scattering transform and obtained one-soliton solutions of many nonlocal nonlinear integrable equations, such as nonlocal nonlinear Schr¨odinger equation, cmKdV and mKdV equtions, sine-Gordon equation and so on [27,28]. B. Yang and J. K. Yang [29] proposed variable transformations between nonlocal and local integrable equations and derived new integrable equations. By constructing the DT for nonlocal complex mKdV equation, Ma, Shen and Zhu [30] derived dark soliton, W-type soliton, M-type soliton and periodic solutions. Li et al.[31] derived single soliton solution and two soliton solution using Hirota bilinear method for reverse space nonlocal cmKdV equation. G¨urses and Pekcan [32] studied the nonlocal mKdV equations obtained from AKNS scheme by Ablowitz-Musslimani type nonlocal reductions, and found soliton solutions of the coupled mKdV system by using the Hirota bilinear method. He, Fan and Xu formulated the Riemann-Hilbert problem associated with the Cauchy problem of the nonlocal mKdV equation and applied the Deift-Zhou nonlinear steepest-descent method analyzed the long-time asymptotics for the solution of the nonlocal mKdV equation [33]. Both focusing and defocusing nonlocal (reverse-space-time) mKdV equations were studied by using inverse scattering transform in [34]. The soliton solutions of nonlocal mKdV equations are derived though inverse scattering transform in[35,36,37,38]. However, there has been still not much work on the Hirota bilinear method to three types of the nonlocal cmKdV equations. Hirota bilinear method is an important and direct method to solve integrable equations. The advantage of the Hirota bilinear method [39,40] is an algebraic rather than analytical method, and it has been successfully applied to solve a large number of soliton equations.
Based on the above mentioned works, we can structure reverse space cmKdV equation, reverse time cmKdV equation and reverse space-time cmKdV equation form classical cmKdV equation. Local cmKdV equation is given by
ut(x,t)+uxxx(x,t)−6σu(x,t)u∗(x,t)ux(x,t)=0, | (1.1) |
where u(x,t) is a complex function and u∗(x,t) is its complex conjugation, σ=±1 denote the defocusing and focusing cases.
Here we make three different variable transformations:
a) x=−iˆx,t=−ˆt,u(x,t)=iˆu(ˆx,ˆt), | (1.2) |
b) x=ˆx,t=iˆt,u(x,t)=iˆu(ˆx,ˆt), | (1.3) |
c) x=−iˆx,t=iˆt,u(x,t)=iˆu(ˆx,ˆt). | (1.4) |
Then we put ˆx→x, ˆt→t, ˆu→u. Through these transformations, local cmKdV equation transforms into reverse space cmKdV equation, reverse time cmKdV equation and reverse space-time cmKdV equation:
ut(x,t)+iuxxx(x,t)+6iσu(x,t)u∗(−x,t)ux(x,t)=0, | (1.5) |
ut(x,t)+iuxxx(x,t)−6iσu(x,t)u∗(x,−t)ux(x,t)=0, | (1.6) |
ut(x,t)+uxxx(x,t)+6σu(x,t)u∗(−x,−t)ux(x,t)=0. | (1.7) |
These nonlocal equations are obviously different from local equations for their space and/or time coupling, which could induce new physical phenomena and thus inspire novel physical applications.
The main purpose of this work is to search for the integrability of three types nonlocal cmKdV Eqs (1.5)–(1.7) and find their soliton solutions by the Hirota bilinear method. The rest of this paper is organized as follows. We study one-soliton solution and two-soliton solution of the nonlocal mKdV equations of all types by using the improved Hirota bilinear method, and provide some figures to describe the defocusing case and focusing case of nonlocal cmKdV equations. Then we analyse the difference of nonlinear wave structure of three types equations. Moreover, by applying the transformation relationship between local and nonlocal equations, we obtain the Lax pair of nonlocal equations. Some conclusions are given in the last section.
The reverse space cmKdV equation is given by
ut(x,t)+iuxxx(x,t)+6iσu(x,t)u∗(−x,t)ux(x,t)=0, | (2.1) |
where u=u(x,t) is a complex-valued function of x and t, the ∗ denotes complex conjugation.
We first present the dependent variable transformations in order to take an Hirota bilinear method [31] to Eq (2.1). The transformations are
u(x,t)=G(x,t)F(x,t), u∗(−x,t)=G∗(−x,t)F∗(−x,t), | (2.2) |
where the G(x,t) and G∗(−x,t) are complex functions, the F(x,t) and F∗(−x,t) are also in general complex functions, and all of them are distinct.
We substitute the transformations Eq (2.2) into Eq (2.1) and introduce bilinear operators of the functions F and G. We get a novel equation as follows
1F2(Dt+iD3x)G⋅F+(GxF−GFx)[6iσGG∗F3F∗−3iF4D2xF⋅F]=0, | (2.3) |
it can be decoupled into the following system of bilinear equations for the functions F and G,
(Dt+iD3x)G⋅F=0, | (2.4) |
D2xF⋅F=2σSF, | (2.5) |
SF∗=GG∗, | (2.6) |
the Dx and Dt are defined as
DmxDnt(G⋅F)=(∂∂x−∂∂x1)m(∂∂t−∂∂t1)nG(x,t)F(x1,t1)|(x=x1,t=t1). | (2.7) |
Solving the above series of bilinear Eqs (2.4)–(2.6), and coupling with Eq (2.2), we can get some soliton solutions. In this section, we expand the unknown functions G(x,t), G∗(−x,t), F(x,t) and F∗(−x,t) in terms of a small parameter ϵ
G(x,t)=ϵG1+ϵ3G3+...,G∗(−x,t)=ϵG∗1+ϵ3G∗3+...,F(x,t)=1+ϵ2F2+ϵ4F4+...,F∗(−x,t)=1+ϵ2F∗2+ϵ4F∗4+..., | (2.8) |
where the G1, G3, F2, F4 are functions with spatial variable x and temporal variable t, and the fuctions G∗1, G∗3, F∗2, F∗4 have variables −x and t. Substituting the above expansions into Eqs (2.4)–(2.6), and comparing the coefficients of ϵ, we obtain the unknown functions G(x,t), G∗(−x,t), F(x,t) and F∗(−x,t) by selecting the appropriate functions G1, G∗1, F2, F∗2, G3, G∗3, F4, F∗4, etc.
Now we want to find one-soliton of Eq (2.1). First of all, we take the following expansions of the functions G, G∗, F and F∗:
G(x,t)=ϵG1,G∗(−x,t)=ϵG∗1,F(x,t)=1+ϵ2F2,F∗(−x,t)=1+ϵ2F∗2. | (2.9) |
Substituting the above expansions of Eq (2.9) into the bilinear Eqs (2.4)–(2.6), and comparing the coefficients of same powers of ϵ to zero, we obtain a set of equations
G1t+iG1xxx=0, | (2.10) |
F2xx=σG1G∗1, | (2.11) |
where G1, G∗1, F2 and F∗2 are given rise to as follows
G1=eη1,G∗1=eη∗1,F2=A1eη1+η∗1,F∗2=A∗1eη1+η∗1, | (2.12) |
where η1=k1x−ω1t+η10, η∗1=−k∗1x−ω∗1t+η∗10, and k1, k∗1, A1, A∗1 are arbitrary complex constants.
From Eqs (2.10) and (2.11), we know the relation about ω1, k1 and A1 as follows
ω1=ik31, | (2.13) |
A1=σ(k1−k∗1)2. | (2.14) |
Since the ω∗1 is the complex conjugate of ω1, so
ω∗1=−ik∗31. | (2.15) |
In the same way, we obtain
A∗1=σ(k1−k∗1)2. | (2.16) |
Then, the general nonlocal one-soliton solution of the reverse space cmKdV Eq (2.1) is
u(x,t)=eη11+A1eη1+η∗1. | (2.17) |
According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form
u∗(−x,t)=eη∗11+A∗1eη1+η∗1. | (2.18) |
Here we provide some figures to describe the nonlocal single soliton solutions Eqs (2.17) and (2.18)(see Figure 1). Figure 1(a), (b) are the profiles of focusing cmKdV equation, and Figure 1(c), (d) are the profiles of defocusing cmKdV equation with the same parameters ϵ, k1, k∗1. Figure 1 shows that |u(x,t)| and |u∗(−x,t)| have the same shapes as spatial evolution, but their enhancing shapes are antipodal.
The nonlocal two-soliton solution of the reverse space cmKdV Eq (2.1) can also be obtained with Hirota bilinear method. We consider the truncating of the following expansions G(x,t)=ϵG1+ϵ3G3, G∗(−x,t)=ϵG∗1+ϵ3G∗3, F(x,t)=1+ϵ2F2+ϵ4F4, F∗(−x,t)=1+ϵ2F∗2+ϵ4F∗4.
Substituting these expansions into the bilinear Eqs (2.4)–(2.6), and collecting the coefficients of same powers of ϵ to zero, we obtain a set of equations
G1t+iG1xxx=0, | (2.19) |
G1tF2+G3t−G1F2t+i(G1xxxF2+G3xxx−3G1xxF2x+3G1xF2xx−G1F2xxx)=0, | (2.20) |
F2xx=σG1G∗1, | (2.21) |
F4xx+F2F2xx+F∗2F2xx−F22x=σG1G∗1F2+σG1G∗3+σG3G∗1, | (2.22) |
where G1, G∗1, F2 and F∗2 are given rise to as follows
G1=eη1+eη2,G∗1=eη∗1+eη∗2,F2=A1eη1+η∗1+A2eη1+η∗2+A3eη∗1+η2+A4eη2+η∗2,F∗2=A∗1eη1+η∗1+A∗2eη∗1+η2+A∗3eη1+η∗2+A∗4eη2+η∗2, | (2.23) |
where η1=k1x−ω1t+η10, η∗1=−k∗1x−ω∗1t+η∗10, η2=k2x−ω2t+η20, η∗2=−k∗2x−ω∗2t+η∗20. And k1, k∗1, k2, k∗2, A1, A∗1, A2, A∗2, A3, A∗3, A4, A∗4 are arbitrary complex constants.
From Eqs (2.19) and (2.21), we know
ω1=ik31, ω∗1=−ik∗31,ω2=ik32, ω∗2=−ik∗32, | (2.24) |
and
A1=σ(k1−k∗1)2, A∗1=σ(k1−k∗1)2,A2=σ(k1−k∗2)2, A∗2=σ(k∗1−k2)2,A3=σ(−k∗1+k2)2, A∗3=σ(−k1+k∗2)2,A4=σ(k2−k∗2)2, A∗4=σ(k2−k∗2)2. | (2.25) |
So, the functions G1(x,t), G∗1(−x,t), F2(x,t) and F∗2(−x,t) are obtained. Substituting the expressions of G1 and F2 into the Eq (2.20), we obtain the function G3 and the parity transformed complex conjugate G∗3 in the form
G3=B1e2η1+η∗1+B2e2η1+η∗2+B3eη1+η2+η∗1+B4eη1+η2+η∗2+B5e2η2+η∗1+B6e2η2+η∗2, | (2.26) |
G∗3=B∗1e2η∗1+η1+B∗2e2η∗1+η2+B∗3eη∗1+η∗2+η1+B∗4eη∗1+η∗2+η2+B∗5e2η∗2+η1+B∗6e2η∗2+η2, | (2.27) |
where
B1=0, B2=0,B3=(−i(k∗1−k1+k2)3−ω1+ω2−ω∗1)A1+(−i(k∗1+k1−k2)3+ω1−ω2−ω∗1)A3−i(k∗1−k1−k2)3−ω1−ω2−ω∗1,B4=(−i(k∗2−k1+k2)3−ω1+ω2−ω∗2)A2+(−i(k∗2+k1−k2)3+ω1−ω2−ω∗2)A4−i(k∗2−k1−k2)3−ω1−ω2−ω∗2,B5=0, B6=0, |
and
B∗1=0, B∗2=0,B∗3=(i(k1−k∗1+k∗2)3−ω∗1+ω∗2−ω1)A∗1+(i(k1+k∗1−k∗2)3+ω∗1−ω∗2−ω1)A∗3i(k1−k∗1−k∗2)3−ω∗1−ω∗2−ω1,B∗4=(i(k2−k∗1+k∗2)3−ω∗1+ω∗2−ω2)A∗2+(i(k2+k∗1−k∗2)3+ω∗1−ω∗2−ω2)A∗4i(k2−k∗1−k∗2)3−ω∗1−ω∗2−ω2,B∗5=0, B∗6=0. |
Then we substitute the expressions for G1, G∗1, G3, G∗3, F2 and F∗2 into the Eq (2.22) and obtain the functions F4 and F∗4 as follows
F4=C1e2η1+2η∗1+C2e2η2+2η∗2+C3eη1+2η∗1+η2+C4e2η1+η∗1+η∗2+C5eη1+η2+η∗2+η∗1+C6e2η1+2η∗2+C7eη1+η2+2η∗2+C8eη∗1+η∗2+2η2+C9e2η2+2η∗1, | (2.28) |
F∗4=C∗1e2η∗1+2η1+C∗2e2η∗2+2η2+C∗3eη∗1+2η1+η∗2+C∗4e2η∗1+η1+η2+C∗5eη∗1+η∗2+η2+η1+C∗6e2η∗1+2η2+C∗7eη∗1+η∗2+2η2+C∗8eη1+η2+2η∗2+C∗9e2η∗2+2η1, | (2.29) |
where
C1=−A1A∗1(k1−k∗1)2−σ(A1+B1+B∗1)4(k1−k∗1)2, C2=−A4A∗4(k2−k∗2)2−σ(A4+B6+B∗6)4(k2−k∗2)2,C3=−A1A∗2(k1−k∗1)2+A1A3(k1−k2)2+A∗1A3(k∗1−k2)2−σ(A1+A3+B∗1+B∗2+B3)(k1+k2−2k∗1)2,C4=−A1A2(k∗1−k∗2)2+A1A∗3(k1−k∗1)2+A∗1A2(k1−k∗2)2−σ(A1+A2+B1+B2+B∗3)(k∗1+k∗2−2k1)2,C5=−A1A4a1+A2A3a2−σa3+a4(k1−k∗1+k2−k∗2)2. |
In C5, a1, a2, a3, a4 are denoted as follows
a1=(k1−k∗1)2−(k1+k2)2+(k1+k∗2)2+(k∗1+k2)2−(k∗1+k∗2)2+(k2−k∗2)2,a2=(k1+k∗1)2−(k1+k2)2+(k1−k∗2)2+(k∗1−k2)2−(k∗1+k∗2)2+(k2+k∗2)2,a3=A1+A2+A3+A4+B3+B∗3+B4+B∗4,a4=A1A∗4(k1−k∗1)2+A∗1A4(k2−k∗2)2+A2A∗2(k1−k∗2)2+A3A∗3(k∗1−k2)2. |
C6=−A2A∗3(k1−k∗2)2−σ(A2+B2+B∗5)4(k1−k∗2)2,C7=−A2A4(k1−k2)2+A2A∗4(k1−k∗2)2+A∗3A4(k2−k∗2)2−σ(A2+A4+B4+B∗5+B∗6)(k1+k2−2k∗2)2,C8=−A∗2A4(k2−k∗2)2+A3A4(k∗1−k∗2)2+A3A∗4(k∗1−k2)2−σ(A3+A4+B∗4+B5+B6)(k∗1+k∗2−2k2)2,C9=−A∗2A3(k∗1−k2)2−σ(A3+B∗2+B5)4(k∗1−k2)2, |
and
C∗1=−A∗1A1(k∗1−k1)2−σ(A∗1+B∗1+B1)4(k∗1−k1)2, C∗2=−A∗4A4(k∗2−k2)2−σ(A∗4+B∗6+B6)4(k∗2−k2)2,C∗3=−A∗1A2(k∗1−k1)2+A∗1A∗3(k∗1−k∗2)2+A1A∗3(k1−k∗2)2−σ(A∗1+A∗3+B1+B2+B∗3)(k∗1+k∗2−2k1)2,C∗4=−A∗1A∗2(k1−k2)2+A∗1A3(k∗1−k1)2+A1A∗2(k∗1−k2)2−σ(A∗1+A∗2+B∗1+B∗2+B3)(k1+k2−2k∗1)2,C∗5=−A∗1A∗4a∗1+A∗2A∗3a∗2−σa∗3+a∗4(k∗1−k1+k∗2−k2)2. |
In C∗5, a∗1, a∗2, a∗3, a∗4 are denoted as follows
a∗1=(k∗1−k1)2−(k∗1+k∗2)2+(k∗1+k2)2+(k1+k∗2)2−(k1+k2)2+(k∗2−k2)2,a∗2=(k1+k∗1)2−(k∗1+k∗2)2+(k∗1−k2)2+(k1−k∗2)2−(k1+k2)2+(k2+k∗2)2,a∗3=A∗1+A∗2+A∗3+A∗4+B∗3+B3+B4+B∗4,a∗4=A∗1A4(k1−k∗1)2+A1A∗4(k2−k∗2)2+A∗2A2(k∗1−k2)2+A3A∗3(k1−k∗2)2. |
C∗6=−A∗2A3(k∗1−k2)2−σ(A∗2+B∗2+B5)4(k∗1−k2)2,C∗7=−A∗2A∗4(k∗1−k∗2)2+A∗2A4(k∗1−k2)2+A3A∗4(k2−k∗2)2−σ(A∗2+A∗4+B∗4+B5+B6)(k∗1+k∗2−2k2)2,C∗8=−A2A∗4(k2−k∗2)2+A∗3A∗4(k1−k2)2+A∗3A4(k1−k∗2)2−σ(A∗3+A∗4+B4+B∗5+B∗6)(k1+k2)2−4k∗2k1+4k∗22−4k2k∗2,C∗9=−A2A∗3(k1−k∗2)2−σ(A∗3+B2+B∗5)4(k1−k∗2)2. |
So, the general nonlocal two-soliton solution of the reverse space cmKdV Eq (2.1) is
u(x,t)=G1+G31+F2+F4. | (2.30) |
According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form
u∗(−x,t)=G∗1+G∗31+F∗2+F∗4. | (2.31) |
Here we provide some figures to describe the nonlocal two-soliton solutions Eqs (2.30) and (2.31) of the reverse space cmKdV Eq (2.1), see Figures 2 and 3. In Figure 2, the focusing and defocusing cmKdV equations have entirely different solitary wave structure with the same parameters ϵ=1, k1=0.7+0.7i, k2=−0.64−0.8i, which are novel phenomenon in nonlocal cmKdV equation. Profiles Figure 2(a), (b) present the breather-like style only in the vicinity of t=0. Profiles Figure 2(c), (d) show the elastic interactions between two bright-bright solitons with different amplitudes. When the time t is near zero, amplitudes of the two solitary waves reach maximum, while the widths reach the minimum. Figure 3 shows the collision interactions between two breathers with parameters ϵ=1, k1=0.2+0.7i, k2=−0.7−0.8i. The focusing and defocusing cmKdV equations have the same solitary wave structure, but with different amplitudes. The profiles of u(x,t) and u∗(−x,t) are on x-axis symmetric.
The reverse time cmKdV equation is given by
ut(x,t)+iuxxx(x,t)−6iσu(x,t)u∗(x,−t)ux(x,t)=0, | (3.1) |
where u=u(x,t) is a complex-valued function of x and t, the ∗ denotes complex conjugation.
We present the dependent variable transformations which is similar to the previous section in order to take an Hirota bilinear method to Eq (3.1). The transformations are
u(x,t)=G(x,t)F(x,t), u∗(x,−t)=G∗(x,−t)F∗(x,−t), | (3.2) |
where the G(x,t), G∗(x,−t), F(x,t) and F∗(x,−t) are complex functions, and all of them are distinct.
Substituting the transformations Eq (3.2) into Eq (3.1) and introducing bilinear operators of the functions f and g, we get a novel equation as follows
1F2(Dt+iD3x)G⋅F+(GxF−GFx)[−6iσGG∗F3F∗−3iF4(2FxxF−2FxFx)]=0, | (3.3) |
it can be decoupled into the following system of bilinear equations for the functions F and G,
(Dt+iD3x)G⋅F=0, | (3.4) |
D2xF⋅F=−2σSF, | (3.5) |
SF∗=GG∗, | (3.6) |
the Dx and Dt are defined as same as in the previous section. Solving the above series of bilinear Eqs (3.4)–(3.6) and coupling with Eq (3.2), some soliton solutions can be obtained.
We expand the unknown functions G(x,t), G∗(x,−t), F(x,t) and F∗(x,−t) in terms of a small parameter ϵ
G(x,t)=ϵG1+ϵ3G3+...,G∗(x,−t)=ϵG∗1+ϵ3G∗3+...,F(x,t)=1+ϵ2F2+ϵ4F4+...,F∗(x,−t)=1+ϵ2F∗2+ϵ4F∗4+..., | (3.7) |
where the G1, G3, F2, F4 are functions with spatial variable x and temporal variable t, the functions G∗1, G∗3, F∗2, F∗4 have variables x and −t. Substituting the above expansions into Eqs (3.4)–(3.6), and comparing the coefficients of ϵ, we obtain the unknown functions G(x,t), G∗(x,−t), F(x,t) and F∗(x,−t) by selecting the appropriate functions G1, G∗1, F2, F∗2, G3, G∗3, F4, F∗4, etc.
For one-soliton of Eq (3.1), we take the following expansions of the functions G, G∗, F and F∗:
G(x,t)=ϵG1,G∗(x,−t)=ϵG∗1,F(x,t)=1+ϵ2F2,F∗(x,−t)=1+ϵ2F∗2. | (3.8) |
Substituting the above expansions of Eq (3.8) into the bilinear Eqs (3.4)–(3.6), and comparing the coefficients of same powers of ϵ to zero, we obtain a set of equations
G1t+iG1xxx=0, | (3.9) |
F2xx=−σG1G∗1, | (3.10) |
where G1, G∗1, F2 and F∗2 are given rise to as follows
G1=eξ1,G∗1=eξ∗1,F2=A1eξ1+ξ∗1F∗2=A∗1eξ1+ξ∗1, | (3.11) |
where ξ1=k1x−ω1t+ξ10, ξ∗1=k∗1x+ω∗1t+ξ∗10, and k1, k∗1, A1, A∗1 are arbitrary complex constants.
From Eqs (3.9) and (3.10), we know the relation about ω1, k1 and A1 as follows
ω1=ik31, | (3.12) |
A1=−σ(k1+k∗1)2. | (3.13) |
Since the ω∗1 is the complex conjugate of ω1, so
ω∗1=−ik∗31. | (3.14) |
In the same way, we have
A∗1=−σ(k1+k∗1)2. | (3.15) |
So, the general nonlocal one-soliton solution of the reverse space cmKdV Eq (3.1) is
u(x,t)=eξ11+A1eξ1+ξ∗1. | (3.16) |
According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form
u∗(x,−t)=eξ∗11+A∗1eξ1+ξ∗1. | (3.17) |
The figures of nonlocal single soliton solutions Eqs (3.16) and (3.17) of the reverse time cmKdV equation Eq (3.1) are given in Figure 4. The results show that the defocusing and focusing cmKdV equations have the same solitary wave structure and enhancing shape as time envolution. However, they have different wavelengths. The wavelength of focusing cmKdV equation is longer than the defocusing one with the same parameters ϵ,k1,k∗1.
The nonlocal two-soliton solution of the reverse time cmKdV Eq (3.1) can also be obtained with Hirota bilinear method. We consider the truncating of the following expansions G(x,t)=ϵG1+ϵ3G3, G∗(x,−t)=ϵG∗1+ϵ3G∗3, F(x,t)=1+ϵ2F2+ϵ4F4, F∗(x,−t)=1+ϵ2F∗2+ϵ4F∗4.
Substituting these expansions into the bilinear Eqs (3.4)–(3.6), and collecting the coefficients of same powers of ϵ to zero, we obtain a set of equations
G1t+iG1xxx=0, | (3.18) |
G1tF2+G3t−G1F2t+i(G1xxxF2+G3xxx−3G1xxF2x+3G1xF2xx−G1F2xxx)=0, | (3.19) |
F2xx=−σG1G∗1, | (3.20) |
F4xx+F2F2xx+F∗2F2xx−F22x=−σG1G∗1F2−σG1G∗3−σG3G∗1, | (3.21) |
where G1, G∗1, F2 and F∗2 are given rise to as follows
G1=eξ1+eξ2,G∗1=eξ∗1+eξ∗2,F2=A1eξ1+ξ∗1+A2eξ1+ξ∗2+A3eξ∗1+ξ2+A4eξ2+ξ∗2,F∗2=A∗1eξ1+ξ∗1+A∗2eξ∗1+ξ2+A∗3eξ1+ξ∗2+A∗4eξ2+ξ∗2, | (3.22) |
where ξ1=k1x−ω1t+ξ10, ξ∗1=k∗1x+ω∗1t+ξ∗10, ξ2=k2x−ω2t+ξ20, ξ∗2=k∗2x+ω∗2t+ξ∗20. And k1, k∗1, k2, k∗2, A1, A∗1, A2, A∗2, A3, A∗3, A4, A∗4 are arbitrary complex constants.
From Eqs (3.18) and (3.20), we know
ω1=ik31, ω∗1=−ik∗31,ω2=ik32, ω∗2=−ik∗32, | (3.23) |
and
A1=σ(k1−k∗1)2, A∗1=σ(k1−k∗1)2,A2=σ(k1−k∗2)2, A∗2=σ(k∗1−k2)2,A3=σ(−k∗1+k2)2, A∗3=σ(−k1+k∗2)2,A4=σ(k2−k∗2)2, A∗4=σ(k2−k∗2)2. | (3.24) |
So, the functions G1(x,t), G∗1(x,−t), F2(x,t) and F∗2(x,−t) are obtained. Substituting the expressions of G1 and F2 into Eq (3.19), we obtain the function G3 and the parity transformed complex conjugate G∗3 in the form
G3=B1e2ξ1+ξ∗1+B2e2ξ1+ξ∗2+B3eξ1+ξ2+ξ∗1+B4eξ1+ξ2+ξ∗2+B5e2ξ2+ξ∗1+B6e2ξ2+ξ∗2, | (3.25) |
G∗3=B∗1e2ξ∗1+ξ1+B∗2e2ξ∗1+ξ2+B∗3eξ∗1+ξ∗2+ξ1+B∗4eξ∗1+ξ∗2+ξ2+B∗5e2ξ∗2+ξ1+B∗6e2ξ∗2+ξ2, | (3.26) |
where
B1=0, B2=0,B3=(i(k∗1+k1−k2)3−ω1+ω2+ω∗1)A1+(i(k∗1−k1+k2)3+ω1−ω2+ω∗1)A3i(k∗1+k1+k2)3−ω1−ω2+ω∗1,B4=(i(k∗2+k1−k2)3−ω1+ω2+ω∗2)A2+(i(k∗2−k1+k2)3+ω1−ω2+ω∗2)A4i(k∗2+k1+k2)3−ω1−ω2+ω∗2,B5=0, B6=0, |
and
B∗1=0, B∗2=0,B∗3=(−i(k1+k∗1−k∗2)3−ω∗1+ω∗2+ω1)A∗1+(−i(k1−k∗1+k∗2)3+ω∗1−ω∗2+ω1)A∗3−i(k1+k∗1+k∗2)3−ω∗1−ω∗2+ω1,B∗4=(−i(k2+k∗1−k∗2)3−ω∗1+ω∗2+ω2)A∗2+(−i(k2−k∗1+k∗2)3+ω∗1−ω∗2+ω2)A∗4−i(k2+k∗1+k∗2)3−ω∗1−ω∗2+ω2,B∗5=0, B∗6=0. |
Then we substitute the expressions for G1, G∗1, G3, G∗3, F2 and F∗2 into the Eq (3.21) and obtain the functions F4 and F∗4 as follows
F4=C1e2ξ1+2ξ∗1+C2e2ξ2+2ξ∗2+C3eξ1+2ξ∗1+ξ2+C4e2ξ1+ξ∗1+ξ∗2+C5eξ1+ξ2+ξ∗2+ξ∗1+C6e2ξ1+2ξ∗2+C7eξ1+ξ2+2ξ∗2+C8eξ∗1+ξ∗2+2ξ2+C9e2ξ2+2ξ∗1, | (3.27) |
F∗4=C∗1e2ξ∗1+2ξ1+C∗2e2ξ∗2+2ξ2+C∗3eξ∗1+2ξ1+ξ∗2+C∗4e2ξ∗1+ξ1+ξ2+C∗5eξ∗1+ξ∗2+ξ2+ξ1+C∗6e2ξ∗1+2ξ2+C∗7eξ∗1+ξ∗2+2ξ2+C∗8eξ1+ξ2+2ξ∗2+C∗9e2ξ∗2+2ξ1, | (3.28) |
where
C1=−A1A∗1(k1+k∗1)2+σ(A1+B1+B∗1)4(k1+k∗1)2, C2=−A4A∗4(k2+k∗2)2+σ(A4+B6+B∗6)4(k2+k∗2)2,C3=−A1A∗2(k1+k∗1)2+A1A3(k1−k2)2+A∗1A3(k∗1+k2)2+σ(A1+A3+B∗1+B∗2+B3)(k1+k2+2k∗1)2,C4=−A1A2(k∗1−k∗2)2+A1A∗3(k1+k∗1)2+A∗1A2(k1+k∗2)2+σ(A1+A2+B1+B2+B∗3)(k∗1+k∗2+2k1)2,C5=−A1A4b1+A2A3b2+σb3+b4(k1+k∗1+k2+k∗2)2. |
In C5, b1, b2, b3, b4 are denoted as follows
b1=(k1+k∗1)2+(k1−k2)2−(k1+k∗2)2−(k∗1+k2)2+(k∗1−k∗2)2+(k2+k∗2)2,b2=(k1−k∗1)2−(k1+k2)2+(k1+k∗2)2+(k∗1+k2)2−(k∗1+k∗2)2+(k2−k∗2)2,b3=A1+A2+A3+A4+B3+B∗3+B4+B∗4,b4=A1A∗4(k1+k∗1)2+A∗1A4(k2+k∗2)2+A2A∗2(k1+k∗2)2+A3A∗3(k∗1+k2)2. |
C6=−A2A∗3(k1+k∗2)2+σ(A2+B2+B∗5)4(k1+k∗2)2,C7=−A2A4(k1−k2)2+A2A∗4(k1+k∗2)2+A∗3A4(k2+k∗2)2+σ(A2+A4+B4+B∗5+B∗6)(k1+k2+2k∗2)2,C8=−A∗2A4(k2+k∗2)2+A3A4(k∗1−k∗2)2+A3A∗4(k∗1+k2)2+σ(A3+A4+B∗4+B5+B6)(k∗1+k∗2+2k2)2, |
C9=−A∗2A3(k∗1+k2)2+σ(A3+B∗2+B5)4(k∗1+k2)2, |
and
C∗1=−A1A∗1(k1+k∗1)2+σ(A∗1+B1+B∗1)4(k1+k∗1)2, C∗2=−A4A∗4(k2+k∗2)2+σ(A∗4+B6+B∗6)4(k2+k∗2)2,C∗3=−A∗1A2(k∗1+k1)2+A∗1A∗3(k∗1−k∗2)2+A1A∗3(k1+k∗2)2+σ(A∗1+A∗3+B1+B2+B∗3)(k∗1+k∗2+2k1)2,C∗4=−A∗1A∗2(k1−k2)2+A∗1A3(k1+k∗1)2+A1A∗2(k∗1+k2)2+σ(A∗1+A∗2+B∗1+B∗2+B3)(k1+k2+2k∗1)2,C∗5=−A∗1A∗4b∗1+A∗2A∗3b∗2+σb∗3+b∗4(k1+k∗1+k2+k∗2)2. |
In C∗5, b∗1, b∗2, b∗3, b∗4 are denoted as follows
b∗1=(k1+k∗1)2+(k∗1−k∗2)2−(k∗1+k2)2−(k1+k∗2)2+(k1−k2)2+(k2+k∗2)2,b∗2=(k1−k∗1)2−(k∗1+k∗2)2+(k∗1+k2)2+(k1+k∗2)2−(k1+k2)2+(k2−k∗2)2,b∗3=A∗1+A∗2+A∗3+A∗4+B3+B∗3+B4+B∗4,b∗4=A∗1A4(k1+k∗1)2+A1A∗4(k2+k∗2)2+A2A∗2(k∗1+k2)2+A3A∗3(k1+k∗2)2. |
C∗6=−A∗2A3(k∗1+k2)2+σ(A∗2+B∗2+B5)4(k∗1+k2)2,C∗7=−A∗2A∗4(k∗1−k∗2)2+A∗2A4(k∗1+k2)2+A3A∗4(k2+k∗2)2+σ(A∗2+A∗4+B∗4+B5+B6)(k∗1+k∗2+2k2)2,C∗8=−A2A∗4(k2+k∗2)2+A∗3A∗4(k1−k2)2+A∗3A4(k1+k∗2)2+σ(A∗3+A∗4+B4+B∗5+B∗6)(k1+k2+2k∗2)2,C∗9=−A2A∗3(k1+k∗2)2+σ(A∗3+B2+B∗5)4(k1+k∗2)2. |
So, the general nonlocal two-soliton solution of the reverse time cmKdV Eq (3.1) is
u(x,t)=G1+G31+F2+F4. | (3.29) |
According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form
u∗(x,−t)=G∗1+G∗31+F∗2+F∗4. | (3.30) |
The figures of the nonlocal two-soliton solutions Eqs (3.29) and (3.30) of the reverse time cmKdV Eq (3.1) are given in Figures 5 and 6. Figure 5 shows X-type with longer stem interaction of two breather. In near the origin, the focusing cmKdV equation is triple parallel breather wave structure, while the defocusing cmKdV equation is double parallel breather wave structure. The profiles of u(x,t) and u∗(x,−t) of defocusing and focusing cmKdV equations have opposite wave structure with time envolution, but they are all symmetric about the t-axis. From Figure 6, we see that the H-type interaction between two breather wave of defocusing and focusing cmKdV equations has different amplitudes, and the amplitudes reach zero in the vicinity of the crossing point.
The reverse space-time cmKdV equation is given by
ut(x,t)+uxxx(x,t)+6σu(x,t)u∗(−x,−t)ux(x,t)=0, | (4.1) |
where u=u(x,t) is a complex-valued function of x and t, the ∗ denotes complex conjugation.
We first present the dependent variable transformations in order to take an Hirota bilinear method to Eq (4.1). The transformations are
u(x,t)=G(x,t)F(x,t), u∗(−x,−t)=G∗(−x,−t)F∗(−x,−t), | (4.2) |
where the G(x,t) and G∗(−x,−t) are complex functions, the F(x,t) and F∗(−x,−t) are also in general complex functions, and all of them are distinct.
Substituting the transformations Eq (4.2) into Eq (4.1) and introducing bilinear operators of the functions F and G, we get a novel equation as follows
1F2(Dt+D3x)G⋅F+(GxF−GFx)[6σGG∗F3F∗−3F4(2FxxF−2FxFx)]=0, | (4.3) |
it can be decoupled into the following system of bilinear equations for the functions F and G,
(Dt+D3x)G⋅F=0, | (4.4) |
D2xF⋅F=2σSF, | (4.5) |
SF∗=GG∗, | (4.6) |
the Dx and Dt are defined as same as the Section 2. Solving the above series of bilinear Eqs (4.4)–(4.6) and coupling with Eq (4.2), the soliton solutions can be obtained.
We expand the unknown functions G(x,t), G∗(−x,−t), F(x,t) and F∗(−x,−t) in terms of a small parameter ϵ
G(x,t)=ϵG1+ϵ3G3+..., G∗(−x,−t)=ϵG∗1+ϵ3G∗3+...,F(x,t)=1+ϵ2F2+ϵ4F4+..., F∗(−x,−t)=1+ϵ2F∗2+ϵ4F∗4+..., | (4.7) |
where the G1, G3, F2, F4 are functions with spatial variable x and temporal variable t, the functions G∗1, G∗3, F∗2, F∗4 have variables −x and −t. Substituting the above expansions into Eqs (4.4)–(4.6), and comparing the coefficients of ϵ, we obtain the unknown functions G(x,t), G∗(−x,−t), F(x,t) and F∗(−x,−t) by selecting the appropriate functions G1, G∗1, F2, F∗2, G3, G∗3, F4, F∗4, etc.
In this section, one-soliton of Eq (4.1) can be obtained with Hirota bilinear method. First of all, we take the following expansions of the functions G, G∗, F and F∗:
G(x,t)=ϵG1,G∗(−x,−t)=ϵG∗1,F(x,t)=1+ϵ2F2,F∗(−x,−t)=1+ϵ2F∗2. | (4.8) |
Substituting the above expansions of Eq (4.8) into the bilinear Eqs (4.4)–(4.6), and comparing the coefficients of same powers of ϵ to zero, we obtain a set of equations
G1t+G1xxx=0, | (4.9) |
F2xx=σG1G∗1, | (4.10) |
where G1, G∗1, F2 and F∗2 are given rise to as follows
G1=eζ1,G∗1=eζ∗1,F2=A1eζ1+ζ∗1,F∗2=A∗1eζ1+ζ∗1, | (4.11) |
where ζ1=k1x−ω1t+ζ10, ζ∗1=−k∗1x+ω∗1t+ζ∗10, and k1, k∗1, A1, A∗1 are arbitrary complex constants.
From Eqs (4.9) and (4.10), we know the relation about ω1, k1 and A1 as follows
ω1=k31, | (4.12) |
A1=σ(k1−k∗1)2. | (4.13) |
Since the ω∗1 is the complex conjugate of ω1, so
ω∗1=k∗31. | (4.14) |
In the same way, we can get
A∗1=σ(k1−k∗1)2. | (4.15) |
Then, the general nonlocal one-soliton solution of the reverse space-time cmKdV Eq (4.1) is
u(x,t)=eζ11+A1eζ1+ζ∗1. | (4.16) |
According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form
u∗(−x,−t)=eζ∗11+A∗1eζ1+ζ∗1. | (4.17) |
Here we provide some figures to describe the nonlocal single soliton solutions Eqs (4.16) and (4.17) of the reverse space-time cmKdV Eq (4.1) in the Figure 7. The results show that the solutions of focusing and defocusing nonlocal cmKdV equations are periodic, but the crests and troughs are located in different places, and u(x,t) and u∗(−x,−t) have the opposite enhancing directions as time envolution.
The nonlocal two-soliton solution of the reverse space-time cmKdV Eq (4.1) can also be obtained with Hirota bilinear method. We consider the truncating of the following expansions G(x,t)=ϵG1+ϵ3G3, G∗(−x,−t)=ϵG∗1+ϵ3G∗3, F(x,t)=1+ϵ2F2+ϵ4F4, F∗(−x,−t)=1+ϵ2F∗2+ϵ4F∗4.
Substituting these expansions into the bilinear Eqs (4.4)–(4.6), and collecting the coefficients of same powers of ϵ to zero, we obtain a set of equations
G1t+G1xxx=0, | (4.18) |
G1tF2+G3t−G1F2t+G1xxxF2+G3xxx−3G1xxF2x+3G1xF2xx−G1F2xxx=0, | (4.19) |
F2xx=σG1G∗1, | (4.20) |
F4xx+F2F2xx+F∗2F2xx−F22x=σG1G∗1F2+σG1G∗3+σG3G∗1, | (4.21) |
where G1, G∗1, F2 and F∗2 are given rise to as follows
G1=eζ1+eζ2,G∗1=eζ∗1+eζ∗2,F2=A1eζ1+ζ∗1+A2eζ1+ζ∗2+A3eζ∗1+ζ2+A4eζ2+ζ∗2,F∗2=A∗1eζ1+ζ∗1+A∗2eζ∗1+ζ2+A∗3eζ1+ζ∗2+A∗4eζ2+ζ∗2, | (4.22) |
where ζ1=k1x−ω1t+ζ10, ζ∗1=−k∗1x+ω∗1t+ζ∗10, ζ2=k2x−ω2t+ζ20, ζ∗2=−k∗2x+ω∗2t+ζ∗20. And k1, k∗1, k2, k∗2, A1, A∗1, A2, A∗2, A3, A∗3, A4, A∗4 are arbitrary complex constants.
From Eqs (4.18) and (4.20), we know
ω1=k31, ω∗1=k∗31, ω2=k32, ω∗2=k∗32,A1=σ(k1−k∗1)2, A∗1=σ(k1−k∗1)2, A2=σ(k1−k∗2)2, A∗2=σ(k∗1−k2)2,A3=σ(−k∗1+k2)2, A∗3=σ(−k1+k∗2)2, A4=σ(k2−k∗2)2, A∗4=σ(k2−k∗2)2. | (4.23) |
So the functions G1(x,t), G∗1(−x,−t), F2(x,t) and F∗2(−x,−t) are obtained. When we substitute the expressions of G1 and F2 into Eq (4.19), and obtain the function G3 and the parity transformed complex conjugate G∗3 in the form
G3=B1e2ζ1+ζ∗1+B2e2ζ1+ζ∗2+B3eζ1+ζ2+ζ∗1+B4eζ1+ζ2+ζ∗2+B5e2ζ2+ζ∗1+B6e2ζ2+ζ∗2, | (4.24) |
G∗3=B∗1e2ζ∗1+ζ1+B∗2e2ζ∗1+ζ2+B∗3eζ∗1+ζ∗2+ζ1+B∗4eζ∗1+ζ∗2+ζ2+B∗5e2ζ∗2+ζ1+B∗6e2ζ∗2+ζ2, | (4.25) |
where
B1=0, B2=0,B3=((−k∗1+k1−k2)3−ω1+ω2+ω∗1)A1+((−k∗1−k1+k2)3+ω1−ω2+ω∗1)A3(−k∗1+k1+k2)3−ω1−ω2+ω∗1,B4=((−k∗2+k1−k2)3−ω1+ω2+ω∗2)A2+((−k∗2−k1+k2)3+ω1−ω2+ω∗2)A4(−k∗2+k1+k2)3−ω1−ω2+ω∗2,B5=0, B6=0, |
and
B∗1=0, B∗2=0,B∗3=((−k1+k∗1−k∗2)3−ω∗1+ω∗2+ω1)A∗1+((−k1−k∗1+k∗2)3+ω∗1−ω∗2+ω1)A∗3(−k1+k∗1+k∗2)3−ω∗1−ω∗2+ω1,B∗4=((−k2+k∗1−k∗2)3−ω∗1+ω∗2+ω2)A∗2+((−k2−k∗1+k∗2)3+ω∗1−ω∗2+ω2)A∗4(−k2+k∗1+k∗2)3−ω∗1−ω∗2+ω2,B∗5=0, B∗6=0. |
Substituting the expressions of G1, G∗1, G3, G∗3, F2 and F∗2 into Eq (4.21), we obtain the functions F4 and F∗4 as follows
F4=C1e2ζ1+2ζ∗1+C2e2ζ2+2ζ∗2+C3eζ1+2ζ∗1+ζ2+C4e2ζ1+ζ∗1+ζ∗2+C5eζ1+ζ2+ζ∗2+ζ∗1+C6e2ζ1+2ζ∗2+C7eζ1+ζ2+2ζ∗2+C8eζ∗1+ζ∗2+2ζ2+C9e2ζ2+2ζ∗1, | (4.26) |
F∗4=C∗1e2ζ∗1+2ζ1+C∗2e2ζ∗2+2ζ2+C∗3eζ∗1+2ζ1+ζ∗2+C∗4e2ζ∗1+ζ1+ζ2+C∗5eζ∗1+ζ∗2+ζ2+ζ1+C∗6e2ζ∗1+2ζ2+C∗7eζ∗1+ζ∗2+2ζ2+C∗8eζ1+ζ2+2ζ∗2+C∗9e2ζ∗2+2ζ1, | (4.27) |
where
C1=−A1A∗1(k1−k∗1)2−σ(A1+B1+B∗1)4(k1−k∗1)2, C2=−A4A∗4(k2−k∗2)2−σ(A4+B6+B∗6)4(k2−k∗2)2,C3=−A1A∗2(k1−k∗1)2+A1A3(k1−k2)2+A∗1A3(k∗1−k2)2−σ(A1+A3+B∗1+B∗2+B3)(k1+k2−2k∗1)2,C4=−A1A2(k∗1−k∗2)2+A1A∗3(k1−k∗1)2+A∗1A2(k1−k∗2)2−σ(A1+A2+B1+B2+B∗3)(k∗1+k∗2−2k1)2,C5=−A1A4c1+A2A3c2−σc3+c4(k1−k∗1+k2−k∗2)2. |
In C5, c1, c2, c3, c4 are denoted as follows
c1=(k1−k∗1)2−(k1+k2)2+(k1+k∗2)2+(k∗1+k2)2−(k∗1+k∗2)2+(k2−k∗2)2,c2=(k1+k∗1)2−(k1+k2)2+(k1−k∗2)2+(k∗1−k2)2−(k∗1+k∗2)2+(k2+k∗2)2,c3=A1+A2+A3+A4+B3+B∗3+B4+B∗4,c4=A1A∗4(k1−k∗1)2+A∗1A4(k2−k∗2)2+A2A∗2(k1−k∗2)2+A3A∗3(k∗1−k2)2. |
C6=−A2A∗3(k1−k∗2)2−σ(A2+B2+B∗5)4(k1−k∗2)2,C7=−A2A4(k1−k2)2+A2A∗4(k1−k∗2)2+A∗3A4(k2−k∗2)2−σ(A2+A4+B4+B∗5+B∗6)(k1+k2−2k∗2)2,C8=−A∗2A4(k2−k∗2)2+A3A4(k∗1−k∗2)2+A3A∗4(k∗1−k2)2−σ(A3+A4+B∗4+B5+B6)(k∗1+k∗2−2k2)2,C9=−A∗2A3(k∗1−k2)2−σ(A3+B∗2+B5)4(k∗1−k2)2, |
and
C∗1=−A∗1A1(k∗1−k1)2−σ(A∗1+B∗1+B1)4(k∗1−k1)2, C∗2=−A∗4A4(k∗2−k2)2−σ(A∗4+B∗6+B6)4(k∗2−k2)2,C∗3=−A∗1A2(k∗1−k1)2+A∗1A∗3(k∗1−k∗2)2+A1A∗3(k1−k∗2)2−σ(A∗1+A∗3+B1+B2+B∗3)(k∗1+k∗2−2k1)2,C∗4=−A∗1A∗2(k1−k2)2+A∗1A3(k∗1−k1)2+A1A∗2(k∗1−k2)2−σ(A∗1+A∗2+B∗1+B∗2+B3)(k1+k2−2k∗1)2,C∗5=−A∗1A∗4c∗1+A∗2A∗3c∗2−σc∗3+c∗4(k∗1−k1+k∗2−k2)2, |
In C∗5, c∗1, c∗2, c∗3, c∗4 are denoted as follows
c∗1=(k∗1−k1)2−(k∗1+k∗2)2+(k∗1+k2)2+(k1+k∗2)2−(k1+k2)2+(k∗2−k2)2,c∗2=(k1+k∗1)2−(k∗1+k∗2)2+(k∗1−k2)2+(k1−k∗2)2−(k1+k2)2+(k2+k∗2)2,c∗3=A∗1+A∗2+A∗3+A∗4+B∗3+B3+B4+B∗4,c∗4=A∗1A4(k1−k∗1)2+A1A∗4(k2−k∗2)2+A∗2A2(k∗1−k2)2+A3A∗3(k1−k∗2)2. |
C∗6=−A∗2A3(k∗1−k2)2−σ(A∗2+B∗2+B5)4(k∗1−k2)2,C∗7=−A∗2A∗4(k∗1−k∗2)2+A∗2A4(k∗1−k2)2+A3A∗4(k2−k∗2)2−σ(A∗2+A∗4+B∗4+B5+B6)(k∗1+k∗2−2k2)2,C∗8=−A2A∗4(k2−k∗2)2+A∗3A∗4(k1−k2)2+A∗3A4(k1−k∗2)2−σ(A∗3+A∗4+B4+B∗5+B∗6)(k1+k2−2k∗2)2,C∗9=−A2A∗3(k1−k∗2)2−σ(A∗3+B2+B∗5)4(k1−k∗2)2. |
Then, the general nonlocal two-soliton solution of the reverse space-time cmKdV Eq (4.1) is
u(x,t)=G1+G31+F2+F4. | (4.28) |
According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form
u∗(−x,−t)=G∗1+G∗31+F∗2+F∗4. | (4.29) |
The figures of nonlocal two-soliton solutions Eqs (4.28) and (4.29) of the reverse space-time cmKdV Eq (4.1) are given in Figure 8. The results show that focusing and defocusing nonlocal cmKdV equations have different characteristics of solitary wave structure with the same parameters ϵ=1, k1=0.7+0.7i, k2=−0.64−0.8i. The solution u(x,t) and u∗(−x,−t) of focusing cmKdV equations exhibit the periodic oscillations with exponential growth, while the defocusing ones show twisted solitons.
The local cmKdV Eq (1.1) is integrabel, which has the Lax pair as follows
Φx=MΦ=(−iλuσu∗iλ)Φ, | (5.1) |
and
Φt=NΦ=(−4iλ3−2iλσ|u|2+σuxu∗−σuu∗x4λ2u+2iλux+2σu2u∗−uxx4σλ2u∗−2iλσu∗x+2σ2uu∗2−σu∗xx4iλ3+2iλσ|u|2−σuxu∗+σuu∗x)Φ. | (5.2) |
The compatibility condition of the Lax pair, that is zero curvature equation Mt−Nx+[M,N]=0, leads to Eq (1.1). These transformations Eqs (1.2)–(1.4) allow us to derive the Lax pair of the nonlocal equations from those of the local ones. The Lax pair of reverse space cmKdV Eq (1.5) as
ΦS,x=(−iλu−σu∗iλ)Φ, | (5.3) |
and
ΦS,t=(4λ3−2λσ|u|2−iσuxu∗+iσuu∗x4iλ2u−2λux−2iσu2u∗−iuxx−4iσλ2u∗−2λσu∗x+2iσ2uu∗2+iσu∗xx−4λ3+2λσ|u|2+iσuxu∗−iσuu∗x)Φ. | (5.4) |
The Lax pair of reverse time cmKdV Eq (1.6) as
ΦT,x=(λiu−iσu∗−λ)Φ, | (5.5) |
and
ΦT,t=(−4iλ3+2iλσ|u|2+iσuxu∗−iσuu∗x4λ2u+2λux−2σu2u∗+uxx−4σλ2u∗+2λσu∗x+2σ2uu∗2−σu∗xx4iλ3−2iλσ|u|2−iσuxu∗+iσuu∗x)Φ. | (5.6) |
The Lax pair of reverse space-time cmKdV Eq (1.7) as
ΦST,x=(−iλu−σu∗iλ)Φ, | (5.7) |
and
ΦST,t=(−4iλ3+2iλσ|u|2−σuxu∗+σuu∗x4λ2u+2iλux−2σu2u∗−uxx−4σλ2u∗+2iσu∗x+2σ2uu∗2+σu∗xx4iλ3−2iλσ|u|2+σuxu∗−σuu∗x)Φ. | (5.8) |
The transformation relationship between local and nonlocal equations provides an effective method for us to study nonlocal equations. In fact, given the solutions of local equations, the solutions of nonlocal counterparts can be derived from the principle. However, if not, then the solutions of nonlocal equations may be derive desired solutions by other methods.
In this paper, three types of nonlocal cmKdV equation were converted from local cmKdV equation. A variety of exact solutions are derived via constructing an improved Hirota bilinear method. We obtained various kinds of solitary waves by choosing appropriate parameters. The figures of the one- and two-soliton solutions of the reverse space cmKdV equation (see Figures 1 and 3), the reverse time cmKdV equation (see Figures 4–6) and the reverse space-time cmKdV equation(see Figures 7 and 8) shown the difference between defocusing case and focusing case. Furthermore, the Lax integrability of three types of nonlocal cmKdV equations are investigated using variable transformations from local equation. It should be pointed out that through the variable transformations, many integrable nonlocal equations can be converted from local equations. These results obtained in this paper might be useful to comprehend some physical phenomena and inspire some novel physical applications.
This work is supported by the National Natural Science Foundation of China (Nos. 11905013 and 11772063), Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University (QXTCP C202118), the Scientific Research Common Program of Beijing Municipal Commission of Education under Grant (No. KM201911232011).
The authors declare no conflict of interest.
[1] |
M. J. Ablowitz, Z. H. Musslimani, Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett., 110 (2013), 064105. doi: 10.1103/PhysRevLett.110.064105
![]() |
[2] |
C. M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett., 80 (1998), 5243–5246. doi: 10.1103/PhysRevLett.80.5243
![]() |
[3] |
J. J. Fang, C. Q. Dai, Optical solitons of a time-fractional higher-order nonlinear Schrödinger equation, Optik, 209 (2020), 164574. doi: 10.1016/j.ijleo.2020.164574
![]() |
[4] |
K. Hosseini, M. Matinfar, M. Mirzazadeh, Soliton solutions of high-order Schrödinger equation with different laws of nonlinearities, Regul. Chaotic Dyn., 26 (2021), 105–112. doi: 10.1134/S1560354721010068
![]() |
[5] |
K. Hosseini, K. Sadri, M. Mirzazadeh, S. Salahshour, An integrable (2+1)-dimensional nonlinear Schrödinger system and its optical soliton solutions, Optik, 229 (2021), 166247. doi: 10.1016/j.ijleo.2020.166247
![]() |
[6] |
K. Hosseini, K. Sadri, M. Mirzazadeh, Y. M. Chu, A. Ahmadian, B. A. Pansera, S. Salahshour, A high-order nonlinear Schrödinger equation with the weak non-local nonlinearity and its optical solitons, Results Phys., 23 (2021), 104035. doi: 10.1016/j.rinp.2021.104035
![]() |
[7] |
K. Hosseini, S. Salahshour, M. Mirzazadeh, A. Ahmadian, D. Baleanu, A. Khoshrang, The (2+1)-dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions, Eur. Phys. J. Plus, 136 (2021), 206. doi: 10.1140/epjp/s13360-021-01160-1
![]() |
[8] |
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Modern Phys., 71 (1999), 463–512. doi: 10.1103/RevModPhys.71.463
![]() |
[9] |
J. Yang, Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions, Phys. Rev. E, 98 (2018), 042202. doi: 10.1103/PhysRevE.98.042202
![]() |
[10] | X. Deng, S. Y. Lou, D. J. Zhang, Bilinearisation-reduction approach to the nonlocal discrete nonlinear Schrödinger equations, Appl. Math. Comput., 332 (2018), 477–483. |
[11] |
L. Y. Peng, Symmetries and reductions of integrable nonlocal partial differential equations, Symmetry, 11 (2019), 884. doi: 10.3390/sym11070884
![]() |
[12] |
N. V. Priya, M. Senthilvelan, G. Rangarajan, M. Lakshmanan, On symmetry preserving and symmetry broken bright, dark and antidark soliton solutions of nonlocal nonlinear Schrödinger equation, Phys. Lett. A, 383 (2019), 15–26. doi: 10.1016/j.physleta.2018.10.011
![]() |
[13] |
K. Hosseini, S. Salahshour, M. Mirzazadeh, Bright and dark solitons of a weakly nonlocal Schrödinger equation involving the parabolic law nonlinearity, Optik, 227 (2021), 166042. doi: 10.1016/j.ijleo.2020.166042
![]() |
[14] |
B. Ren, J. Lin, Soliton molecules, nonlocal symmetry and CRE method of the KdV equation with higher-order corrections, Physica Scrip., 95(2020), 075202. doi: 10.1088/1402-4896/ab8d02
![]() |
[15] |
Z. X. Xu, K. W. Chow, Breathers and rogue waves for a third order nonlocal partial differential equation by a bilinear transformation, Appl. Math. Lett., 56 (2016), 72–77. doi: 10.1016/j.aml.2015.12.016
![]() |
[16] |
S. Y. Lou, Multi-place physics and multi-place nonlocal systems, Commun. Theor. Phys., 72 (2020), 057001. doi: 10.1088/1572-9494/ab770b
![]() |
[17] |
K. Chen, X. Deng, S. Y. Lou, D. J. Zhang, Solutions of nonlocal equations reduced from the AKNS hierarchy, Stud. Appl. Math., 141 (2018), 113–141. doi: 10.1111/sapm.12215
![]() |
[18] |
J. G. Rao, Y. Cheng, K. Porsezian, D. Mihalache, J. S. He, PT-symmetric nonlocal Davey-Stewartson I equation: soliton solutions with nonzero background, Physica D, 401 (2020), 132180. doi: 10.1016/j.physd.2019.132180
![]() |
[19] |
J. G. Rao, J. S. He, D. Mihalache, Y. Cheng, PT-symmetric nonlocal Davey-Stewartson I equation: General lump-soliton solutions on a background of periodic line waves, Appl. Math. Lett., 104 (2020), 106246. doi: 10.1016/j.aml.2020.106246
![]() |
[20] |
F. J. Yu, R. Fan, Nonstandard bilinearization and interaction phenomenon for PT-symmetric coupled nonlocal nonlinear Schrödinger equations, Appl. Math. Lett., 103 (2020), 106209. doi: 10.1016/j.aml.2020.106209
![]() |
[21] | A. R. Seadawy, R. I. Nuruddeen, K. S. Aboodh, Y. F. Zakariya, On the exponential solutions to three extracts from extended fifth-order KdV equation, J. King Saud Univ. Sci., 32 (2020), 765–769. |
[22] | R. I. Nuruddeen, Multiple soliton solutions for the (3+1) conformable space-time fractional modified Korteweg-de Vries equations, J. Ocean Eng. Sci., 3(2018), 11–18. |
[23] |
C. Park, R. I. Nuruddeen, K.K. Ali, L. Muhammad, M. S. Osman, D. Baleanu, Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg-de Vries equations, Adv. Differ. Equ., 2020 (2020), 627. doi: 10.1186/s13662-020-03087-w
![]() |
[24] |
S. F. Tian, Initial-boundary value problems of the coupled modified Korteweg-de Vries equation on the half-line via the Fokas method, J. Phys. A: Math. Theor., 50 (2017), 395204. doi: 10.1088/1751-8121/aa825b
![]() |
[25] |
S. Y. Lou, F. Huang, Alice-Bob physics: Coherent solutions of nonlocal KdV systems, Sci. Rep., 7 (2017), 869. doi: 10.1038/s41598-017-00844-y
![]() |
[26] |
X. Y. Tang, Z. F. Liang, X. Z. Hao, Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 62. doi: 10.1016/j.cnsns.2017.12.016
![]() |
[27] |
M. J. Ablowitz, Z. H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity, 29 (2016), 915–946. doi: 10.1088/0951-7715/29/3/915
![]() |
[28] | M. J. Ablowitz, Z. H. Musslimani, Integrable nonlocal nonlinear equations, Stud. Appl. Math., 139 (2016), 7–59. |
[29] |
B. Yang, J. Yang, Transformations between nonlocal and local integrable equations, Stud. Appl. Math., 140 (2018), 178–201. doi: 10.1111/sapm.12195
![]() |
[30] | L. Y. Ma, S. F. Shen, Z. N. Zhu, Integrable nonlocal complex mKdV equation: soliton solution and gauge equivalence, arXiv: 1612.06723v1 [nlin.SI] 20 Dec 2016. |
[31] |
L. Li, C. Duan, F. Yu, An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation, Phys. Lett. A, 383 (2019), 1578–1582. doi: 10.1016/j.physleta.2019.02.031
![]() |
[32] |
M. G¨urses, A. Pekcan, Nonlocal modified KdV equations and their soliton solutions by Hirota method, Commun. Nonlinear Sci. Numer. Simulat., 67 (2019), 427–448. doi: 10.1016/j.cnsns.2018.07.013
![]() |
[33] |
F. J. He, E. G. Fan, J. Xu, Long-Time asymptotics for the nonlocal MKdV equation, Commun. Theor. Phys., 71 (2019), 475–488. doi: 10.1088/0253-6102/71/5/475
![]() |
[34] |
G. Zhang, Z. Yan, Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions, Physica D, 402 (2020), 132170. doi: 10.1016/j.physd.2019.132170
![]() |
[35] |
J. L. Ji, Z. N. Zhu, Soliton solutions of an integrable nonlocal modified Korteweg-deVries equation through inverse scattering transform, J. Math. Anal. Appl., 453 (2017), 973–984. doi: 10.1016/j.jmaa.2017.04.042
![]() |
[36] |
J. Yang, Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions, Phys. Rev. E, 98 (2018), 042202. doi: 10.1103/PhysRevE.98.042202
![]() |
[37] |
L. M. Ling, W. X. Ma, Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime modified Korteweg-de Vries hierarchies, Symmetry, 13 (2021), 512. doi: 10.3390/sym13030512
![]() |
[38] |
W. X. Ma, Riemann-Hilbert problems and soliton solutions of nonlocal real reverse-spacetime mKdV equations, J. Math. Anal. Appl., 498 (2021), 124980. doi: 10.1016/j.jmaa.2021.124980
![]() |
[39] | R. Hirota, The Direct Method in Soliton Theory, New York: Cambridge University Press, 2004. |
[40] |
J. Zhuang, Y. Liu, P. Zhuang, Variety interaction solutions comprising lump solitons for the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation, AIMS Math., 6 (2021), 5370–5386. doi: 10.3934/math.2021316
![]() |
1. | Shabir Ahmad, Sayed Saifullah, Arshad Khan, Mustafa Inc, New local and nonlocal soliton solutions of a nonlocal reverse space-time mKdV equation using improved Hirota bilinear method, 2022, 450, 03759601, 128393, 10.1016/j.physleta.2022.128393 | |
2. | Xin-Yi Gao, Yong-Jiang Guo, Wen-Rui Shan, Ocean shallow-water studies on a generalized Boussinesq-Broer-Kaup-Whitham system: Painlevé analysis and similarity reductions, 2023, 169, 09600779, 113214, 10.1016/j.chaos.2023.113214 | |
3. | Emad H. M. Zahran, Ahmet Bekir, New unexpected behavior to the soliton arising from the geophysical Korteweg–de Vries equation, 2022, 36, 0217-9849, 10.1142/S0217984921506235 | |
4. | Shijie Zeng, Yaqing Liu, The Whitham Modulation Solution of the Complex Modified KdV Equation, 2023, 11, 2227-7390, 2810, 10.3390/math11132810 | |
5. | Sarfaraz Ahmed, Aly R. Seadawy, Syed T.R. Rizvi, Ali M. Mubaraki, Homoclinic breathers and soliton propagations for the nonlinear (3+1)-dimensional Geng dynamical equation, 2023, 52, 22113797, 106822, 10.1016/j.rinp.2023.106822 | |
6. | Nikolay A. Kudryashov, Solitons of the complex modified Korteweg–de Vries hierarchy, 2024, 184, 09600779, 115010, 10.1016/j.chaos.2024.115010 | |
7. | Xue-Ke Liu, Xiao-Yong Wen, Zhe Lin, Higher-order regulatable rogue wave and hybrid interaction patterns for a new discrete complex coupled mKdV equation associated with the fourth-order linear spectral problem, 2023, 0924-090X, 10.1007/s11071-023-08627-z | |
8. | Emad H. M. Zahran, Ahmet Bekir, New unexpected variety of solitons arising from spatio-temporal dispersion (1+1)-dimensional Ito-equation, 2024, 38, 0217-9849, 10.1142/S0217984923502585 | |
9. | Karmina K. Ali, Sibel Tarla, Abdullahi Yusuf, Quantum-mechanical properties of long-lived optical pulses in the fourth-order KdV-type hierarchy nonlinear model, 2023, 55, 0306-8919, 10.1007/s11082-023-04817-6 | |
10. | Reem K. Alhefthi, Kalim U. Tariq, Abdul-Majid Wazwaz, Fozia Mehboob, On the nonlinear wave structures and stability analysis for the new generalized stochastic fractional potential-KdV model in dispersive medium, 2024, 56, 1572-817X, 10.1007/s11082-024-06291-0 | |
11. | Qiankun 乾坤 Gong 巩, Hui 惠 Wang 王, Yunhu 云虎 Wang 王, Localized wave solutions and interactions of the (2+1)-dimensional Hirota–Satsuma–Ito equation, 2024, 33, 1674-1056, 040505, 10.1088/1674-1056/ad1f4c | |
12. | Mohammad Safi Ullah, Interaction solution to the (3+1)-D negative-order KdV first structure, 2023, 8, 26668181, 100566, 10.1016/j.padiff.2023.100566 | |
13. | Fazal Badshah, Kalim U. Tariq, Mustafa Inc, Fozia Mehboob, On lump, travelling wave solutions and the stability analysis for the (3+1)-dimensional nonlinear fractional generalized shallow water wave model in fluids, 2024, 56, 0306-8919, 10.1007/s11082-023-05826-1 | |
14. | Ting Zhang, Xiaoyong Wen, Discrete generalized Darboux transformation and rational solutions for the three-field Blaszak-Marciniak lattice equation, 2023, 8, 2473-6988, 15553, 10.3934/math.2023793 | |
15. | Yujun Niu, Qionglin Yuan, Behzad Ghanbari, Zhao Zhang, Yulei Cao, Collision dynamics of high-order localized waves in a novel (3+1)-dimensional integrable Boussinesq model, 2024, 56, 22113797, 107223, 10.1016/j.rinp.2023.107223 | |
16. | Yaru Wang, Yanyan Ge, Yabin Zhang, Exact solutions of the nonlocal (2+1)-dimensional complex modified Korteweg-de Vries Equation, 2024, 0924-090X, 10.1007/s11071-024-10743-3 | |
17. | Hao-Dong Liu, Bo Tian, Xiao-Tian Gao, Hong-Wen Shan, Construction, Lax integrability, bilinearization and multi-soliton solutions of a defocusing/focusing nonlocal extended modified Korteweg-de Vries equation, 2025, 03759601, 130528, 10.1016/j.physleta.2025.130528 | |
18. | Yanyan Ge, Yaru Wang, Interaction and asymptotic analysis of soliton solutions of the (2+1)-dimensional nonlocal complex mKdV, 2025, 0924-090X, 10.1007/s11071-025-11341-7 |