Loading [MathJax]/jax/output/SVG/jax.js
Research article

Some theorems in partial metric space using auxiliary functions

  • Received: 10 January 2021 Accepted: 15 April 2021 Published: 21 April 2021
  • MSC : 47H10, 54H25

  • In the present manuscript, we establish some theorems for the existence and uniqueness of a fixed point in the framework of partial metric spaces using auxiliary functions. Our results generalize some existing results in the literature. To illustrate our results some examples are provided.

    Citation: Deepak Kumar, Sadia Sadat, Jung Rye Lee, Choonkil Park. Some theorems in partial metric space using auxiliary functions[J]. AIMS Mathematics, 2021, 6(7): 6734-6748. doi: 10.3934/math.2021396

    Related Papers:

    [1] Nurcan Bilgili Gungor . Some fixed point results via auxiliary functions on orthogonal metric spaces and application to homotopy. AIMS Mathematics, 2022, 7(8): 14861-14874. doi: 10.3934/math.2022815
    [2] Xun Ge, Songlin Yang . Some fixed point results on generalized metric spaces. AIMS Mathematics, 2021, 6(2): 1769-1780. doi: 10.3934/math.2021106
    [3] Faruk Sk, Faizan Ahmad Khan, Qamrul Haq Khan, Aftab Alam . Relation-preserving generalized nonlinear contractions and related fixed point theorems. AIMS Mathematics, 2022, 7(4): 6634-6649. doi: 10.3934/math.2022370
    [4] Faruk Sk, Asik Hossain, Qamrul Haq Khan . Relation-theoretic metrical coincidence theorems under weak C-contractions and K-contractions. AIMS Mathematics, 2021, 6(12): 13072-13091. doi: 10.3934/math.2021756
    [5] I. Eroǧlu, E. Güner, H. Aygün, O. Valero . A fixed point principle in ordered metric spaces and applications to rational type contractions. AIMS Mathematics, 2022, 7(7): 13573-13594. doi: 10.3934/math.2022750
    [6] Müzeyyen Sangurlu Sezen . Interpolative best proximity point results via $ \mathbf{\gamma } $-contraction with applications. AIMS Mathematics, 2025, 10(1): 1350-1366. doi: 10.3934/math.2025062
    [7] Vishal Gupta, Gerald Jungck, Naveen Mani . Some novel fixed point theorems in partially ordered metric spaces. AIMS Mathematics, 2020, 5(5): 4444-4452. doi: 10.3934/math.2020284
    [8] Abdolsattar Gholidahneh, Shaban Sedghi, Ozgur Ege, Zoran D. Mitrovic, Manuel de la Sen . The Meir-Keeler type contractions in extended modular $ b $-metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1781-1799. doi: 10.3934/math.2021107
    [9] Farhan Khan, Muhammad Sarwar, Arshad Khan, Muhammad Azeem, Hassen Aydi, Aiman Mukheimer . Some generalized fixed point results via a $ \tau $-distance and applications. AIMS Mathematics, 2022, 7(1): 1346-1365. doi: 10.3934/math.2022080
    [10] Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial $b$-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
  • In the present manuscript, we establish some theorems for the existence and uniqueness of a fixed point in the framework of partial metric spaces using auxiliary functions. Our results generalize some existing results in the literature. To illustrate our results some examples are provided.



    Fixed point theory is the most dynamic area of research, with numerous applications both in pure and applied mathematics. The formal theoretic approach of fixed point was originated from the work of Picard. However, it was the polish mathematician Banach [5] who underlined the idea into the abstract framework and provided a constructive tool called Banach construction principle to establish the fixed point of a mapping in complete metric space. Later, many authors attempted to generalize the notion of metric space such as quasimetric space, semimetric spaces etc. In this paper, we consider another generalization of a metric space, so called partial metric space which is a generalization of normal metric space portrayed in 1906 by Fréchet. This notion was introduced by Matthews [26]. The failure of a metric functions in computer science inspired him to introduced the concept of partial metrics. After introducing partial metric functions, Matthews [27] established the partial metric contraction theorem, this makes the partial metric function relevant in fixed point theory. In fact, partial metrics are more adaptable having broader topological properties than that of metrics and create partial orders. Heckmann [16] introduced the concept of weak partial metric function and established some fixed point results. Oltra and Valero [28] generalized the Matthews results in the sense of O'Neil in complete partial metric space. Abdeljawad et al. [1] considered a general form of the weak ϕ-contraction and established some common fixed point results. Karapinar [17] introduced generalized Seghal contraction and obtained a unique common fixed point for a pair of self mappings in complete partial metric space. Karapinar [18] generalized Cristi-Kirk's fixed point theorems using the concept of lower semi-continuous maps. Also, he proved some fixed point theorems in compact partial metric spaces. Karapinar and Erhan [24] established orbitally continuous operator and gave fixed point theorems. Chandok et al. [12] established some results for the existence and uniqueness of fixed point for a certain rational type contraction in partial metric space. Pant et al. [29] presented certain fixed point results for single and multivalued mappings in partial metric spaces. The results presented by Pant et al. [29] cannot be obtained from the corresponding results in metric space. Karapinar et al. [25] introduced rational type contraction and presented new results in partial metric space. To illustrate the usability of the results they provided the supportive example. Aydi et al. [2] established results on fixed point via a control function. Batsari and Kumam [6] established the existence, and uniqueness of globally stable fixed point of terminating mappings in partial metric space with some application in the space of probability density function. Later, many important results in partial metric space were established as an improvement and generalization of the existing results in the literature (see [7,8,9,10,11,13,15,22,27,30,31] and the references cited therein).

    Furthermore, another significant area of fixed point theory was brought in light by Karapinar [20], who revisited the well-known fixed point theorem of Kannan under the aspect of interpolation and proposed a new Kannan type contraction to maximize the rate of convergence. Gaba and Karapinar [14] proposed a refinement in the interpolative approach in fixed point theory and gave fixed points and common fixed points for Kannan type contractions. One may have more results in partial metric spaces by using the interpolative theory (see [1,3,4,14,19,21,23] and the references cited therein).

    In this manuscript, we establish some theorems for the existence and uniqueness of a fixed point in the framework of partial metric spaces using auxiliary functions. Our results generalize some existing results in the literature. To illustrate our results some examples are provided.

    In the sequel we recall the notion of a partial metric space and some of its properties which will be useful in the main section to establish few results.

    Definition 1.1. [26] Let X be a nonempty set. A function p:X×X[0,+) is called a partial metric space on X if the following hold:

    (i)p(ρ,σ)0 for all ρ,σX and p(ρ,ρ)=p(σ,σ)=p(ρ,σ) if and only if ρ=σ;

    (ii)p(ρ,ρ)p(ρ,σ) for all ρ,σX;

    (iii)p(ρ,σ)=p(σ,ρ) for all ρ,σX;

    (iv)p(ρ,σ)p(ρ,ξ)+p(ξ,σ)p(ξ,ξ) for all ρ,σ,ξX.

    Then the pair (X,p) is called a partial metric space.

    It is clear that, if p(ρ,σ)=0, then ρ=σ. But if ρ=σ, p(ρ,σ) may not be 0.

    Each partial metric p on X generates a T0 topology τp on X which has as a base the family of open p-balls {Bp(ρ,ϵ):ρX,ϵ>0}, where Bp(ρ,ϵ)={σX:p(ρ,σ)<p(ρ,ρ)+ϵ} for all ρX and ϵ>0.

    Similarly, closed p-ball is defined as Bp[ρ,ϵ]={σX:p(ρ,σ)p(ρ,ρ)+ϵ}.

    Remark 1.2. [12] If p is a partial metric on X, then dp:X×X[0,+) defined by

    dp(ρ,σ)=2p(ρ,σ)p(ρ,ρ)p(σ,σ)

    is a usual metric on X.

    Example 1.3. [12] Let I denote the set of all intervals [a,b] for any real numbers ab. Let p:I×I[0,) be a function such that p([a,b],[c,d])=max{b,d}min{a,c}. Then (I,p) is a partial metric space.

    Example 1.4. [12] Let X=R and p(ρ,σ)=emax{ρ,σ} for all ρ,σX. Then (X,p) is a partial metric space.

    Definition 1.5. [12]

    (i) A sequence {ρn} in a partial metric space (X, p) converges to ρX if and only if

    limnp(ρn,ρ)=p(ρ,ρ).

    (ii) A sequence {ρn} in a partial metric space (X, p) is called a Cauchy sequence if and only if

    limm,np(ρn,ρm)

    exists and is finite.

    (iii) A partial metric space (X,p) is said to be complete if every Cauchy sequence {ρn}X converges to a point ρX such that

    limnp(ρn,ρm)=p(ρ,ρ).

    The following lemmas in the literature will be useful in the proofs of the main results.

    Lemma 1.6. [12]

    (i) A sequence {ρn} is Cauchy in a partial metric space (X,p) if and only if {ρn} is Cauchy in a metric space (X,dp) where

    dp(ρ,σ)=2p(ρ,σ)p(ρ,ρ)p(σ,σ).

    (ii) A partial metric space (X,p) is complete if a metric space (X,dp) is complete, i.e.,

    limndp(ρ,ρn)=0limnp(ρn,ρ)=p(ρ,ρ)=limn,mp(ρn,ρm).

    Lemma 1.7. [12] Let (X,p) be a partial metric space.

    (i) If p(ρ,σ)=0, then ρ=σ.

    (ii) If ρσ, then p(ρ,σ)>0.

    Lemma 1.8. (see [12]). Let ρnξ as n in a partial metric space (X,p) where p(ξ,ξ)=0. Then limnp(ρn,σ)=p(ρ,σ) for all σX.

    The following classes of the auxiliary functions will be used later.

    1). Let Ψ be the family of continuous and monotone non-decreasing functions ψ:[0,)[0,) such that ψ(t)=0 if and only if t=0.

    2). Let Φ be the family of lower semi-continuous functions ϕ:[0,)[0,) such that ϕ(t)=0 if and only if t=0.

    Theorem 2.1. Let (X,p) be a complete partial metric space and T:XX be a self mapping satisfying

    ψ(p(Tρ,Tσ))ψ(M(ρ,σ))ϕ(N(ρ,σ))forallρ,σX, (2.1)

    where

    M(ρ,σ)=max{p(ρ,σ),p(ρ,Tρ),p(σ,Tσ),p(ρ,Tσ)+p(σ,Tρ)2,p(σ,Tσ)(1+p(ρ,Tρ))1+p(ρ,σ),p(ρ,Tρ)(1+p(ρ,Tρ))1+p(ρ,σ)},
    N(ρ,σ)=max{p(ρ,σ),p(ρ,Tρ),p(σ,Tσ),p(σ,Tσ)(1+p(ρ,Tρ))1+p(ρ,σ),p(ρ,Tρ)(1+p(ρ,Tρ))1+p(ρ,σ)}

    for all ψΨ and ϕΦ. Then T has a unique fixed point.

    Proof. Let ρ0X be an arbitrary point. Then we construct a sequence {ρn}X as follows:

    ρn+1=Tρnforn0.

    If there exists n such that ρn+1=ρn then ρn is a fixed point of T and the result is proved. Suppose that ρn+1ρn for all n0. Letting ρ=ρn1,σ=ρn, we have

    ψ(p(Tρn1,Tρn))ψ(M(ρn1,ρn))φ(N(ρn1,ρn)), (2.2)

    where

    M(ρn1,ρn)=max{p(ρn1,ρn),p(ρn1,Tρn1),p(ρn,Tρn),p(ρn1,Tρn)+p(ρn,Tρn1)2,p(ρn,Tρn)(1+p(ρn1,Tρn1))(1+p(ρn1,ρn)),p(ρn1,Tρn1)(1+p(ρn1,Tρn1))(1+p(ρn1,ρn))}=max{p(ρn1,ρn),p(ρn1,ρn),p(ρn,ρn+1),p(ρn1,ρn+1)+p(ρn,ρn)2,p(ρn,ρn+1)(1+p(ρn1,ρn))(1+p(ρn1,ρn)),p(ρn1,ρn)(1+p(ρn1,ρn))(1+p(ρn1,ρn))}=max{p(ρn1,ρn),p(ρn,ρn+1),p(ρn1,ρn+1)+p(ρn,ρn)2}. (2.3)

    From the triangular inequality, we have

    p(ρn1,ρn+1)p(ρn1,ρn)+p(ρn,ρn+1)p(ρn,ρn),

    or

    p(ρn1,ρn+1)+p(ρn,ρn)2p(ρn1,ρn)+p(ρn,ρn+1)2max{p(ρn1,ρn),p(ρn,ρn+1)}.

    By (2.3), we get

    M(ρn1,ρn)=max{p(ρn1,ρn),p(ρn,ρn+1)}, (2.4)
    N(ρn1,ρn)=max{p(ρn1,ρn),p(ρn1,Tρn1),p(ρn,Tρn),p(ρn,Tρn)(1+p(ρn1,Tρn1))(1+p(ρn1,ρn)),p(ρn1,Tρn1)(1+p(ρn1,Tρn1))(1+p(ρn1,ρn))}=max{p(ρn1,ρn),p(ρn1,ρn),p(ρn,ρn+1),p(ρn,ρn+1)(1+p(ρn1,ρn))(1+p(ρn1,ρn)),p(ρn1,ρn)(1+p(ρn1,ρn))(1+p(ρn1,ρn))}=max{p(ρn1,ρn),p(ρn,ρn+1)}.

    By (2.2), we get

    ψ(p(ρn,ρn+1)ψ(max(p(ρn,ρn+1),p(ρn1,ρn)))φ(max(p(ρn,ρn+1),p(ρn1,ρn))). (2.5)

    If p(ρn,ρn+1)>p(ρn1,ρn), then from (2.5), we have

    ψ(p(ρn,ρn+1)ψ(p(ρn,ρn+1))φ(p(ρn,ρn+1))<ψ(p(ρn,ρn+1))

    which is a contradiction since p(ρn,ρn+1)>0 by Lemma 1.7. So we have p(ρn,ρn+1)p(ρn1,ρn), that is, p(ρn,ρn+1) is a non increasing sequence of positive real numbers. Thus there exists L0 such that

    limnp(ρn,ρn+1)=L. (2.6)

    Suppose that L>0. Taking the lower limit in (2.5) as n and using (6) and the properties of ψ,φ, we have

    ψ(L)ψ(L)lim infnφ(p(ρn1,ρn))ψ(L)φ(L)<ψ(L),

    which is a contradiction. Therefore

    limnp(ρn,ρn+1)=0. (2.7)

    Using

    dp(ρn,ρn+1)=2p(ρ,σ)p(ρ,ρ)p(σ,σ),

    we have

    dp(ρn,ρn+1)2p(ρn,ρn+1).

    This implies

    dp(ρn,ρn+1)=0. (2.8)

    Now, we shall show that limn,mp(ρn,ρm)=0. On the contrary, assume that limn,mp(ρn,ρm)0. Then there exists ϵ>0 for which there exist two subsequences {ρm(k)} and {ρn(k)} of {ρn} such that n(k) is the smallest index for which

    n(k)>m(k)>k,p(ρn(k),ρm(k))>ϵ. (2.9)

    This implies

    p(ρn(k)1,ρm(k))<ϵ. (2.10)

    From (2.9) and (2.10), we have

    ϵp(ρn(k),ρm(k))p(ρn(k),ρn(k)1)+p(ρn(k)1,ρm(k))p(ρn(k)1,ρn(k)1)p(ρn(k),ρn(k)1)+p(ρn(k)1,ρm(k))<ϵ+p(ρn(k),ρn(k)1).

    Taking the limit k and using (2.10), we get

    limkp(ρn(k),ρm(k))=ϵ. (2.11)

    By the triangle inequality, we have

    p(ρn(k),ρm(k))p(ρn(k),ρn(k)1)+p(ρn(k)1,ρm(k))p(ρn(k)1,ρn(k)1)p(ρn(k),ρn(k)1)+p(ρn(k)1,ρm(k))p(ρn(k),ρn(k)1)+p(ρn(k)1,ρm(k)1)+p(ρm(k)1,ρm(k))p(ρm(k)1,ρm(k)1)p(ρn(k),ρn(k)1)+p(ρn(k)1,ρm(k)1)+p(ρm(k)1,ρm(k)),
    p(ρn(k)1,ρm(k)1)p(ρn(k)1,ρn(k))+p(ρn(k),ρm(k)1)p(ρn(k),ρn(k))p(ρn(k)1,ρn(k))+p(ρn(k),ρm(k)1)p(ρn(k)1,ρn(k))+p(ρn(k),ρm(k))+p(ρm(k),ρm(k)1)p(ρm(k),ρm(k))p(ρn(k)1,ρn(k))+p(ρn(k),ρm(k))+p(ρm(k),ρm(k)1).

    Taking the limit k in the above two inequalities and using (2.7) and (2.11), we get

    limkp(ρn(k)1,ρm(k)1)=ϵ. (2.12)

    Now from (2.1), we have

    ψ(p(ρm(k),ρn(k)))=ψ(p(Tρm(k)1,Tρn(k)1))ψ(M(ρm(k)1,ρn(k)1))φ(N(ρm(k)1,ρn(k)1)), (2.13)

    where

    M(ρm(k)1,ρn(k)1)=max{p(ρm(k)1,ρn(k)1),p(ρm(k)1,Tρm(k)1),p(ρn(k)1,Tρn(k)1),p(ρm(k)1,Tρn(k)1)+p(ρn(k)1,Tρm(k)1)2,p(ρm(k)1,Tρm(k)1)(1+p(ρm(k)1,Tρm(k)1))1+p(ρm(k)1,ρn(k)1),p(ρn(k)1,Tρn(k)1)(1+p(ρm(k)1,Tρm(k)1))1+p(ρm(k)1,ρn(k)1)}=max{p(ρm(k)1,ρn(k)1),p(ρm(k)1,ρm(k)),p(ρn(k)1,ρn(k)),p(ρm(k)1,ρn(k))+p(ρn(k)1,ρm(k))2,p(ρm(k)1,ρm(k))(1+p(ρm(k)1,ρm(k)))1+p(ρm(k)1,ρn(k)1),p(ρn(k)1,ρn(k))(1+p(ρm(k)1,ρm(k)))1+p(ρm(k)1,ρn(k)1)}. (2.14)

    By the triangular inequality, we have

    p(ρm(k)1,ρn(k))p(ρm(k)1,ρm(k))+p(ρm(k),ρn(k))p(ρm(k),ρm(k)), (2.15)
    p(ρn(k)1,ρm(k))p(ρn(k)1,ρn(k))+p(ρn(k),ρm(k))p(ρn(k),ρn(k)). (2.16)

    From (2.15) and (2.16), we have

    p(ρn(k)1,ρm(k))+p(ρm(k)1,ρn(k))p(ρm(k)1,ρm(k))+p(ρn(k)1,ρn(k))+2p(ρn(k),ρm(k))p(ρm(k),ρm(k))p(ρn(k),ρn(k)). (2.17)

    Using (2.17) and (2.14), we get

    M(ρm(k)1,ρn(k)1)=max{p(ρm(k)1,ρn(k)1),p(ρm(k)1,ρm(k)),p(ρn(k)1,ρn(k)),p(ρm(k)1,ρm(k))+p(ρn(k1),ρn(k))+2p(ρn(k),ρm(k))p(ρm(k),ρm(k))p(ρn(k),ρn(k))2,p(ρm(k)1,ρm(k))(1+p(ρm(k)1,ρm(k)))1+p(ρm(k)1,ρn(k)1),p(ρn(k)1,ρn(k))(1+p(ρm(k)1,ρm(k)))1+p(ρm(k)1,ρn(k)1)}. (2.18)

    Taking the limit as k and using (2.6), (2.10) and (2.11), we have

    limkM(ρm(k)1,ρn(k)1)=max{0,ϵ}=ϵ, (2.19)
    N(ρm(k)1,ρn(k)1)=max{p(ρm(k)1,ρn(k)1),p(ρm(k)1,ρm(k)),p(ρn(k)1,ρn(k)),
    p(ρn(k)1,ρn(k))(1+p(ρm(k)1,ρm(k)))1+p(ρm(k)1,ρn(k)1),p(ρm(k)1,ρm(k))(1+p(ρm(k)1,ρm(k)))1+p(ρm(k)1,ρn(k)1)}.

    Taking the limit as k and using (2.6), (2.10) and (2.11), we have

    limkN(ρm(k)1,ρn(k)1)=ϵ. (2.20)

    Now taking the lower limit when k in (2.13) and using (2.10) and (2.12), we have

    ψ(ϵ)ψ(ϵ)lim infkφ(N(ρm(k)1,ρn(k)1))ψ(ϵ)φ(ϵ)<ψ(ϵ),

    which is a contradiction. So we have

    limn,mp(ρn,ρm)=0.

    Since limn,mp(ρn,ρm) exists and is finite, we conclude that ρn is a Cauchy sequence in (X,p). Using Remark 1.2, we have

    dp(ρn,ρm)2p(ρn,ρm).

    Therefore,

    limn,mdp(ρn,ρm)=0. (2.21)

    Thus by Lemma 1.6, {ρn} is a Cauchy sequence in both (X,dp) and (X,p). Since (X,p) is a complete partial metric space, there exists ρX such that

    limnp(ρn,ρ)=p(ρ,ρ).

    Since limn,mp(ρn,ρm)=0, by Lemma 1.6, we have p(ρ,ρ)=0. Now, we shall prove that ρ is a fixed point of T. Suppose that Tρρ. From (2.1) and using Lemma 1.8, we have

    ψ(p(ρn,Tρ))=ψ(p(Tρn1,Tρ)ψ(max{p(ρn1,ρ),p(ρn1,Tρn1),p(ρ,Tρ),p(ρn1,Tρn1)(1+p(ρn1,Tρn1))1+p(ρn1,ρ),p(ρ,Tρ)(1+p(ρn1,Tρn1)))1+p(ρn1,ρ),p(ρn1,Tρ)+p(ρ,Tρn1)2})φ(max{p(ρn1,ρ),p(ρn1,Tρn1),p(ρ,Tρ),p(ρ,Tρ)(1+p(ρn1,Tρn1))1+p(ρn1,ρ),p(ρn1,Tρn1)(1+p(ρn1,Tρn1))1+p(ρn1,ρ)}). (2.22)

    Letting the limit n in the above inequality and using the property of φ,ψ, we have

    ψ(p(ρ,Tρ))ψ(max{p(ρ,ρ),p(ρ,Tρ),p(ρ,Tρ)(1+p(ρ,ρ))1+p(ρ,ρ),p(ρ,Tρ)+p(ρ,ρ)2})φ(max{p(ρ,ρ),p(ρ,Tρ)})ψ(p(ρ,Tρ))φ(p(ρ,Tρ))<ψ(p(ρ,Tρ)),

    which is a contradiction. Thus Tρ=ρ, i.e., ρ is a fixed point of T. Finally to prove uniqueness, suppose that σ is another fixed point of T such that ρσ. From (2.1), we have

    ψ(p(ρ,σ))=ψ(p(Tρ,Tσ))ψ(M(ρ,σ))φ(N(ρ,σ)), (2.23)

    where

    M(ρ,σ)=max{p(ρ,ρ),p(ρ,σ),p(σ,σ),p(ρ,ρ)(1+p(ρ,σ))1+p(ρ,σ),p(ρ,σ)+p(σ,ρ)2}=p(ρ,σ). (2.24)

    Similarly

    N(ρ,σ)=p(ρ,σ). (2.25)

    Using (2.24), (2.25) and (2.23), we have

    ψ(p(ρ,σ))ψ(p(ρ,σ))φ(p(ρ,σ))<ψ(p(ρ,σ)),

    which is a contradiction since p(ρ,σ)>0. Hence ρ=σ.

    Corollary 2.2. Let (X,p) be a complete partial metric space and T:XX be a self mapping satisfying

    ψ(p(Tρ,Tσ))ψ(M(ρ,σ))ϕ(M(ρ,σ))forallρ,σX,

    where

    M(ρ,σ)=max{p(ρ,σ),p(ρ,Tρ),p(σ,Tσ),p(ρ,Tσ)+p(σ,Tρ)2,p(σ,Tσ)(1+p(ρ,Tρ))1+p(ρ,σ),p(ρ,Tρ)(1+p(ρ,Tρ))1+p(ρ,σ)}

    for all ψΨ and ϕΦ. Then T has a unique fixed point.

    Corollary 2.3. Let (X,p) be a complete partial metric space and T:XX be a self mapping satisfying

    ψ(p(Tρ,Tσ))ψ(N(ρ,σ))ϕ(N(ρ,σ))forallρ,σX,

    where

    N(ρ,σ)=max{p(ρ,σ),p(ρ,Tρ),p(σ,Tσ),p(σ,Tσ)(1+p(ρ,Tρ))1+p(ρ,σ),p(ρ,Tρ)(1+p(ρ,Tρ))1+p(ρ,σ)}

    for all ψΨ and ϕΦ. Then T has a unique fixed point.

    Taking ψ to an identity mapping and ϕ(s)=(1k)s for all s0, where k(0,1), we obtain the following results.

    Corollary 2.4. Let (X,p) be a complete partial metric space and T:XX be a self mapping satisfying

    p(Tρ,Tσ)kmax{p(ρ,σ),p(ρ,Tρ),p(σ,Tσ),p(ρ,Tσ)+p(σ,Tρ)2,p(σ,Tσ)(1+p(ρ,Tρ))1+p(ρ,σ),p(ρ,Tρ)(1+p(ρ,Tρ))1+p(ρ,σ)}

    for all ρ,σX and k(0,1). Then T has a unique fixed point.

    Corollary 2.5. Let (X,p) be a complete partial metric space and T:XX be a self mapping satisfying

    p(Tρ,Tσ)kmax{p(ρ,σ),p(ρ,Tρ),p(σ,Tσ),p(σ,Tσ)(1+p(ρ,Tρ))1+p(ρ,σ),p(ρ,Tρ)(1+p(ρ,Tρ))1+p(ρ,σ)}

    for all ρ,σX and k(0,1). Then T has a unique fixed point.

    Example 2.6. Let X=[0,1]. Define T:XX by Tρ=ρ3 and p:X×X[0,) by p(ρ,σ)=max{ρ,σ}, then (X,p) is a complete partial metric space and

    p(Tρ,Tσ)13max{p(ρ,σ),p(ρ,Tρ),p(σ,Tσ),p(ρ,Tσ)+p(σ,Tρ)2,p(σ,Tσ)(1+p(ρ,Tρ))1+p(ρ,σ),p(ρ,Tρ)(1+p(ρ,Tρ))1+p(ρ,σ)}

    Thus by Corollary 2.4, T has a unique fixed point. Here 0 is the unique fixed point of T.

    Example 2.7. Let X=[0,1]. Define T:XX by Tρ=ρ2 and p:X×X[0,) by p(ρ,σ)=max{ρ,σ}, then (X,p) is a complete partial metric space and

    p(Tρ,Tσ)12max{p(ρ,σ),p(ρ,Tρ),p(σ,Tσ),p(σ,Tσ)(1+p(ρ,Tρ))1+p(ρ,σ),p(ρ,Tρ)(1+p(ρ,Tρ))1+p(ρ,σ)}

    Thus by Corollary 2.5, T has a unique fixed point. Here 0 is the unique fixed point of T.

    Example 2.8. Let X=[0,) and p(ρ,σ)=max{ρ,σ}. Then (X,p) is a complete partial metric space. Consider the mapping T:XX defined by

    T(ρ)={0if0ρ<1;ρ2ρ+1ifρ1. (2.26)

    and φ(t),ψ(t):[0,)[0,), φ(t)=t1+t and ψ(t)=t.

    We have the following cases.

    Case (ⅰ) If ρ,σ[0,1) and assume that ρσ, we have

    p(Tρ,Tσ)=0,

    and

    M(ρ,σ)=max{p(ρ,σ),p(ρ,Tρ),p(σ,Tσ),p(ρ,Tσ)+p(σ,Tρ)2,p(σ,Tσ)(1+p(ρ,Tρ))1+p(ρ,σ),p(ρ,Tρ)(1+p(ρ,Tρ))1+p(ρ,σ)}=max{ρ,ρ,σ,ρ+σ2,ρ(1+σ)1+ρ,σ(1+σ)1+ρ}=max{σ,ρ,ρ}=ρ.

    On the same lines

    N(ρ,σ)=ρ.

    Therefore

    ψ(p(Tρ,Tσ))=0, (2.27)

    and

    ψ(M(ρ,σ))φ(N(ρ,σ))=ρρ1+ρ=ρ21+ρ. (2.28)

    From (2.27) and (2.28), we have ψ(p(Tρ,Tσ))ψ(M(ρ,σ))φ(N(ρ,σ)).

    Case (ⅱ) If σ[0,1) and ρ1, we have

    p(Tρ,Tσ)=max{ρ21+ρ,0}=ρ21+ρ,

    and

    M(ρ,σ)=max{p(ρ,σ),p(ρ,Tρ),p(σ,Tσ),p(ρ,Tσ)+p(σ,Tρ)2,p(σ,Tσ)(1+p(ρ,Tρ))1+p(ρ,σ),p(ρ,Tρ)(1+p(ρ,Tρ))1+p(ρ,σ)}=max{ρ,ρ,σ,2ρ2+σ2(ρ+1),ρ(1+σ)1+ρ,σ(1+σ)1+ρ}=ρ.

    On the same lines

    N(ρ,σ)=ρ.

    Therefore

    ψ(p(Tρ,Tσ)=ρ21+ρ, (2.29)

    and

    ψ(M(ρ,σ))φ(N(ρ,σ))=ρ21+ρ. (2.30)

    From (2.29) and (2.30), we have ψ(p(Tρ,Tσ))=ψ(M(ρ,σ))φ(N(ρ,σ)).

    Case (ⅲ) If ρσ1, we have

    p(Tρ,Tσ)=max{ρ21+ρ,σ21+σ}=ρ21+ρ,

    and

    M(ρ,σ)=max{p(ρ,σ),p(ρ,Tρ),p(σ,Tσ),p(ρ,Tσ)+p(σ,Tρ)2,p(σ,Tσ)(1+p(ρ,Tρ))1+p(ρ,σ),p(ρ,Tρ)(1+p(ρ,Tρ))1+p(ρ,σ)}=max{ρ,ρ,σ,2ρ2+σ2(ρ+1),ρ(1+σ)1+ρ,σ(1+σ)1+ρ}=ρ.

    On the same lines

    N(ρ,σ)=ρ.

    Therefore

    ψ(p(Tρ,Tσ)=ρ21+ρ, (2.31)

    and

    ψ(M(ρ,σ))φ(N(ρ,σ))=ρ21+ρ. (2.32)

    From (2.31) and (2.32), we have ψ(p(Tρ,Tσ))=ψ(M(ρ,σ))φ(N(ρ,σ)).

    Thus it satisfies all the conditions of Theorem 2.1. Hence T has a unique fixed point, indeed, ρ=0 is the required point. However, the inequality 2.1 is not satisfied when the partial p is replaced by the usual metric. Indeed, Take ρ=2 and σ=2.5, then

    ψ(d(Tρ,Tσ))=19/42&ψ(M(ρ,σ))ϕ(N(ρ,σ))=1/6.

    Hence, inequality 2.1 is not satisfied.

    Example 2.9. Let X=[0,1/2] and p(ρ,σ)=max{ρ,σ}. Then (X,p) is a complete partial metric space. Consider the mapping T:XX defined by Tρ=ρ332ρ2+3136ρ+2372 for all ρX and φ(t),ψ(t):[0,)[0,), φ(t)=t100000+t and ψ(t)=t.

    Without loss of generality, assume that ρσ, we have

    p(Tρ,Tσ)=max{ρ332ρ2+3136ρ+2372,σ332σ2+3136σ+2372}=ρ332ρ2+3136ρ+2372,

    and

    M(ρ,σ)=max{p(ρ,σ),p(ρ,Tρ),p(σ,Tσ),p(ρ,Tσ)+p(σ,Tρ)2,p(σ,Tσ)(1+p(ρ,Tρ))1+p(ρ,σ),p(ρ,Tρ)(1+p(ρ,Tρ))1+p(ρ,σ)}=(ρ332ρ2+3136ρ+2372)(ρ332ρ2+3136ρ+9572)1+ρ.

    On the same lines

    N(ρ,σ)=(ρ332ρ2+3136ρ+2372)(ρ332ρ2+3136ρ+9572)1+ρ.

    One can easily verify, that ψ(p(Tρ,Tσ))ψ(M(ρ,σ))φ(N(ρ,σ)).

    Thus it satisfies all the conditions of Theorem 2.1. Hence T has a unique fixed point in X, indeed, ρ=1/2 is the required point in X=[0,1/2].

    Chandok et al. [8] established some results on fixed point for rational type of contraction in the framework of metric space endowed with a partial order. In this paper, we have extended the results of Chandok et al. [8] in a space having non-zero self distance, that is, partial metric space and established some theorems for the existence and uniqueness of a fixed point using auxiliary functions.} Our results generalize some existing results in the literature. To illustrate our results some examples have been provided.

    We would like to express our sincere gratitude to the anonymous referee for his/her helpful comments that will help to improve the quality of the manuscript.

    The authors declare that they have no competing interests.



    [1] T. Abdeljawad, E. Karapinar, K. Taş, Existence and uniqueness of a common d = fixed point on partial metric spaces, Appl. Math. Lett., 24 (2011), 1900–1904. doi: 10.1016/j.aml.2011.05.014
    [2] H. Aydi, M. A. Barakat, E. Karapinar Z. D. Mitrović, T. Rashid, On L-simulation mappings in partial metric spaces, AIMS Mathematics, 4 (2019), 1034–1045. doi: 10.3934/math.2019.4.1034
    [3] H. Aydi, C. M. Chen, E. Karapinar, Interpolative Ćirić-Reich-Rus type contractions via the Branciari distance, Mathematics, 7 (2019), 84. doi: 10.3390/math7010084
    [4] H. Aydi, E. Karapinar, A. F. Roldán López de Hierro, ω-Interpolative Ćirić-Reich-Rus type contractions, Mathematics, 7 (2019), 57. doi: 10.3390/math7010057
    [5] S. Banach, Sur les opˊerations dans les ensembles abstraits et leur application aux ˊequations intˊegrales, Fund. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181
    [6] U. Y. Batsari, P. Kumam, S. Dhompongsa, Fixed points of terminating mappings in partial metric spaces, J. Fixed Point Theory Appl., 21 (2019), 39. doi: 10.1007/s11784-019-0672-4
    [7] S. Chandok, Some common fixed point results for rational type contraction mappings in partially ordered metric spaces, Math. Bohem., 138 (2013), 403–413.
    [8] S. Chandok, B. S. Choudhury, N. Metiya, Some fixed point results in ordered metric spaces for rational type expressions with auxiliary functions, J. Egypt. Math. Soc., 23 (2015), 95–101. doi: 10.1016/j.joems.2014.02.002
    [9] S. Chandok, S. Dinu, Common fixed points for weak ψ-contractive mappings in ordered metric spaces with applications, Abstr. Appl. Anal., 2013 (2013), 879084.
    [10] S. Chandok, J. Kim, Fixed point theorem in ordered metric spaces for generalized contractions mappings satisfying rational type expressions, J. Nonlinear Funct. Anal. Appl., 17 (2012), 301–306.
    [11] S. Chandok, D. Kumar, Some common fixed point results for rational type contraction mappings in complex valued metric spaces, J. Operator, 2013 (2013), 813707.
    [12] S. Chandok, D. Kumar, M. S. Khan, Some results in partial metric space using auxiliary functions, Appl. Math. E-Notes, 15 (2015), 233–242.
    [13] S. Chandok, T. D. Narang, M. A. Taoudi, Some common fixed point results in partially ordered metric spaces for generalized rational type contraction mappings, Vietnam J. Math., 41 (2013), 323–331. doi: 10.1007/s10013-013-0024-4
    [14] Y. U. Gaba, E. Karapinar, A new approach to the interpolative contractions, Axioms, 8 (2019), 110. doi: 10.3390/axioms8040110
    [15] P. Gautam, V. N. Mishra, R. Ali, S. Verma, Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space, AIMS Mathematics, 6 (2021), 1727–1742. doi: 10.3934/Math.2021103
    [16] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Struct., 7 (1999), 71–83. doi: 10.1023/A:1008684018933
    [17] E. Karapinar, A note on common fixed point theorems in partial metric spaces, Miskolc Math. Notes, 12 (2011), 185–191. doi: 10.18514/MMN.2011.335
    [18] E. Karapinar, Generalizations of Caristi Kirk's theorem on partial metric spaces, Fixed Point Theory Appl., 2011 (2011), 4. doi: 10.1186/1687-1812-2011-4
    [19] E. Karapinar, Fixed point theory for cyclic weak ϕ-contraction, Appl. Math. Lett., 24 (2011), 822–825. doi: 10.1016/j.aml.2010.12.016
    [20] E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 85–87.
    [21] E. Karapinar, R. P. Agarwal, Interpolative Rus-Reich-Ćirić type contractions via simulation functions, An. Știinţ. Univ. "Ovidius" Constanţa Ser. Mat., 27 (2019), 137–152.
    [22] E. Karapinar, R. P. Agarwal, H. Aydi, Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces, Mathematics, 6 (2018), 256. doi: 10.3390/math6110256
    [23] E. Karapinar, O. Alqahtani, H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry, 11 (2019), 8.
    [24] E. Karapinar, I. M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., 24 (2011), 1894–1899. doi: 10.1016/j.aml.2011.05.013
    [25] E. Karapinar, W. Shatanawi, K. Taş, Fixed point theorem on partial metric spaces involving rational expressions, Miskolc Math. Notes, 14 (2013), 135–142. doi: 10.18514/MMN.2013.471
    [26] S. G. Matthews, Partial metric topology, University of Warwick, Research Report 212, 1992.
    [27] S. G. Matthews, Partial metric topology, In: Papers from the 8th Summer Conference at Queens College, New York, June 18–20, 1992, S. Andima (Ed.), New York: New York Acad. Sci., 1994, vol. 728,183–197.
    [28] S. Oltra, O. Velero, Banach's fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste, XXXVI, (2004), 17–26.
    [29] R. Pant, R. Shukla, H. H. Nashine, R. Panicker, Some new fixed point theorems in partial metric spaces with application, J. Funct. Spaces, 2017 (2017), 1072750.
    [30] B. Samet, M. Rajović, R. Lazović, R. Stojiljković, Common fixed point results for nonlinear contractions in ordered partial metric spaces, Fixed Point Theory Appl., 2011 (2011), 71. doi: 10.1186/1687-1812-2011-71
    [31] W. Shatanawi, B. Samet, M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comput. Model., 55 (2012), 680–687. doi: 10.1016/j.mcm.2011.08.042
  • This article has been cited by:

    1. I. Eroǧlu, E. Güner, H. Aygün, O. Valero, A fixed point principle in ordered metric spaces and applications to rational type contractions, 2022, 7, 2473-6988, 13573, 10.3934/math.2022750
    2. Dimple Singh, Priya Goel, Ramandeep Behl, Iñigo Sarría, Extension of Meir-Keeler-Khan (ψ − α) Type Contraction in Partial Metric Space, 2024, 13, 2075-1680, 638, 10.3390/axioms13090638
    3. Mohamed Jleli, Bessem Samet, On $ (\omega,t_0) $-Taylor-Lagrange distance function and fixed point results, 2025, 0, 1937-1632, 0, 10.3934/dcdss.2025002
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3307) PDF downloads(269) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog