Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

On meromorphic solutions of certain differential-difference equations

  • In this article, we mainly use Nevanlinna theory to investigate some differential-difference equations. Our results about the existence and the forms of solutions for these differential-difference equations extend the previous theorems given by Wang, Xu and Tu [19].

    Citation: Yong Liu, Chaofeng Gao, Shuai Jiang. On meromorphic solutions of certain differential-difference equations[J]. AIMS Mathematics, 2021, 6(9): 10343-10354. doi: 10.3934/math.2021599

    Related Papers:

    [1] Yeyang Jiang, Zhihua Liao, Di Qiu . The existence of entire solutions of some systems of the Fermat type differential-difference equations. AIMS Mathematics, 2022, 7(10): 17685-17698. doi: 10.3934/math.2022974
    [2] Nan Li, Jiachuan Geng, Lianzhong Yang . Some results on transcendental entire solutions to certain nonlinear differential-difference equations. AIMS Mathematics, 2021, 6(8): 8107-8126. doi: 10.3934/math.2021470
    [3] Wenjie Hao, Qingcai Zhang . The growth of entire solutions of certain nonlinear differential-difference equations. AIMS Mathematics, 2022, 7(9): 15904-15916. doi: 10.3934/math.2022870
    [4] Zhuo Wang, Weichuan Lin . The uniqueness of meromorphic function shared values with meromorphic solutions of a class of q-difference equations. AIMS Mathematics, 2024, 9(3): 5501-5522. doi: 10.3934/math.2024267
    [5] Jingjing Li, Zhigang Huang . Radial distributions of Julia sets of difference operators of entire solutions of complex differential equations. AIMS Mathematics, 2022, 7(4): 5133-5145. doi: 10.3934/math.2022286
    [6] Fengrong Zhang, Linlin Wu, Jing Yang, Weiran Lü . On entire solutions of certain type of nonlinear differential equations. AIMS Mathematics, 2020, 5(6): 6124-6134. doi: 10.3934/math.2020393
    [7] Hong Li, Keyu Zhang, Hongyan Xu . Solutions for systems of complex Fermat type partial differential-difference equations with two complex variables. AIMS Mathematics, 2021, 6(11): 11796-11814. doi: 10.3934/math.2021685
    [8] Minghui Zhang, Jianbin Xiao, Mingliang Fang . Entire solutions for several Fermat type differential difference equations. AIMS Mathematics, 2022, 7(7): 11597-11613. doi: 10.3934/math.2022646
    [9] Dan-Gui Yao, Zhi-Bo Huang, Ran-Ran Zhang . Uniqueness for meromorphic solutions of Schwarzian differential equation. AIMS Mathematics, 2021, 6(11): 12619-12631. doi: 10.3934/math.2021727
    [10] Wenju Tang, Keyu Zhang, Hongyan Xu . Results on the solutions of several second order mixed type partial differential difference equations. AIMS Mathematics, 2022, 7(2): 1907-1924. doi: 10.3934/math.2022110
  • In this article, we mainly use Nevanlinna theory to investigate some differential-difference equations. Our results about the existence and the forms of solutions for these differential-difference equations extend the previous theorems given by Wang, Xu and Tu [19].



    We assume that the reader is familiar with the basic notions of Nevanlinna theory (see [4,6,22]). Recently, a number of papers (including [1,2,3,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23]) have focused on solvability and existence of meromorphic solutions of difference equations or differential-difference equations in complex plane. In 2009, Liu [10] obtianed the Fermat type equation l(z)2+[l(z+c)l(z)]2=1 has a nonconstant entire solution of finite order. In 2012, Liu et al. [11] proved that l(z)2+l(z+c)2=1 has a transcendental entire solution of finite order. In 2018, Zhang [23] obtained the difference equations l(z)2+[l(z+c)l(z)]2=R(z) has no finite order transcendental meromorphic solutions with finitely many poles. In 2020, Wang et al. [18] further discussed the existence and the forms of the solutions for some differential-difference equations, they obtained

    Theorem A. Let c be a nonzero constant, R(z) be a nonzero rational function, and α,βC satisfy α2β21. Then the following difference equation of Fermat-type

    l(z)2+[αl(z+c)βl(z)]2=R(z),

    has no finite order transcendental meromorphic solutions with finitely many poles.

    Theorem B. Let c(0), α(0), βC, and P(z), Q(z) be nonzero polynomials satisfying one of two following cases:

    (i) degzP(z)1, degzQ(z)1;

    (ii) P(z), Q(z) are two constants and P2(α2β2)1. Then the following Fermat-type difference equation

    l(z)2+P2(z)[αl(z+c)βl(z)]2=Q(z),

    has no transcendental entire solutions with finite order.

    For further study, we continue to discuss the existence and the forms of solutions for certain differential-difference equations with more general forms than the previous forms by Liu et al. [10,11,18,23] and obtain the following results.

    Theorem 1.1. Let cj(j=1,2,,m) be distinct constants, aC{0}, ϱiC(i=1,2,,m), R(z) be a nonzero rational function, and mi=1ϱi(expaci+expaci)0. Then the following difference equation

    l(z)2+[ϱ1l(z+c1)+ϱ2l(z+c2)++ϱml(z+cm)]2=R(z) (1.1)

    has no finite order transcendental meromorphic solutions with finitely many poles.

    Theorem 1.2. Let cj(j=1,2,,m) be distinct constants, aC{0}, ϱiC(i=1,2,,m), and P(z), Q(z) be nonzero polynomials satisfying one of two following cases:

    (i) degzP(z)1;

    (ii) P is a constant and P2[mi=1ϱiexpacimi=1ϱiexpaci]1. Then the following difference equation

    l(z)2+P(z)2[ϱ1l(z+c1)+ϱ2l(z+c2)++ϱml(z+cm)]2=Q(z) (1.2)

    has no transcendental entire solutions with finite order.

    Theorem 1.3. Let cj(j=1,2,,m) be distinct constants, aC{0}, ϱiC(i=1,2,,m). Let l(z) be a transcendental finite order meromorphic solution of difference-differential equation

    l(z)2+[ϱ1l(z+c1)+ϱ2l(z+c2)++ϱml(z+cm)]2=R(z), (1.3)

    where R(z) is a nonzero rational function. If l(z) has finitely many poles, and mj=1cj2ϱjexpacjmj=1cj2ϱjexpacj0, then R(z) is a nonconstant polynomial with degzR(z)2, and mj=1cjϱjexpacjmj=1cjϱjexpacj=1. Furthermore,

    (i) If R(z) is a nonconstant polynomial with degzR(z)2, and mi=1ϱi0, then we have

    l(z)=s1(z)expaz+b+s2(z)exp(az+b)2,

    where R(z)=(m1+as1(z))(m2as2(z)),a0,bC and a,b,cj,ϱi satisfy i(ϱ1expac1++ϱmexpacm)=a and i(ϱ1expac1++ϱmexpacm)=a, where sj(z)=mjz+nj,mj,njC(j=1,2).

    (ii) If R(z) is a nonzero constant, and mi=1ϱi0, then

    l(z)=n1expaz+b+n2exp(az+b)2,

    where R(z)=a2n1n2,a0,bC.

    Theorem 1.4. Let cj(j=1,2,,m) be distinct constants, aC{0}, ϱiC(i=1,2,,m). Let l(z) be a transcendental meromorphic solution of the following difference-differential equation

    l(z)2+[ϱ1l(z+c1)+ϱ2l(z+c2)++ϱml(z+cm)]2=R(z), (1.4)

    where R(z) is a nonzero rational function.

    (i) If mi=1ϱiexpaci+mi=1ϱiexpaci0, then (1.4) has no finite order transcendental meromorphic solution with finitely many poles.

    (ii) If mj=1icjϱjexpacj2a, mj=1icjϱjexpacj2a, and (1.4) has a finite order transcendental meromorphic solution l(z) with finitely many poles, then R(z) is a constant. Furthermore if mi=1ϱi0, then we have

    l(z)=t1expaz+b+t2exp(az+b)2,

    where a,b,t1,t2,ϱi,cj satisfy mi=1ϱiexpaci+mi=1ϱiexpaci=0, R(z)=a4t1t2, bC.

    The following two lemmas play an important role in the proof of our results.

    Lemma 2.1. ([22]) Suppose that f1,f2,,fn(n2) are meromorphic functions and g1,g2,,gn are entire functions satisfying the following conditions:

    (i) nj=1fjexpgj0;

    (ii) gjgk are not constants for 1j<kn;

    (iii) For 1jn,1h<kn, T(r,fj)=o{T(r,expghgk)}(r,rE), where E is a set of r(0,) with finite linear measure.

    Then fj0(j=1,2,,m).

    Lemma 2.2. ([22]) Let l(z) be a meromorphic function of finite order ρ(l). Write

    l(z)=ckzk+ck+1zk+1+,(ck0),

    near z=0 and let {a1,a2,} and {b1,b2,} be the zeros and poles of l in C{0}, respectively. Then

    l(z)=zkexpQ(z)P1(z)P2(z),

    where P1(z) and P2(z) are the canonical products of l formed with the non-null zeros and poles of l, respectively, and Q(z) is a polynomial of degree ρ(l).

    Suppose that (1.1) has a finite order transcendental meromorphic solution l(z) with finitely many poles. Rewriting (1.1) as follows

    (l(z)+i(ϱ1l(z+c1)+ϱ2l(z+c2)++ϱml(z+cm)))(l(z)i(ϱ1l(z+c1)+ϱ2l(z+c2)++ϱml(z+cm)))=R(z). (3.1)

    Since l(z) has finitely many poles, R(z) is a nonzero rational function, then l(z)+i(ϱ1l(z+c1)+ϱ2l(z+c2)++ϱml(z+cm)) and l(z)i(ϱ1l(z+c1)+ϱ2l(z+c2)++ϱml(z+cm)) both have finitely many poles and zeros. Together Lemma 2.2 with (3.1), we obtain that

    l(z)+i(ϱ1l(z+c1)+ϱ2l(z+c2)++ϱml(z+cm))=R1(z)expp(z), (3.2)

    and

    l(z)i(ϱ1l(z+c1)+ϱ2l(z+c2)++ϱml(z+cm))=R2(z)expp(z), (3.3)

    where R1(z),R2(z) are two nonzero rational functions such that R1(z)R2(z)=R(z), and p(z) is a nonconstant polynomial. (3.2) and (3.3) imply that

    l(z)=R1(z)expp(z)+R2(z)expp(z)2, (3.4)

    and

    ϱ1l(z+c1)+ϱ2l(z+c2)++ϱml(z+cm)=R1(z)expp(z)R2(z)expp(z)2i. (3.5)

    Substituting (3.4) into (3.5), we have

    expp(z)(iϱ1R1(z+c1)expp(z+c1)p(z)+iϱ2R1(z+c2)expp(z+c2)p(z)++iϱmR1(z+cm)expp(z+cm)p(z)R1(z))+expp(z)(iϱ1R2(z+c1)expp(z)p(z+c1)+iϱ2R2(z+c2)expp(z)p(z+c2)++iϱmR2(z+cm)expp(z)p(z+cm)+R2(z))=0. (3.6)

    By Lemma 2.1 and (3.6), we have

    iϱ1R1(z+c1)expp(z+c1)p(z)+iϱ2R1(z+c2)expp(z+c2)p(z)++iϱmR1(z+cm)expp(z+cm)p(z)R1(z)=0, (3.7)

    and

    iϱ1R2(z+c1)expp(z)p(z+c1)+iϱ2R2(z+c2)expp(z)p(z+c2)++iϱmR2(z+cm)expp(z)p(z+cm)+R2(z)=0. (3.8)

    Since R1(z),R2(z) are two nonzero rational functions and that l(z) is of finite order, we obtain that p(z) is a polynomial of degree one. If degzp(z)2, then we obtain that degz[p(z+cj)p(z+ci)]1. Hence, we have T(r,iϱjRj(z+cj))=S(r,expp(z+ci)p(z+cj)), Lemma 2.1 and (3.7) imply that R1(z)0. This is impossible. By the similar method as above, we also have R2(z)0, a contradiction. So we have degzp(z)=1. Set p(z)=az+b,a0,bC. By (3.7) and (3.8), we have

    lim

    and

    \begin{equation*} \begin{array}{l} \mathop {\lim }\limits_{\left| z \right| \to \infty } i({\varrho _1}\frac{{{R_2}(z + {c_1})}}{{{R_2}(z)}}{exp ^{ p(z)- p(z + {c_1})}} + \cdots + {\varrho _m}\frac{{{R_2}(z + {c_m})}}{{{R_2}(z)}}{exp ^{ p(z)- p(z + {c_m})}}) \\ = i({\varrho _1}{exp ^{ - a{c_1}}} + \cdots + {\varrho _m}{exp ^{ - a{c_m}}}) = - 1 . \end{array} \end{equation*}

    Thus, it yields that \sum\limits_{i = 1}^m{{\varrho_i}} ({exp^{a{c_{{i}}}}}+{exp^{{{-}}a{c_{{i}}}}}){\rm{ = 0}} , this is a contradiction with the assumption of Theorem 1.1. Hence, Theorem 1.1 holds.

    If {l}(z) is a transcendental entire solution with finite order of (1.2), then by the similar method as the proof of Theorem 1.1, we have

    \begin{equation} {l}(z) = \dfrac{Q_{1}(z)exp^{p(z)}+Q_{2}(z)exp^{-p(z)}}{2}, \end{equation} (4.1)

    and

    \begin{equation} \varrho_{1}{l}(z+c_{1})+\varrho_{2}{l}(z+c_{2})+\cdots +\varrho_{m}{l}(z+c_{m}) = \dfrac{Q_{1}(z)exp^{p(z)}-Q_{2}(z)exp^{-p(z)}}{2iP(z)}, \end{equation} (4.2)

    where p(z) is a nonconstant polynomial and Q_{1}(z)Q_{2}(z) = Q(z) , Q_{1}(z) , Q_{2}(z) are nonzero polynomials. Together (4.1) with (4.2), we have

    \begin{equation} \begin{array}{l} ex{p^{p(z)}}(i{\varrho _1}P(z){Q_1}(z + {c_1})ex{p^{p(z + {c_1}) - p(z)}} + i{\varrho _2}P(z){Q_1}(z + {c_2})ex{p^{p(z + {c_2}) - p(z)}} \\ + \cdots+ i{\varrho _m}P(z){Q_1}(z + {c_m})ex{p^{p(z + {c_m}) - p(z)}} - {Q_1}(z)) + \\ ex{p^{ - p(z)}}(i{\varrho _1}P(z){Q_2}(z + {c_1})ex{p^{p(z) - p(z + {c_1}) }} + i{\varrho _2}P(z){Q_2}(z + {c_2})ex{p^{ p(z)- p(z + {c_2})}} \\ +\cdots + i{\varrho _m}P(z){Q_2}(z + {c_m})ex{p^{ p(z)- p(z + {c_m})}} + {Q_2}(z)) = 0. \\ \end{array} \end{equation} (4.3)

    By Lemma 2.1 and p(z) is a nonconstant polynomial, we have

    \begin{equation} \begin{array}{l} i{\varrho _1}P(z){Q_1}(z + {c_1})ex{p^{p(z + {c_1}) - p(z)}} + i{\varrho _2}P(z){Q_1}(z + {c_2})ex{p^{p(z + {c_2}) - p(z)}} \\ +\cdots+ i{\varrho _m}P(z){Q_1}(z + {c_m})ex{p^{p(z + {c_m}) - p(z)}} - {Q_1}(z) = 0, \\ \end{array} \\ \end{equation} (4.4)

    and

    \begin{equation} \begin{array}{l} i{\varrho_1}P(z){Q_2}(z+{c_1})ex{p^{p(z)-p(z+{c_1})}} + i{\varrho_2}P(z){Q_2}(z+{c_2})ex{p^{p(z)-p(z+{c_2})}} \\ +\cdots+ i{\varrho_m}P(z){Q_2}(z + {c_m})ex{p^{p(z)-p(z+{c_m})}}+{Q_2}(z) = 0. \\ \end{array} \\ \end{equation} (4.5)

    If deg_{z}p(z)\geq2 , then we have that deg_{z}[p(z+c_{j})-p(z+c_{i})]\geq1 . Hence, we have T(r, i{\varrho _j}P(z){Q_1}(z + {c_j})) = S(r, ex{p^{ p(z + {c_i}) - p(z+c_j)}}) , Lemma 2.1 and (4.4) imply that Q_{1}(z)\equiv0 . A contradiction. By the similar method as above, we also obtain that Q_{2}(z)\equiv0 , this is also impossible. Hence, deg_{z}p(z) = 1 . Let p(z) = az+b, a\neq0, b\in\mathbb{C} . (4.4) and (4.5) imply that

    \begin{equation*} {\begin{array}{*{20}{c}} {i{\varrho _1}P(z){Q_1}(z + {c_1})ex{p^{p(z + {c_1}) - p(z)}} + i{\varrho _2}P(z){Q_1}(z + {c_2})ex{p^{p(z + {c_2}) - p(z)}}} \\ { +\cdots + i{\varrho _m}P(z){Q_1}(z + {c_m})ex{p^{p(z + {c_m}) - p(z)}} = {Q_1}(z)}, \\ \end{array}} \\ \end{equation*}

    and

    \begin{equation*} {\begin{array}{*{20}{c}} {i{\varrho _1}P(z){Q_2}(z + {c_1})ex{p^{ p(z)- p(z + {c_1}) }} + i{\varrho _2}P(z){Q_2}(z + {c_2})ex{p^{ p(z)- p(z + {c_2})}}} \\ { + \cdots + i{\varrho _m}P(z){Q_2}(z + {c_m})ex{p^{ p(z)- p(z + {c_m})}} = - {Q_2}(z)}. \end{array}} \end{equation*}

    By this, we have

    \begin{equation} \begin{array}{l} P{(z)^2}[{\varrho _1}^2Q(z + {c_1}) + {\varrho _2}^2Q(z + {c_1}) + \cdots + {\varrho _m}^2Q(z + {c_m}) + \\ {\varrho _1}{\varrho _2}{Q_1}(z + {c_1}){Q_2}(z + {c_2})ex{p^{a{c_1} - a{c_2}}} + \cdots + \\ {\varrho _1}{\varrho _m}{Q_1}(z + {c_1}){Q_2}(z + {c_m})ex{p^{a{c_1} - a{c_m}}} + {\varrho _2}{\varrho _1}{Q_1}(z + {c_2}){Q_2}(z + {c_1})ex{p^{a{c_2} - a{c_1}}} \\ + \cdots + {\varrho _2}{\varrho _m}{Q_1}(z + {c_2}){Q_2}(z + {c_m})ex{p^{a{c_2} - a{c_m}}} \\ + \cdots + {\varrho _m}{\varrho _{m - 1}}{Q_1}(z + {c_{m - 1}}){Q_2}(z + {c_m})ex{p^{a{c_m} - a{c_{m - 1}}}}] = Q(z) .\\ \end{array} \end{equation} (4.6)

    Set deg_{z}P(z) = p and deg_{z}Q(z) = q , then p\geq0, q\geq0 and p, q\in\mathbb{N_{+}} . Next we divided the following proof into four cases:

    Case 1. p\geq1 and \sum\limits_{i{{ = }}1}^m{{\varrho _i}}{exp^{a{c_{{i}}}}}\sum\limits_{i{{ = }}1}^m{{\varrho_i}}{exp ^{{{-}}a{c_{{i}}}}} = 0 . If q\geq1 , by comparing the order both sides of (4.6), we have 2p+q-1\leqslant q , that is, p\leqslant\dfrac{1}{2} , this is impossible. If q = 0 , that is, Q(z) is a constant. Hence, by (4.6), we have Q(z) = 0 , a contradiction.

    Case 2. p\geq1 and \sum\limits_{i{{ = }}1}^m{{\varrho _i}}{exp^{a{c_{{i}}}}}\sum\limits_{i{{ = }}1}^m{{\varrho_i}}{exp ^{{{-}}a{c_{{i}}}}}\neq0 . If q\geq1 , by comparing the order both sides of (4.6), we have 2p+q = q , that is, p = 0 , a contradiction. If q = 0 , that is, Q(z) is a constant. Hence, by (4.6), we have P(z) is a constant, this is impossible.

    Case 3. p = 0 and \sum\limits_{i{\rm{ = }}1}^m{{\varrho _i}}{exp^{a{c_{{i}}}}}\sum\limits_{i{\rm{ = }}1}^m{{\varrho_i}}{exp ^{{\rm{-}}a{c_{{i}}}}} = 0 . That is, P(z) = K(\neq0) . If q\geq1 , we have q-1 = q , this is impossible. If q = 0 , we have Q(z)\equiv0 . A contradiction.

    Case 4. p = 0 and \sum\limits_{i{\rm{ = }}1}^m{{\varrho _i}}{exp^{a{c_{{i}}}}}\sum\limits_{i{\rm{ = }}1}^m{{\varrho_i}}{exp ^{{\rm{-}}a{c_{{i}}}}}\neq0 . If q\geq1 , set P(z) = K(\neq0) , Q({{z}}) = {b_q}{z^q} + {b_{q - 1}}{z^{q - 1}} + \cdots + {b_0}, {b_q} \ne 0, {b_{q - 1}}, \cdots, {b_0} are constants. By comparing the coefficients of z^{q} both sides of (4.6), we have

    \begin{equation} {K^2}[\sum\limits_{i{\rm{ = }}1}^m{{\varrho _i}}{exp^{a{c_{{i}}}}}\sum\limits_{i{\rm{ = }}1}^m{{\varrho_i}}{exp ^{{\rm{-}}a{c_{{i}}}}}] = 1 . \end{equation} (4.7)

    This is a contradiction with the condition of Theorem 1.2. If q = 0 , then {K^2}[\sum\limits_{i{\rm{ = }}1}^m{{\varrho _i}}{exp^{a{c_{{i}}}}}\sum\limits_{i{\rm{ = }}1}^m{{\varrho_i}}{exp ^{{\rm{-}}a{c_{{i}}}}}] = 1 , this is impossible.

    Hecne, Theorem 1.2 holds.

    Suppose that (1.3) has a finite order transcendental meromorphic solution {l}(z) with finitely many poles. Rewriting (1.3) as follows

    \begin{eqnarray} \begin{array}{l} (l'(z) + i({\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) + \cdots + {\varrho _m}l(z + {c_m})))(l'(z) - \\ i({\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) +\cdots + {\varrho _m}l(z + {c_m}))) = R(z). \\ \end{array} \end{eqnarray} (5.1)

    Since {l}(z) has finitely many poles, and R(z) is a nonzero rational function, then l'(z) + i({\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) + \cdots + {\varrho _m}l(z + {c_m})) and l'(z) - i({\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) + \cdots + {\varrho _m}l(z + {c_m})) both have finitely many poles and zeros. Hence, by Lemma 2.2, (5.1) can be written as

    \begin{equation} {l'(z)+ i({\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) + \cdots + {\varrho _m}l(z + {c_m})) = {R_1}(z)ex{p^{p(z)}}}, \\ \end{equation} (5.2)

    and

    \begin{equation} {l'(z) - i({\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) + \cdots + {\varrho _m}l(z + {c_m})) = {R_2}(z)ex{p^{ - p(z)}}}, \\ \end{equation} (5.3)

    where R_{1}(z), R_{2}(z) are two nonzero rational functions such that R_{1}(z)R_{2}(z) = R(z) , and p(z) is a nonconstant polynomial. (5.2) and (5.3) imply that

    \begin{equation} {l'(z) = \frac{{{R_1}(z)ex{p^{p(z)}}+{R_2(z)}ex{p^{-p(z)}}}}{2}}, \end{equation} (5.4)

    and

    \begin{equation} {{\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) + \cdots + {\varrho _m}l(z + {c_m}) = \frac{{{R_1(z)}ex{p^{p(z)}} - {R_2(z)}ex{p^{ - p(z)}}}}{{2i}}.} \\ \end{equation} (5.5)

    (5.5) implies that

    \begin{equation} {\varrho _1}l'(z+{c_1}) + {\varrho_2}l'(z + {c_2}) + \cdots + {\varrho _m}l'(z + {c_m}) = \frac{{{A_1(z)}ex{p^{p(z)}}-{B_1(z)}ex{p^{- p(z)}}}}{{2i}}, \end{equation} (5.6)

    where A_{1}(z) = R_{1}'+R_{1}(z)p' and B_{1}(z) = R_{2}'-R_{2}(z)p' . Substituting (5.4) into (5.6), we have

    \begin{equation} \begin{array}{l} ex{p^{p(z)}}(i{\varrho _1}{R_1}(z + {c_1})ex{p^{p(z + {c_1}) - p(z)}} + i{\varrho _2}{R_1}(z + {c_2})ex{p^{p(z + {c_2}) - p(z)}} \\ + \cdots + i{\varrho _m}{R_1}(z + {c_m})ex{p^{p(z + {c_m}) - p(z)}} - {A_1}(z)) + \\ ex{p^{ - p(z)}}(i{\varrho _1}{R_2}(z + {c_1})ex{p^{p(z) - p(z + {c_1}) }} + i{\varrho _2}{R_2}(z + {c_2})ex{p^{ p(z)- p(z + {c_2})}} \\ + \cdots+ i{\varrho _m}{R_2}(z + {c_m})ex{p^{ p(z)- p(z + {c_m})}} + {B_1}(z)) = 0.\\ \end{array} \end{equation} (5.7)

    Together Lemma 2.1 with (5.7), we have

    \begin{equation} \begin{array}{l} i{\varrho _1}{R_1}(z + {c_1})ex{p^{p(z + {c_1}) - p(z)}} + i{\varrho _2}{R_1}(z + {c_2})ex{p^{p(z + {c_2}) - p(z)}} \\ + \cdots + i{\varrho _m}{R_1}(z + {c_m})ex{p^{p(z + {c_m}) - p(z)}} - {A_1(z)} = 0 , \\ \end{array} \\ \end{equation} (5.8)

    and

    \begin{equation} \begin{array}{l} i{\varrho _1}{R_2}(z + {c_1})ex{p^{ p(z)- p(z + {c_1}) }} + i{\varrho _2}{R_2}(z + {c_2})ex{p^{ p(z)- p(z + {c_2}) }} \\ + \cdots + i{\varrho _m}{R_2}(z + {c_m})ex{p^{ p(z)- p(z + {c_m})}} + {B_1(z)} = 0. \\ \end{array} \\ \end{equation} (5.9)

    Since R_{1}(z), R_{2}(z) are two nonzero rational functions and l(z) is of finite order, by the similar method as the proof of Theorem 1.1, we have deg_{z}p(z) = 1 . Let p(z) = az+b, a\neq0, b\in\mathbb{C} . Substituting p(z) , A_{1}(z) , B_{1}(z) into (5.8) and (5.9), as z\longrightarrow\infty , we have

    \begin{equation*} \begin{array}{l} \mathop {\lim }\limits_{\left| z \right| \to \infty } i({\varrho _1}\frac{{{R_1}(z + {c_1})}}{{{R_1}(z)}}{exp ^{p(z + {c_1}) - p(z)}} + \cdots + {\varrho _m}\frac{{{R_1}(z + {c_m})}}{{{R_1}(z)}}{exp ^{p(z + {c_m}) - p(z)}}) \\ = i({\varrho _1}{exp ^{a{c_1}}} +\cdots + {\varrho _m}{exp ^{a{c_m}}}) = \frac{{{{R'}_1}(z)}}{{{R_1}(z)}}{\rm{ + }}a = a , \\ \end{array} \end{equation*}

    and

    \begin{equation*} \begin{array}{l} \mathop {\lim }\limits_{\left| z \right| \to \infty } i({\varrho _1}\frac{{{R_2}(z + {c_1})}}{{{R_2}(z)}}{exp ^{ p(z) - p(z + {c_1}) }} + \cdots + {\varrho _m}\frac{{{R_2}(z + {c_m})}}{{{R_2}(z)}}{exp ^{ p(z)- p(z + {c_m})}}) \\ = i({\varrho _1}{exp ^{ - a{c_1}}} + \cdots + {\varrho _m}{exp ^{ - a{c_m}}}) = - \frac{{{{R'}_2}(z)}}{{{R_2}(z)}}{\rm{ + }}a = a. \\ \end{array} \end{equation*}

    That is

    \begin{equation} \begin{array}{l} i({\varrho_1}{exp^{a{c_1}}}+ \cdots +{\varrho_m}{exp^{a{c_m}}}) = a, \\ i({\varrho_1}{exp^{ - a{c_1}}}+ \cdots +{\varrho_m}{exp^{-a{c_m}}}) = a. \\ \end{array} \end{equation} (5.10)

    According to (5.8), (5.9) and (5.10), we have

    \begin{equation} \begin{array}{l} i{\varrho _1}{exp ^{a{c_1}}}({R_1}(z + {c_1}) - {R_1}(z)) + i{\varrho _2}{exp ^{a{c_2}}}({R_1}(z + {c_2}) - {R_1}(z)) \\ + \cdots + i{\varrho _m}{exp ^{a{c_m}}}({R_1}(z + {c_m}) - {R_1}(z)) = {R_1}^\prime (z), \\ \end{array} \end{equation} (5.11)

    and

    \begin{equation} \begin{array}{l} i{\varrho _1}{exp ^{ - a{c_1}}}({R_2}(z + {c_1}) - {R_2}(z)) + i{\varrho _2}{exp ^{ - a{c_2}}}({R_2}(z + {c_2}) - {R_2}(z)) \\ + \cdots + i{\varrho _m}{exp ^{ - a{c_m}}}({R_2}(z + {c_m}) - {R_2}(z)) = - {R_2}^\prime (z). \\ \end{array} \end{equation} (5.12)

    If R_{1}(z), R_{2}(z) are two nonzero constants, then (5.11) and (5.12) hold and R_{1}(z)R_{2}(z) = R(z) is a constant.

    We next consider the case that R_{1}(z), R_{2}(z) are two nonzero rational functions. If R_1(z) has a pole of multiplicity v at z_0 , by (5.11), we know that there exists at least on index l_1\in \{1, 2, \cdots, m\} such that z_0+c_{l_1} is a pole of R_1(z) of multiplicity v+1 , following the above step, we know R_1(z) has a sequence of poles

    \{\tau_n = z_0+c_{l_1}+\cdots+c_{l_n}:n = 1, 2, \cdots\}.

    Hence, we have \lambda(\frac{1}{R_1(z)})\geq 1 , this is impossible. So R_1(z) is a polynomial. Using the same method as above, we know that R_2(z) is also a polynomial. If R_i(z) is a nonconstant polynomial with deg_{z}R_i(z)\geq2 . Let R_i({z}) = {a_n}{z^n} + {a_{n - 1}}{z^{n - 1}} +\cdots + {a_0} , then

    \begin{equation} {{R'}_i}(z) = n{a_n}{z^{n-1}} + (n-1){a_{n-1}}{z^{n-2}}+\cdots, \\ \end{equation} (5.13)
    \begin{equation} R_{i}(z+c_{m})-R_{i}(z) = n{a_n}{c_m}{z^{n-1}} + ({a_n}C_n^2c_m^2 +(n-1){a_{n-1}}{c_m}){z^{n-2}} +\cdots, \\ \end{equation} (5.14)

    where i = 1, 2 . Substituting (5.13) and (5.14) into (5.11) and (5.12), comparing the coefficients of z^{n - 1} , z^{n- 2} , we have \sum\limits_{j = 1}^m {i{c_j}} {\varrho _j}{exp ^{a{c_j}}} = 1 , \sum\limits_{j = 1}^m {c_j}^2 {\varrho _j}{exp ^{a{c_j}}} = 0 and \sum\limits_{j = 1}^m {i{c_j}} {\varrho _j}{exp ^{ - a{c_j}}} = {\rm{ - }}1 , \sum\limits_{j = 1}^m {c_j}^2 {\varrho _j}{exp ^{{\rm{ - }}a{c_j}}} = 0 , a contradiction with \sum\limits_{j = 1}^m {{c}_j}^2 {\varrho _j}{exp ^{a{c_j}}}\sum\limits_{j = 1}^m {{c}_j}^2{\varrho _j}{exp ^{{\rm{ - }}a{c_j}}} \neq0 . Hence, deg_{z}R_i(z)\leq 1 . So deg_{z}R(z) = deg_{z}R_1(z)R_2(z)\leq 2 .

    {(i)} If R(z) is a nonconstant polynomial with deg_{z}R(z)\leqslant2 , then by (5.4), we have

    \begin{equation} l(z) = \frac{{{s_1}(z){{exp }^{az + b}} + {s_2}(z){{exp }^{ - (az + b)}}}}{2}+\vartheta, \end{equation} (5.15)

    where s_{j}(z) = m_{j}z+n_{j}, m_{j}, n_{j}\in\mathbb{C}, (j = 1, 2) and \vartheta\in\mathbb{C} ;

    Case 1. If deg_{z}R(z) = 2 , then m_{j}\neq0, j = 1, 2 . If \sum\limits_{i = 1}^m{{\varrho_i}}\ne0 , substituting (5.15) into (5.5), we have \vartheta\equiv0 , R(z) = (m_{1}+as_{1}(z))(m_{2}-as_{2}(z)) . Hence, we have

    \begin{equation*} l(z) = \frac{{{s_1}(z){{exp}^{az + b}}+{s_2}(z){{exp}^{-(az + b)}}}}{2}, \end{equation*}

    R(z) = (m_{1}+as_{1}(z))(m_{2}-as_{2}(z)), a\neq0, b\in\mathbb{C} .

    Case 2. If deg_{z}R(z) = 1 , then one of m_{1}, m_{2} is zero, we can assume that m_{1} = 0 . Substituting (5.15) into (5.5), we have R_{1}(z) is a constant and R_{2}(z) is a polynomial of degree one. Using the same method as case 1, we have \vartheta\equiv0 . Hence, we obtain that

    \begin{equation*} l(z) = \frac{{{s_1}(z){{exp}^{az + b}}+{s_2}(z){{exp}^{-(az + b)}}}}{2}, \end{equation*}

    R(z) = (m_{1}+as_{1}(z))(m_{2}-as_{2}(z)), a\neq0, b\in\mathbb{C} .

    {(ii)} If R(z) is a nonzero constant, by (5.4), we have

    \begin{equation} l(z) = \frac{{{n_1}{{exp }^{az + b}} + {n_2}{{exp }^{ - (az + b)}}}}{2}+d, \end{equation} (5.16)

    where n_{1}, n_{2}\in\mathbb{C} and d\in\mathbb{C} . Substituting (5.16) into (5.5), we have d = 0 , R(z) = -a^{2}n_1 n_2 . Hence, Theorem 1.3 holds.

    Suppose that (1.4) has a finite order transcendental meromorphic solution {l}(z) with finitely many poles. Rewriting (1.4) as follows

    \begin{eqnarray} \begin{array}{l} (l''(z) + i({\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) +\cdots + {\varrho _m}l(z + {c_m}))) (l''(z)- \\ i({\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) +\cdots + {\varrho _m}l(z + {c_m}))) = R(z). \end{array} \end{eqnarray} (6.1)

    Since {l}(z) has finitely many poles, R(z) is a nonzero rational function, then l''(z) + i({\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) + \cdots+ {\varrho _m}l(z + {c_m})) and l''(z) - i({\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) + \cdots + {\varrho _m}l(z + {c_m})) both have finitely many poles and zeros. Hence, we can rewrite (6.1) as follows

    \begin{equation} {l''(z) + i({\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) + \cdots + {\varrho _m}l(z + {c_m})) = {R_1(z)}ex{p^{p(z)}}}, \end{equation} (6.2)

    and

    \begin{equation} {l''(z) - i({\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) + \cdots + {\varrho _m}l(z + {c_m})) = {R_2(z)}ex{p^{ - p(z)}}, } \end{equation} (6.3)

    where R_{1}(z), R_{2}(z) are two nonzero rational functions such that R_{1}(z)R_{2}(z) = R(z) , and p(z) is a nonconstant polynomial. By (6.2) and (6.3), we obtain

    \begin{equation} {l''(z) = \frac{{{R_1(z)}ex{p^{p(z)}} + {R_2}(z)ex{p^{ - p(z)}}}}{2}}, \\ \end{equation} (6.4)

    and

    \begin{equation} {{\varrho _1}l(z + {c_1}) + {\varrho _2}l(z + {c_2}) + \cdots + {\varrho _m}l(z + {c_m}) = \frac{{{R_1}(z)ex{p^{p(z)}} - {R_2}(z)ex{p^{ - p(z)}}}}{{2i}}}. \\ \end{equation} (6.5)

    (6.5) implies that

    \begin{equation} {\varrho _1}l''(z + {c_1}) + {\varrho _2}l''(z + {c_2}) + \cdots + {\varrho _m}l''(z + {c_m}) = \frac{{{A_2(z)}ex{p^{p(z)}} - {B_2(z)}ex{p^{ - p(z)}}}}{{2i}}, \end{equation} (6.6)

    where A_{2}(z) = A_{1}'+A_{1}(z)p' and B_{2}(z) = B_{1}'-B_{1}(z)p' . Together (6.4) with (6.6), we obtain that

    \begin{equation} \begin{array}{l} ex{p^{p(z)}}(i{\varrho _1}{R_1}(z + {c_1})ex{p^{p(z + {c_1}) - p(z)}} + i{\varrho _2}{R_1}(z + {c_2})ex{p^{p(z + {c_2}) - p(z)}} \\ + \cdots + i{\varrho _m}{R_1}(z + {c_m})ex{p^{p(z + {c_m}) - p(z)}} - {A_2}(z)) + \\ ex{p^{ - p(z)}}(i{\varrho _1}{R_2}(z + {c_1})ex{p^{ p(z)- p(z + {c_1}) }} + i{\varrho _2}{R_2}(z + {c_2})ex{p^{ p(z)- p(z + {c_2})}} \\ + \cdots + i{\varrho _m}{R_2}(z + {c_m})ex{p^{ p(z)- p(z + {c_m}) }} + {B_2}(z)) = 0 .\\ \end{array} \end{equation} (6.7)

    Lemma 2.1 and (6.7) imply that

    \begin{equation} \begin{array}{l} i{\varrho _1}{R_1}(z + {c_1})ex{p^{p(z + {c_1}) - p(z)}} + i{\varrho _2}{R_1}(z + {c_2})ex{p^{p(z + {c_2}) - p(z)}} \\ + \cdots + i{\varrho _m}{R_1}(z + {c_m})ex{p^{p(z + {c_m}) - p(z)}} - {A_2(z)} = 0 , \\ \end{array} \\ \end{equation} (6.8)

    and

    \begin{equation} \begin{array}{l} i\varrho_{1}R_{2}(z + c_{1})exp^{p(z)-p(z+c_{1})}+i\varrho_{2}R_{2}(z+c_{2})exp^{p(z)-p(z+c_{2})} \\ + \cdots +i\varrho_{m}R_{2}(z+c_{m})exp^{p(z)-p(z + {c_m})}+{B_2(z)} = 0. \\ \end{array} \\ \end{equation} (6.9)

    Since R_{1}(z), R_{2}(z) are two nonzero rational functions and {l(z)} is of finite order, using the similar method as the proof of Theorem 1.1, we know that p(z) is a polynomial of degree one. Let p(z) = az+b, a\neq0, b\in\mathbb{C} . Substituting p(z), A_{2}(z), B_{2}(z) into (6.8) and (6.9), and as z\longrightarrow\infty , we have

    \begin{equation*} \begin{array}{l} \mathop {\lim }\limits_{\left| z \right| \to \infty } i({\varrho _1}\frac{{{R_1}(z + {c_1})}}{{{R_1}(z)}}{exp ^{p(z + {c_1}) - p(z)}} + \cdots + {\varrho _m}\frac{{{R_1}(z + {c_m})}}{{{R_1}(z)}}{exp ^{p(z + {c_m}) - p(z)}}) \\ = i({\varrho _1}{exp ^{a{c_1}}} + \cdots + {\varrho _m}{exp ^{a{c_m}}}) = \frac{{{A_1}^\prime (z)}}{{{R_1}(z)}}{\rm{ + }}{a^2} = {a^2}, \\ \end{array} \end{equation*}

    and

    \begin{equation*} \begin{array}{l} \mathop {\lim }\limits_{\left| z \right| \to \infty } i({\varrho _1}\frac{{{R_2}(z + {c_1})}}{{{R_2}(z)}}{exp ^{ p(z)- p(z + {c_1})}} + \cdots + {\varrho _m}\frac{{{R_2}(z + {c_m})}}{{{R_2}(z)}}{exp ^{ p(z)- p(z + {c_m})}}) \\ = i({\varrho _1}{exp ^{ - a{c_1}}} + \cdots + {\varrho _m}{exp ^{ - a{c_m}}}) = - \frac{{{B_1}^\prime (z)}}{{{R_2}(z)}} - {a^2} = - {a^2}, \\ \end{array} \end{equation*}

    that is

    \begin{equation} \begin{array}{l} i({\varrho _1}{exp ^{a{c_1}}} + \cdots + {\varrho _m}{exp ^{a{c_m}}}) = {a^2}, \\ i({\varrho _1}{exp ^{ - a{c_1}}} +\cdots + {\varrho _m}{exp ^{ - a{c_m}}}) = - {a^2}. \\ \end{array} \end{equation} (6.10)

    So, we have \sum\limits_{i = 1}^m{{\varrho_i}}{exp^{a{c_{{i}}}}}+\sum\limits_{i = 1}^m{{\varrho_i}}{exp^{{\rm{-}}a{c_{{i}}}}} = 0 .

    (i) If \sum\limits_{i = 1}^m{{\varrho_i}}{exp^{a{c_{{i}}}}}+\sum\limits_{i = 1}^m{{\varrho_i}}{exp^{{\rm{-}}a{c_{{i}}}}}\neq 0 , this is a contradiction with \sum\limits_{i = 1}^m{{\varrho_i}}{exp^{a{c_{{i}}}}}+\sum\limits_{i = 1}^m{{\varrho_i}}{exp^{{\rm{-}}a{c_{{i}}}}} = 0 . Hence, Theorem 1.4 (i) holds.

    (ii) If \sum\limits_{j = 1}^m {i{c_j}} {\varrho _j}{exp ^{a{c_j}}} \neq 2a and \sum\limits_{j = 1}^m {i{c_j}} {\varrho _j}{exp ^{ - a{c_j}}} \neq 2a . By (6.8)–(6.10), we have

    \begin{equation} {\begin{array}{*{20}{c}} {i{\varrho _1}ex{p^{{\rm{a}}{c_1}}}({R_1}(z + {c_1}) - {R_1}(z)) + i{\varrho _2}ex{p^{{\rm{a}}{c_2}}}({R_1}(z + {c_2}) - {R_1}(z))} \\ { +\cdots + i{\varrho _m}ex{p^{a{c_m}}}({R_1}(z + {c_m}) - {R_1}(z)) = {R_1}''(z) + 2a{R_1}^\prime (z)}, \end{array}} \end{equation} (6.11)

    and

    \begin{equation} {\begin{array}{*{20}{c}} {i{\varrho _1}ex{p^{ - a{c_1}}}({R_2}(z + {c_1}) - {R_2}(z)) + i{\varrho _2}ex{p^{ - a{c_2}}}({R_2}(z + {c_2}) - {R_2}(z))} \\ { + \cdots + i{\varrho _m}ex{p^{ - a{c_m}}}({R_2}(z + {c_m}) - {R_2}(z)) = - {R_2}''(z) + 2a{R_2}^\prime (z)}. \\ \end{array}} \\ \end{equation} (6.12)

    If R_{1}(z), R_{2}(z) are two nonzero rational functions, using the similar method as the proof of Theorem 1.3, we know that R_i(z) is a polynomial. If \deg_z R_i(z)\geq 2 . Let R_i({z}) = {a_n}{z^n} + {a_{n - 1}}{z^{n - 1}} + \cdots + {a_0} , then

    \begin{equation} \begin{array}{l} {{R'}_i}(z) = n{a_n}{z^{n-1}} + (n-1){a_{n-1}}{z^{n-2}}+\cdots, \\ {{R''}_i}(z) = n(n-1){a_n}{z^{n-2}} + (n-1)(n-2){a_{n-1}}{z^{n-3}}+\cdots, \\ R_{i}(z+c_{m})-R_{i}(z) = n{a_n}{c_m}{z^{n-1}} + ({a_n}C_n^2c_m^2 +(n-1){a_{n-1}}{c_m}){z^{n-2}}+\\ ({a_n}C_n^3c_m^3+{a_{n-1}}C_{n-1}^2c_m^2+(n-2){a_{n- 2}}c_m^{}){z^{n - 3}}+\cdots, \\ \end{array} \end{equation} (6.13)

    where i = 1, 2 . Substituting (6.13) into (6.11) and (6.12), comparing the coefficients of z^{n-1} , z^{n- 2} , we have \sum\limits_{j = 1}^m {i{c_j}} {\varrho _j}{exp ^{a{c_j}}} = 2a , \sum\limits_{j = 1}^m {c_j}^2 {\varrho _j}{exp ^{a{c_j}}} = 2 and \sum\limits_{j = 1}^m{i{c_j}}{\varrho_j}{exp^{-a{c_j}}} = 2a , \sum\limits_{j = 1}^m{c_j}^2{\varrho_j}exp^{-ac_{j}} = -2 , a contradiction. Hence, \deg_z R_i(z) \leq 1 .

    If \deg_z R_i(z) = 1 , then (6.11) and (6.12) imply that \sum\limits_{j = 1}^m {i{c_j}} {\varrho _j}{exp ^{a{c_j}}} = 2a and \sum\limits_{j = 1}^m {i{c_j}} {\varrho _j}{exp ^{ - a{c_j}}} = 2a , a contradiction. Hence, R_{1}(z) , R_{2}(z) are two nonzero constants, R(z) = R_{1}(z)R_{2}(z) is a constant. By (6.5), we have

    \begin{equation*} l(z) = \frac{{{t_1}{{exp }^{az + b}} + {t_2}{{exp }^{ - (az + b)}}}}{2}+P(z), \end{equation*}

    where a\neq0 , b\in\mathbb{C} , t_{1} , t_{2}\in\mathbb{C}\setminus \{0\} and P(z) is a polynomial of degree one. Since \sum\limits_{i = 1}^m{{\varrho_i}}\neq 0 , then by (6.5), we have P(z)\equiv0 . So, we have

    \begin{equation} l(z) = \frac{{{t_1}{{exp }^{az + b}} + {t_2}{{exp }^{ - (az + b)}}}}{2}, \end{equation} (6.14)

    where \sum\limits_{i = 1}^m{{\varrho_i}}{exp^{a{c_{{i}}}}}+\sum\limits_{i = 1}^m{{\varrho_i}}{exp^{{\rm{-}}a{c_{{i}}}}} = 0 , b\in\mathbb{C} , R(z) = a^{4}t_{1}t_{2} . Hence, Theorem 1.4 holds.

    We thank the referee(s) for reading the manuscript very carefully and making a number of valuable and kind comments which improved the presentation. The work was supported by the NNSF of China (No.10771121, 11401387), the NSF of Zhejiang Province, China (No. LQ14A010007), the NSFC Tianyuan Mathematics Youth Fund (No. 11226094), the NSF of Shandong Province, China (No. ZR2012AQ020 and No. ZR2010AM030) and the Fund of Doctoral Program Research of Shaoxing College of Art and Science (20135018).

    The authors declare that none of the authors have any competing interests in the manuscript.



    [1] G. G. Gundersen, J. Heittokangas, I. Laine, J. Rieppo, D. Yang, Meromorphic solutions of generalized Schröder equations, Aequat. Math., 63 (2002), 110–135. doi: 10.1007/s00010-002-8010-z
    [2] R. G. Halburd, R. Korhonen, Finite-order meromorphic solutions and the discrete Painlev\acute{e} equations, Proc. London. Math. Soc., 94 (2007), 443–474. doi: 10.1112/plms/pdl012
    [3] R. G. Halburd, R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31 (2006), 463–478.
    [4] W. K. Hayman, Meromorphic solutions, Oxford: The Clarendon Press, 1964.
    [5] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, K. Tohge, Complex difference equations of Malmquist type, Comput. Methods. Funct. Theory, 1 (2001), 27–39. doi: 10.1007/BF03320974
    [6] I. Laine, Nevanlinna theory and complex differential equations, Berlin: Walter de Gruyter, 1993.
    [7] Z. Latreuch, On the existence of entire solutions of certain class of nonlinear difference equations, Mediterr. J. Math., 14 (2017), 115. doi: 10.1007/s00009-017-0914-x
    [8] H. C. Li, On the existence of differential-difference equations, Math. Method. Appl. Sci., 39 (2016), 144–151. doi: 10.1002/mma.3465
    [9] K. Liu, T. B. Cao, X. L. Liu, The properties of differential-difference polynomials, Ukr. Math. J., 69 (2017), 85–100. doi: 10.1007/s11253-017-1348-0
    [10] K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 359 (2009), 384–393. doi: 10.1016/j.jmaa.2009.05.061
    [11] K. Liu, T. B. Cao, H. Z. Cao, Entire solutions of Fermat-type differential-difference equations, Arch. Math., 99 (2012), 147–155. doi: 10.1007/s00013-012-0408-9
    [12] K. Liu, L. Z. Yang, On of some differential-difference equations, Comput. Methods. Funct. Theory., 13 (2013), 433–447. doi: 10.1007/s40315-013-0030-2
    [13] K. Liu, T. B. Cao, Entire solutions of Fermat-type differential-difference equations, Electron. J. Differ. Eq., 2013 (2013), 1–10. doi: 10.1186/1687-1847-2013-1
    [14] K. Liu, C. J. Song, Meromorphic solutions of complex differential-difference equations, Results Math., 72 (2017), 1759–1771. doi: 10.1007/s00025-017-0736-y
    [15] X. G. Qi, L. Z. Yang, Properties of meromorphic solutions to certain differential-difference equations, Electron. J. Differ. Eq., 2013 (2013), 1–9. doi: 10.1186/1687-1847-2013-1
    [16] J. Rieppo, On a class of complex functional equations, Ann. Acad. Sci. Fenn. Math., 32 (2007), 151–170.
    [17] A. J. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. Math., 141 (1995), 443–551. doi: 10.2307/2118559
    [18] H. Wang, H. Y. Xu, J. Tu, The existence and forms of solutions for some Fermat-type differential-difference equations, AIMS Mathematics, 5 (2020), 685–700. doi: 10.3934/math.2020046
    [19] H. Y. Xu, S. Y. Liu, Q. P. Li, Entire solutions of several systems of nonlinear difference and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl., 483 (2020), 123641. doi: 10.1016/j.jmaa.2019.123641
    [20] H. Y. Xu, S. Y. Liu, Q. P. Li, The existence and growth of solutions for several systems of complex nonlinear difference equations, Mediterr. J. Math., 16 (2019), 8. doi: 10.1007/s00009-018-1296-4
    [21] H. Y. Xu, J. Tu, Growth of solutions to systems of q-difference differential equations, Electron. J. Differ. Eq., 2016 (2016), 1–14. doi: 10.1186/s13662-015-0739-5
    [22] C. C. Yang, H. X. Yi, Uniqueness theroy of meromorphic functions, Dordrecht: Kluwer Academic Publishers, 2003.
    [23] J. Zhang, On some spcial difference equations of Malmquist type, Bull. Korean Math. Soc., 55 (2018), 51–61.
  • This article has been cited by:

    1. Guowei Zhang, The exact transcendental entire solutions of complex equations with three quadratic terms, 2023, 8, 2473-6988, 27414, 10.3934/math.20231403
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2827) PDF downloads(180) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog