Research article

Structures of power digraphs over the congruence equation $ x^p\equiv y\; (\text{mod}\; m) $ and enumerations

  • Received: 05 November 2020 Accepted: 08 February 2021 Published: 22 February 2021
  • MSC : 05C25, 11E04, 20G15

  • In this work, we incorporate modular arithmetic and discuss a special class of graphs based on power functions in a given modulus, called power digraphs. In power digraphs, the study of cyclic structures and enumeration of components is a difficult task. In this manuscript, we attempt to solve the problem for $ p $th power congruences over different classes of residues, where $ p $ is an odd prime. For any positive integer $ m $, we build a digraph $ G(p, m) $ whose vertex set is $ \mathbb{Z}_{m} = \{0, 1, 2, 3, ..., m-1\} $ and there will be a directed edge from vertices $ u\in \mathbb{Z}_{m} $ to $ v\in \mathbb{Z}_{m} $ if and only if $ u^{p}\equiv v\; (\text{mod} \; m) $. We study the structures of $ G(p, m) $. For the classes of numbers $ 2^{r} $ and $ p^{r} $ where $ r\in \mathbb{Z^{+}} $, we classify cyclic vertices and enumerate components of $ G(p, m) $. Additionally, we investigate two induced subdigraphs of $ G(p, m) $ whose vertices are coprime to $ m $ and not coprime to $ m $, respectively. Finally, we characterize regularity and semiregularity of $ G(p, m) $ and establish some necessary conditions for cyclicity of $ G(p, m) $.

    Citation: M. Haris Mateen, Muhammad Khalid Mahmmod, Dilshad Alghazzawi, Jia-Bao Liu. Structures of power digraphs over the congruence equation $ x^p\equiv y\; (\text{mod}\; m) $ and enumerations[J]. AIMS Mathematics, 2021, 6(5): 4581-4596. doi: 10.3934/math.2021270

    Related Papers:

  • In this work, we incorporate modular arithmetic and discuss a special class of graphs based on power functions in a given modulus, called power digraphs. In power digraphs, the study of cyclic structures and enumeration of components is a difficult task. In this manuscript, we attempt to solve the problem for $ p $th power congruences over different classes of residues, where $ p $ is an odd prime. For any positive integer $ m $, we build a digraph $ G(p, m) $ whose vertex set is $ \mathbb{Z}_{m} = \{0, 1, 2, 3, ..., m-1\} $ and there will be a directed edge from vertices $ u\in \mathbb{Z}_{m} $ to $ v\in \mathbb{Z}_{m} $ if and only if $ u^{p}\equiv v\; (\text{mod} \; m) $. We study the structures of $ G(p, m) $. For the classes of numbers $ 2^{r} $ and $ p^{r} $ where $ r\in \mathbb{Z^{+}} $, we classify cyclic vertices and enumerate components of $ G(p, m) $. Additionally, we investigate two induced subdigraphs of $ G(p, m) $ whose vertices are coprime to $ m $ and not coprime to $ m $, respectively. Finally, we characterize regularity and semiregularity of $ G(p, m) $ and establish some necessary conditions for cyclicity of $ G(p, m) $.



    加载中


    [1] S. Bryant, Groups, graphs, and Fermat's last theorem, Am. Math. Monthly, 74 (1967), 152–155.
    [2] L. Szalay, A discrete iteration in number theory, BDTF Tud. Közl., 8 (1992), 71–91.
    [3] T. D. Rogers, The graph of the square mapping on the prime fields, Discrete Math., 148 (1996), 317–324. doi: 10.1016/0012-365X(94)00250-M
    [4] L. Somer, M. Krizek, On a connection of number theory with graph theory, Czech. Math. J., 5 (2004), 465–485.
    [5] M. K. Mahmood, F. Ahmad, An informal enumeration of squares of $2^k$ using rooted trees arising from congruences, Utilitas Math., 105 (2017), 41–51.
    [6] M. A Malik, M. K Mahmood, On simple graphs arising from exponential congruences, J. Appl. Math., 2012 (2012), 1–10.
    [7] Y. J. Wei, G. Tang, The iteration digraphs of finite commutative rings, Turk. J. Math., 39 (2015), 872–883. doi: 10.3906/mat-1503-2
    [8] L. Somer, M. Krizek, On symmetric digraphs of the congruence $x^{k}\equiv y ({\rm{mod}}\; m)$, Discrete Math., 309 (2009), 1999–2009. doi: 10.1016/j.disc.2008.04.009
    [9] J. Skowronek-Kazió, Some digraphs arising from number theory and remarks on the zero-divisor graph of the ring $Z_{n}$, Inf. Process. Lett., 108 (2008), 165–169.
    [10] M. H. Mateen, M. K. Mahmood, A new approch for the enumeration of components of digraphs over the quadratic maps, J. Prime Res. Math., 16 (2020), 56–66.
    [11] M. K. Mahmood, F. Ahmad, A classification of cyclic nodes and enumerations of components of a class of discrete graphs, Appl. Math. Inf. Sci., 9 (2015), 103–112. doi: 10.12785/amis/090115
    [12] M. H. Mateen, M. K. Mahmood, Power digraphs associated with the congruence $x^{n}\equiv y ({\rm{mod}}\; m)$, Punjab Univ. J. Math., 51 (2019), 93–102.
    [13] M. H. Mateen, M. K. Mahmood, S. Ali, Importance of power digraph in computer science, International conference on innovative computing (ICIC), Lahore, Pakistan, (2019), 1–6.
    [14] S. Akbari, A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra, 274 (2004), 847–855. doi: 10.1016/S0021-8693(03)00435-6
    [15] Y. J. Wei, J. Z. Nan, G. H. Tang, H. D. Su, The cubic mapping graphs of the residue classes of integers, Ars Combin., 97 (2010), 101–110.
    [16] Y. Wei, G. Tang, H. Su, The square mapping graphs of finite commutative rings, Algebra Colloq., 19 (2012), 569–580. doi: 10.1142/S1005386712000442
    [17] M. Rezaei, S. U. Rehman, Z. U. Khan, A. Q. Baig, M. R. Farahani, Quadratic residues graph, Int. J. Pure Appl. Math., 113 (2017), 465–470.
    [18] W. Carlip, M. Mincheva, Symmetry of iteration graphs, Czechoslovak Math. J., 58 (2008), 131–145.
    [19] G. Deng, P. Yuan, On the symmetric digraphs from powers modulo $n$, Discrete Math., 312 (2012), 720–728. doi: 10.1016/j.disc.2011.11.007
    [20] Y. Meemark, N. Wiroonsri, The quadratic digraph on polynomial rings over finite fields, Finite Fields Appl., 16 (2010), 334–346. doi: 10.1016/j.ffa.2010.05.004
    [21] Y. Meemark, N. Wiroonsri, The digraph of the kth power mapping of the quotient ring of polynomials over finite fields, Finite Fields Appl., 18 (2012), 179–191. doi: 10.1016/j.ffa.2011.07.008
    [22] M. K. Mahmood, S. Ali, A novel labeling algorithm on several classes of graphs, Punjab Univ. J. Math., 49 (2017), 23–35.
    [23] S. Ali, M. K. Mahmood, New numbers on euler totient function with application, J. Math. Ext., 14 (2019), 61–83.
    [24] H. Alolaiyan, A. Yousaf, M. Ameer, A. Razaq, Non-conjugate graphs associated with finite groups, IEEE Access, 7 (2019), 122849–122853. doi: 10.1109/ACCESS.2019.2938083
    [25] A. Portilla, J. M. Rodrguez, J. M. Sigarreta, E. Tours, Gromov hyperbolicity in directed graphs, Symmetry, 12 (2020), 105–117. doi: 10.3390/sym12010105
    [26] I. Niven, H. S. Zuckerman, H. L. Montgomery, An Introduction to the Theory of Numbers, Hoboken: John Wiley & Sons Inc., 1991.
    [27] R. D. Carmichael, Note on a new number theory function, Bull. Am. Math. Soc., 16 (1910), 232–238. doi: 10.1090/S0002-9904-1910-01892-9
    [28] B. Wilson, Power digraphs modulo $n$, Fibonacci Quart., 36 (1996), 229–239.
    [29] M. K. Mahmood, S. Ali, On super totient numbers with applications and algorithms to graph labeling, Ars Combinatoria, 143 (2019), 29–37.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2074) PDF downloads(144) Cited by(6)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog